1
|
Abstract
UNLABELLED The genome sequences of intestinal Bacteroidales strains reveal evidence of extensive horizontal gene transfer. In vitro studies of Bacteroides and other bacteria have addressed mechanisms of conjugative transfer and some phenotypic outcomes of these DNA acquisitions in the recipient, such as the acquisition of antibiotic resistance. However, few studies have addressed the horizontal transfer of genetic elements between bacterial species coresident in natural microbial communities, especially microbial ecosystems of humans. Here, we examine the genomes of Bacteroidales species from two human adults to identify genetic elements that were likely transferred among these Bacteroidales while they were coresident in the intestine. Using seven coresident Bacteroidales species from one individual and eight from another, we identified five large chromosomal regions, each present in a minimum of three of the coresident strains at near 100% DNA identity. These five regions are not found in any other sequenced Bacteroidetes genome at this level of identity and are likely all integrative conjugative elements (ICEs). Such highly similar and unique regions occur in only 0.4% of phylogenetically representative mock communities, providing strong evidence that these five regions were transferred between coresident strains in these subjects. In addition to the requisite proteins necessary for transfer, these elements encode proteins predicted to increase fitness, including orphan DNA methylases that may alter gene expression, fimbriae synthesis proteins that may facilitate attachment and the utilization of new substrates, putative secreted antimicrobial molecules, and a predicted type VI secretion system (T6SS), which may confer a competitive ecological advantage to these strains in their complex microbial ecosystem. IMPORTANCE By analyzing Bacteroidales strains coresident in the gut microbiota of two human adults, we provide strong evidence for extensive interspecies and interfamily transfer of integrative conjugative elements within the intestinal microbiota of individual humans. In the recipient strain, we show that the conjugative elements themselves can be modified by the transposition of insertion sequences and retroelements from the recipient's genome, with subsequent transfer of these modified elements to other members of the microbiota. These data suggest that the genomes of our gut bacteria are substantially modified by other, coresident members of the ecosystem, resulting in highly personalized Bacteroidales strains likely unique to that individual. The genetic content of these ICEs suggests that their transfer from successful adapted members of an ecosystem confers beneficial properties to the recipient, increasing its fitness and allowing it to better compete within its particular personalized gut microbial ecosystem.
Collapse
|
2
|
Nguyen M, Vedantam G. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 2011; 1:187-196. [PMID: 22479685 DOI: 10.4161/mge.1.3.18448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 01/25/2023] Open
Abstract
Bacteroides spp organisms, the predominant commensal bacteria in the human gut have become increasingly resistant to many antibiotics. They are now also considered to be reservoirs of antibiotic resistance genes due to their capacity to harbor and disseminate these genes via mobile transmissible elements that occur in bewildering variety. Gene dissemination occurs within and from Bacteroides spp primarily by conjugation, the molecular mechanisms of which are still poorly understood in the genus, even though the need to prevent this dissemination is urgent. One current avenue of research is thus focused on interventions that use non-antibiotic methodologies to prevent conjugation-based DNA transfer.
Collapse
Affiliation(s)
- Mai Nguyen
- Section of Digestive Diseases and Nutrition; University of Illinois; Chicago, IL USA
| | | |
Collapse
|
3
|
Seville LA, Patterson AJ, Scott KP, Mullany P, Quail MA, Parkhill J, Ready D, Wilson M, Spratt D, Roberts AP. Distribution of tetracycline and erythromycin resistance genes among human oral and fecal metagenomic DNA. Microb Drug Resist 2009; 15:159-66. [PMID: 19728772 DOI: 10.1089/mdr.2009.0916] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have analyzed the total metagenomic DNA from both human oral and fecal samples derived from healthy volunteers from six European countries to determine the molecular basis for tetracycline and erythromycin resistance. We have determined that tet(M) and tet(W) are the most prevalent tetracycline resistance genes assayed for in the oral and fecal metagenomes, respectively. Additionally, tet(Q), tet(O), and tet(O/32/O) have been shown to be common. We have also shown that erm(B), erm(V), and erm(E) are common erythromycin resistance genes present in these environments. Further, we have demonstrated the ubiquitous presence of the Tn916 integrase in the oral metagenomes and the Tn4451 and Tn1549 integrase genes within the fecal metagenomes.
Collapse
Affiliation(s)
- Lorna A Seville
- Division of Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Whittle G, Hund BD, Shoemaker NB, Salyers AA. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl Environ Microbiol 2001; 67:3488-95. [PMID: 11472924 PMCID: PMC93048 DOI: 10.1128/aem.67.8.3488-3495.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The conjugative transposon CTnDOT is virtually identical over most of its length to another conjugative transposon, CTnERL, except that CTnDOT carries an ermF gene that is not found on CTnERL. In this report, we show that the region containing ermF appears to consist of a 13-kb chimera composed of at least one class I composite transposon and a mobilizable transposon (MTn). Although the ermF region contains genes also carried on Bacteroides transposons Tn4351 and Tn4551, it does not contain the IS4351 element which is found on these transposons. In CTnDOT, insertion of the ermF region occurred near a stem-loop structure at the end of orf2, an open reading frame located immediately downstream of the integrase (int) gene of CTnDOT, and in a region known to be important for excision of CTnERL and CTnDOT. The chimera that comprises the ermF region can apparently no longer excise and circularize, but it contains a functional mobilization region related to that described for the Bacteroides MTn Tn4399. Analysis of 19 independent Bacteroides isolates showed that the ermF region is located in the same position in all of the strains analyzed and that the compositions of the ermF region are almost identical in these strains. Therefore, it appears that CTnDOT-like elements present in community and clinical isolates of Bacteroides were derived from a common ancestor and proliferated in the diverse Bacteroides population.
Collapse
Affiliation(s)
- G Whittle
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
5
|
Sitailo LA, Zagariya AM, Arnold PJ, Vedantam G, Hecht DW. The Bacteroides fragilis BtgA mobilization protein binds to the oriT region of pBFTM10. J Bacteriol 1998; 180:4922-8. [PMID: 9733696 PMCID: PMC107518 DOI: 10.1128/jb.180.18.4922-4928.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacteroides fragilis conjugal plasmid pBFTM10 contains two genes, btgA and btgB, and a putative oriT region necessary for transfer in Bacteroides fragilis and Escherichia coli. The BtgA protein was predicted to contain a helix-turn-helix motif, indicating possible DNA binding activity. DNA sequence analysis of the region immediately upstream of btgA revealed three sets of inverted repeats, potentially locating the oriT region. A 304-bp DNA fragment comprising this putative oriT region was cloned and confirmed to be the functional pBFTM10 oriT by bacterial conjugation experiments using E. coli and B. fragilis. btgA was cloned and overexpressed in E. coli, and the purified protein was used in electrophoretic mobility shift assays, demonstrating specific binding of BtgA protein to its cognate oriT. DNase I footprint analysis demonstrated that BtgA binds apparently in a single-stranded fashion to the oriT-containing fragment, overlapping inverted repeats I, II, and III and the putative nick site.
Collapse
Affiliation(s)
- L A Sitailo
- Department of Medicine, VA Hospital, Hines, Illinois 60141, USA
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Smith CJ, Owen C, Kirby L. Activation of a cryptic streptomycin-resistance gene in the Bacteroides erm transposon, Tn4551. Mol Microbiol 1992; 6:2287-97. [PMID: 1328814 DOI: 10.1111/j.1365-2958.1992.tb01404.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteroides compound transposons encoding erm resistance are highly homologous but previous studies have shown some divergence of Tn4551. Results presented here describe a novel Tn4551 streptomycin-resistance gene, aadS, that was phenotypically silent in wild-type Bacteroides. However, aadS expression could be activated by a trans-acting chromosomal mutation. The aadS-encoded peptide displayed significant homology to Gram-positive streptomycin-dependent adenyltransferases, and enzymatic analysis confirmed the production of this activity. Examination of the nucleotide sequence showed that 200 bp upstream of aadS, the DNA base composition changed abruptly from 31% G+C to 48% G+C. These two regions were demarcated by a DNA sequence with homology to the recombination hot spots reported for Tn21 and the Bacteroides ermFU gene and to sequences at the ends of the chromosomal Bacteroides conjugal element, XBU4422.
Collapse
Affiliation(s)
- C J Smith
- Department of Microbiology and Immunology, School of Medicine, East Carolina University, Greenville, North Carolina 27858
| | | | | |
Collapse
|
8
|
Hecht DW, Jagielo TJ, Malamy MH. Conjugal transfer of antibiotic resistance factors in Bacteroides fragilis: the btgA and btgB genes of plasmid pBFTM10 are required for its transfer from Bacteroides fragilis and for its mobilization by IncP beta plasmid R751 in Escherichia coli. J Bacteriol 1991; 173:7471-80. [PMID: 1657890 PMCID: PMC212512 DOI: 10.1128/jb.173.23.7471-7480.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transferable plasmids play an important role in the dissemination of clindamycin-erythromycin resistance in Bacteroides fragilis. We previously described the isolation and properties of pBFTM10, a 14.9-kb ClnR transfer factor from B. fragilis TMP10. We also reported the isolation of a transfer-deficient deletion derivative of pBFTM10 contained in the B. fragilis-Escherichia coli shuttle vector pGAT400. In the present study we used pGAT400 and a similar shuttle vector, pGAT550, to characterize and sequence a region of pBFTM10 required for its transfer from B. fragilis to B. fragilis or E. coli recipients and for its mobilization by the broad-host-range plasmid R751 from E. coli donors to E. coli recipients. Deletion of certain BglII restriction fragments from pBFTM10 resulted in partial or complete loss of transfer ability. Tn1000 insertions into this same region also resulted in altered transfer properties. We used the sites of Tn1000 insertions to determine the DNA sequence of the transfer region. Two potential open reading frames encoding proteins of 23.2 and 33.8 kDa, corresponding to two genes, btgA or btgB, were identified in the sequence. Tn1000 insertions within btgA or btgB or deletion of all or portions of btgA or btgB resulted in either a transfer deficiency or greatly reduced transfer from B. fragilis donors and alterations in mobilization by R751 in E. coli. A potential oriT sequence showing similarity in organization to the oriT regions of the IncP plasmids was also detected. Thus, pBFTM10 encodes and requires at least two proteins necessary for efficient transfer from B. fragilis. These same functions are expressed in E. coli and are required for mobilization by R751.
Collapse
Affiliation(s)
- D W Hecht
- Department of Medicine, Veterans Administration Hospital-Hines, Illinois 60141
| | | | | |
Collapse
|
9
|
Fletcher HM, Macrina FL. Molecular survey of clindamycin and tetracycline resistance determinants in Bacteroides species. Antimicrob Agents Chemother 1991; 35:2415-8. [PMID: 1804017 PMCID: PMC245395 DOI: 10.1128/aac.35.11.2415] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have examined 13 clinical isolates of the intestinal Bacteroides group using DNA probes representing Bacteroides macrolide-lincosamide-streptogramin B (MLS) (ermF) and tetracycline resistance (tetQ) determinants as well as an insertion sequence (IS4351) previously seen in association with erm genes. tetQ-hybridizing sequences were detected in 11 of 13 tetracycline-resistant clinical isolates. On the other hand, ermF-like sequences were detected in only three of eight clindamycin-resistant strains. One isolate displayed low-level, inducible resistance to clindamycin and was sensitive to erythromycin. This same isolate had IS4351-like sequences but was missing ermF-like sequences, in contrast to previous reports which demonstrated the common association of IS4351 and erm genes. Our results suggest the occurrence of unclassified MLS genes in the Bacteroides group and furthermore suggest that IS4351-like sequences are not always linked to Bacteroides ermF-like sequences. Finally, 4 of 13 isolates conjugally transferred tetracycline resistance or linked tetracycline-clindamycin (MLS) resistances, but this process did not involve plasmids.
Collapse
Affiliation(s)
- H M Fletcher
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond 23298-0678
| | | |
Collapse
|
10
|
Leclercq R, Courvalin P. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 1991; 35:1267-72. [PMID: 1929280 PMCID: PMC245156 DOI: 10.1128/aac.35.7.1267] [Citation(s) in RCA: 426] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- R Leclercq
- Service de Bactériologie-Virologie-Hygiène, Hôpital Henri Mondor, Université Paris XII, Créteil, France
| | | |
Collapse
|
11
|
Abstract
Conjugal transposons play an important role in the dissemination of antibiotic resistance determinants in the streptococci and have been postulated to exist in Bacteroides fragilis. To investigate the presence of conjugal transposons in B. fragilis, we employed a Tra- derivative of the transfer factor pBFTM10 contained in the chimeric plasmid pGAT400 delta BglII. We attempted to restore transferability to this plasmid from a series of transconjugants generated by crossing B. fragilis TMP230 containing the TET transfer factor with B. fragilis TM4000, a standard recipient. Transconjugant TM4.2321 transferred pGAT400 delta BglII to Escherichia coli HB101 at almost the same frequency as did the Tra+ parental plasmid, pGAT400. Analysis of the transferred plasmids revealed the presence of 9.6 kilobases of additional DNA in every case but at different positions in independent isolates. The presence of this DNA, designated Tn4399, allowed the pGAT400 delta BglII derivatives to retransfer from the TM4000 background to B. fragilis or E. coli recipients. DNA hybridization studies demonstrated the presence of one copy of Tn4399 in TMP230 and three copies at new sites in TM4.2321. Tn4399 is a new B. fragilis transposon with unique transfer properties that may play a role in the dissemination of drug resistance genes. It differs from previously described conjugal transposons by its ability to mobilize nonconjugal plasmids in cis.
Collapse
Affiliation(s)
- D W Hecht
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts 02111
| | | |
Collapse
|
12
|
Shoemaker NB, Salyers AA. Tetracycline-dependent appearance of plasmidlike forms in Bacteroides uniformis 0061 mediated by conjugal Bacteroides tetracycline resistance elements. J Bacteriol 1988; 170:1651-7. [PMID: 2832373 PMCID: PMC211013 DOI: 10.1128/jb.170.4.1651-1657.1988] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Some human colonic Bacteroides strains carry conjugal tetracycline resistance (Tcr) elements, which are thought to be chromosomal. We have found that some of these Tcr elements can mediate the appearance of plasmidlike forms in Bacteroides uniformis 0061. When B. uniformis 0061, containing a conjugal Tcr element designated Tcr ERL, was grown in medium containing tetracycline (1 microgram/ml), two circular DNA forms were found in the alkaline plasmid preparations: NBU1 (10.3 +/- 0.5 kilobases) and NBU2 (11.5 +/- 0.5 kilobases). Restriction analysis of NBU1 and NBU2 showed that they were not identical, although Southern blot analysis indicated that they did contain some region(s) of homology. Results of Southern blot analysis also demonstrated that both NBU1 and NBU2 were normally integrated in the chromosome of B. uniformis or in some undetected large plasmid. Although we were unable to determine the exact structure and location of the integrated forms of NBU1 and NBU2 in B. uniformis, they appear to be in close proximity to each other. Neither NBU1 or NBU2 could be detected as a plasmidlike form in cells exposed to UV light, thymidine starvation, mitomycin C, or autoclaved chlortetracycline (50 micrograms/ml). Four conjugal Tcr elements other than the Tcr ERL element were able to mediate the appearance of NBU1 alone, and two Tcr elements did not mediate the excision of either NBU1 or NBU2. Three strains from different Bacteroides species contained some DNA sequences which had homology to NBU1 and NBU2.
Collapse
Affiliation(s)
- N B Shoemaker
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
13
|
Valentine PJ, Shoemaker NB, Salyers AA. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J Bacteriol 1988; 170:1319-24. [PMID: 3343220 PMCID: PMC210909 DOI: 10.1128/jb.170.3.1319-1324.1988] [Citation(s) in RCA: 109] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A 4.2-kilobase cryptic Bacteroides plasmid, pB8-51, is found in several colonic Bacteroides species. To determine whether pB8-51 is mobilized by any of the known Bacteroides conjugal elements, we constructed an Escherichia coli-Bacteroides shuttle vector, pVAL-1, which contains pB8-51. We constructed Bacteroides uniformis 0061 derivatives which carry pVAL-1 and various Bacteroides conjugal elements. The Bacteroides conjugal elements tested were six conjugal tetracycline resistance (Tcr) elements (which appear to be chromosomal), i.e., Tcr ERL, Tcr V479, Tcr Emr ERL, Tcr Emr 12256, Tcr Emr DOT, and Tcr Emr CEST, and the conjugal erythromycin resistance (Emr) plasmid pBF4. These Tcr conjugal elements have not been extensively characterized, except for Tcr ERL. All six Tcr elements tested mobilized pVAL-1 at high frequency (10(-3) to 10(-5)) from one Bacteroides strain to another or from a Bacteroides strain to E. coli. Pregrowth of the donors (containing one of the Tcr elements and pVAL-1) in 1 microgram of tetracycline per ml enhanced the transfer of pVAL-1 by 20- to 10,000-fold, depending on which Tcr element was present in the donor. An Ems derivative of pBF4 (pBF4 delta E2) mobilized pVAL-1 from one Bacteroides strain to another at a frequency of 10(-4) but did not mobilize pVAL-1 from a Bacteroides strain to E. coli as efficiently. Thus the Tcr conjugal elements and pBF4 recognize a mobilization region on pB8-51.
Collapse
Affiliation(s)
- P J Valentine
- Department of Microbiology, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
14
|
Smith CJ. Nucleotide sequence analysis of Tn4551: use of ermFS operon fusions to detect promoter activity in Bacteroides fragilis. J Bacteriol 1987; 169:4589-96. [PMID: 2820936 PMCID: PMC213826 DOI: 10.1128/jb.169.10.4589-4596.1987] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Bacteroides pBI136 clindamycin resistance (Ccr) determinant from the composite transposon Tn4551 was cloned onto the shuttle plasmid pFD160, and the regions necessary for expression in Bacteroides fragilis were determined. These results suggested that transcriptional regulatory signals required for Ccr were located in the Tn4551 direct repeat sequence (DRS) adjacent to the resistance determinant. Analysis of the nucleotide sequence of this region revealed that the Ccr structural gene, 798 base pairs (bp), was located 17 bp from the terminus of the DRS and that this gene (ermFS) differed from ermF (pBF4) by one amino acid. The DRS element was found to be 1,155 bp and appeared to contain the ermFS transcription start signals. The DRS structure was typical of insertion sequence elements isolated from other bacterial species, and its termini were characterized by 25-bp regions of imperfect dyad symmetry. The DRS was dominated by a 978-bp open reading frame, which terminated in the left inverted repeat 27 bp from the ermFS start codon, and weak amino acid sequence homology was observed with the putative transposase of IS3. Promoter activity of the DRS in B. fragilis was demonstrated by in vitro construction of operon fusions with a promoterless ermFS gene followed by transformation of the recombinant plasmids with selection for resistance to clindamycin. The location of one DRS promoter was identified by using the ermFS fusions and then verified by in vitro mutagenesis of the site with single-stranded linkers. Northern blot (RNA blot) analysis of total RNA from B. fragilis strains containing pBI136 or ermFS recombinant plasmids confirmed the location of this promoter and indicated that it was used in vivo by Tn4551. A second DRS promoter, which activated ermFS transcription by readthrough of the large DRS open reading frame, was also identified by the Northern blot analysis. The bicistronic ermFS message was not observed in strains containing a complete copy of Tn4551, and the possibility of transcriptional regulation is discussed.
Collapse
Affiliation(s)
- C J Smith
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 21701
| |
Collapse
|
15
|
Smith CJ, Spiegel H. Transposition of Tn4551 in Bacteroides fragilis: identification and properties of a new transposon from Bacteroides spp. J Bacteriol 1987; 169:3450-7. [PMID: 3038840 PMCID: PMC212416 DOI: 10.1128/jb.169.8.3450-3457.1987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tn4551, a clindamycin resistance (Ccr) transposon from the R plasmid pBI136, was cloned onto an Escherichia coli-Bacteroides shuttle vector which could replicate normally in E. coli but was maintained unstably in Bacteroides fragilis. To aid in cloning and to ensure maintenance of Tn4551 in E. coli, a kanamycin resistance determinant (Kmr) was inserted in the transposon. The transposon-bearing shuttle vector pFD197 was transformed into B. fragilis 638, and putative insertions of Tn4551::Kmr were identified by screening for resistance to clindamycin and plasmid content. Southern hybridization analyses were used to verify integration of the transposon in the B. fragilis chromosome, and the frequency of insertion was estimated at 7.8 X 10(-5) events per generation. In 57% of the isolates tested a second integration event also occurred. This second insertion apparently involved just a single copy of the 1.2-kilobase repeat sequence which flanks the transposon. In addition, Tn4551::Kmr appeared to function as a transposon in E. coli. Evidence for this was obtained by the isolation of transposon insertions into the bacteriophage P1 genome. Finally, the transposon vector, pFD197, could be mobilized to other B. fragilis strains in which transposition was detected. Mobilization from the strain 638 background was via a conjugation like process, but occurred in the absence of known conjugative elements or other detectable plasmids. This result suggested the presence of a host-encoded transfer system in this B. fragilis strain.
Collapse
|
16
|
Rasmussen JL, Odelson DA, Macrina FL. Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis. J Bacteriol 1987; 169:3573-80. [PMID: 3038844 PMCID: PMC212434 DOI: 10.1128/jb.169.8.3573-3580.1987] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nucleotide sequence and genetic analyses of one of the directly repeated sequences flanking the macrolide-lincosamide-streptogramin B drug resistance determinant, ermF, from the Bacteroides fragilis R plasmid, pBF4, suggested that this region is an insertion sequence (IS) element. This 1,155-base-pair element contained partially matched (20 of 25 base pairs) terminal-inverted repeats, overlapping, anti-parallel open reading frames, and nine promoterlike sequences, including three that were oriented outward. Analysis of this sequence revealed no significant nucleotide homology to 13 other known IS elements. Inasmuch as Southern blot hybridization analysis detected homologous sequences in chromosomal DNA and its G+C content (42 mol%) was similar to that of B. fragilis, the data suggested that this element is of Bacteroides origin. Transposition promoted by this element was demonstrated in recA E. coli. Recombinants were recovered by selecting for the activation of a promoterless chloramphenicol resistance gene on the plasmid pDH5110 and were characterized by restriction endonuclease mapping and Southern blot hybridization. We propose that this IS element be designated IS4351.
Collapse
|
17
|
Odelson DA, Rasmussen JL, Smith CJ, Macrina FL. Extrachromosomal systems and gene transmission in anaerobic bacteria. Plasmid 1987; 17:87-109. [PMID: 3039558 DOI: 10.1016/0147-619x(87)90016-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obligately anaerobic bacteria are important in terms of their role as medical pathogens as well as their degradative capacities in a variety of natural ecosystems. Two major anaerobic genera, Bacteroides and Clostridium, are examined in this review. Plasmid elements in both genera are reviewed within the context of conjugal transfer and drug resistance. Genetic systems that facilitate the study of these anaerobic bacteria have emerged during the past several years. In large part, these developments have been linked to work centered on extrachromosomal genetic systems in these organisms. Conjugal transfer of antibiotic resistance has been a central focus in this regard. Transposable genetic elements in the Bacteroides are discussed and the evolution and spread of resistance to lincosamide antibiotics are considered at the molecular level. Recombinant DNA systems that employ shuttle vectors which are mobilized by conjugative plasmids have been developed for use in Bacteroides and Clostridium. The application of transmission and recombinant DNA genetic systems to study these anaerobes is under way and is likely to lead to an increased understanding of this important group of procaryotes.
Collapse
|
18
|
Abstract
Bacteroides are Gram-negative, obligate anaerobes that are present in high concentrations within the intestinal tracts of humans and animals. Bacteroides are also important opportunistic pathogens of humans and animals. Methods for genetic manipulation of these important organisms have only recently begun to emerge. Shuttle vectors which can be transferred by conjugation between Escherichia coli to Bacteroides are now available. A method for transforming some strains of Bacteroides has been developed. Two Bacteroides transposons, Tn4351 and Tn4400, have been found and one of them, Tn4351, has been used for transposon mutagenesis of Bacteroides. Several different Bacteroides genes have now been cloned, including a gene that codes for resistance to clindamycin, genes that code for polysaccharidases (chondroitin lyase and pullulanase), and a gene that codes for a fimbrial subunit. These cloned genes have been used to study the organization and regulation of Bacteroides genes.
Collapse
|
19
|
Rasmussen JL, Odelson DA, Macrina FL. Complete nucleotide sequence and transcription of ermF, a macrolide-lincosamide-streptogramin B resistance determinant from Bacteroides fragilis. J Bacteriol 1986; 168:523-33. [PMID: 3023281 PMCID: PMC213512 DOI: 10.1128/jb.168.2.523-533.1986] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA sequence analysis of a portion of an EcoRI fragment of the Bacteroides fragilis R plasmid pBF4 has allowed us to identify the macrolide-lincosamide-streptogramin B resistance (MLSr) gene, ermF. ermF had a relative moles percent G + C of 32, was 798 base pairs in length, and encoded a protein of approximately 30,360 daltons. Comparison between the deduced amino acid sequence of ermF and six other erm genes from gram-positive bacteria revealed striking homologies among all of these determinants, suggesting a common origin. Based on these and other data, we believe that ermF codes for an rRNA methylase. Analysis of the nucleotide sequences upstream and downstream from the ermF gene revealed the presence of directly repeated sequences, now identified as two copies of the insertion element IS4351. One of these insertion elements was only 26 base pairs from the start codon of ermF and contained the transcriptional start signal for this gene as judged by S1 nuclease mapping experiments. Additional sequence analysis of the 26 base pairs separating ermF and IS4351 disclosed strong similarities between this region and the upstream regulatory control sequences of ermC and ermA (determinants of staphylococcal origin). These results suggested that ermF was not of Bacteroides origin and are discussed in terms of the evolution of ermF and the expression of drug resistance in heterologous hosts.
Collapse
|
20
|
Shoemaker NB, Getty C, Guthrie EP, Salyers AA. Regions in Bacteroides plasmids pBFTM10 and pB8-51 that allow Escherichia coli-Bacteroides shuttle vectors to be mobilized by IncP plasmids and by a conjugative Bacteroides tetracycline resistance element. J Bacteriol 1986; 166:959-65. [PMID: 3519587 PMCID: PMC215218 DOI: 10.1128/jb.166.3.959-965.1986] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteroides-Escherichia coli shuttle vectors containing a nonmobilizable pBR322 derivative and either pBFTM10 (pDP1, pCG30) or pB8-51 (pEG920) were mobilized by IncP plasmid R751 or pRK231 (an ampicillin-sensitive derivative of RK2) between E. coli strains and from E. coli to Bacteroides recipients. IncI alpha R64 drd-ll transferred these vectors 1,000 times less efficiently than did the IncP plasmids. pDP1, pCG30, and pEG920 could be mobilized from B. uniformis donors to both E. coli and Bacteroides recipients by a conjugative Bacteroides Tcr (Tcr ERL) element which was originally found in a clinical Bacteroides fragilis strain (B. fragilis ERL). However, the shuttle vector pE5-2, which contains pB8-51 cloned in a restriction site that prevents its mobilization by IncP or IncI alpha plasmids, also was not mobilized at detectable frequencies from Bacteroides donors by the Tcr ERL element. The mobilization frequencies of pCG30, pDP1, and pEG920 by the Tcr ERL element in B. uniformis donors to E. coli recipients was about the same as those to isogenic B. uniformis recipients. Transfer of the shuttle vectors from B. uniformis donors to E. coli occurred at the same frequencies when the matings were done aerobically or anaerobically. Growth of the B. uniformis donors in tetracycline (1 microgram/ml) prior to conjugation increased the mobilization frequencies of the vectors to both E. coli and Bacteroides recipients 50 to 100 times.
Collapse
|
21
|
Robillard NJ, Tally FP, Malamy MH. Tn4400, a compound transposon isolated from Bacteroides fragilis, functions in Escherichia coli. J Bacteriol 1985; 164:1248-55. [PMID: 2999075 PMCID: PMC219322 DOI: 10.1128/jb.164.3.1248-1255.1985] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Transfer factor pBFTM10, isolated from the obligate anaerobic bacterium Bacteroides fragilis, carries a clindamycin resistance determinant which we have suggested is part of a transposable element. DNA homologous to this determinant is found in many Clnr Bacteroides isolates, either in the chromosome or on plasmids. We have now established that Ccr resides on a transposon, Tn4400. In addition to the Ccr determinant that functions under anaerobic conditions in B. fragilis, Tn4400 also carries a determinant for tetracycline resistance (Tcr) which only functions in Escherichia coli under aerobic conditions. The presence of Tn4400 on pBFTM10 does not confer tetracycline resistance on B. fragilis cells containing it. DNA from pBFTM10 was cloned in E. coli, with pDG5 as the cloning vector, to form pGAT500. Using a mobilization assay involving pGAT500 and an F factor derivative, pOX38, we determined that a 5.6-kilobase region of pBFTM10 DNA was capable of mediating replicon fusion and transposition. Most of the mobilization products resulted from inverse transposition reactions, while some were the result of true cointegrate formation. Analysis of the cointegrate molecules showed that three were formed by the action of one of the ends of Tn4400 (IS4400), and one was formed by the action of the whole element (Tn4400). The cointegrate molecule carrying intact copies of Tn4400 at the junction of the two plasmids could resolve to yield an unaltered donor plasmid (pGAT500) and a conjugal plasmid containing a copy of Tn4400 or a copy of one insertion sequence element (pOX38::Tn4400 or pOX38::IS4400). Thus, Tn4400 is a compound transposon containing active insertion sequence elements as directly repeated sequences at its ends.
Collapse
|
22
|
Smith CJ. Development and use of cloning systems for Bacteroides fragilis: cloning of a plasmid-encoded clindamycin resistance determinant. J Bacteriol 1985; 164:294-301. [PMID: 2995313 PMCID: PMC214243 DOI: 10.1128/jb.164.1.294-301.1985] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chimeric plasmids able to replicate in Bacteroides fragilis or in B. fragilis and Escherichia coli were constructed and used as molecular cloning vectors. The 2.7-kilobase pair (kb) cryptic Bacteroides plasmid pBI143 and the E. coli cloning vector pUC19 were the two replicons used for these constructions. Selection of the plasmid vectors in B. fragilis was made possible by ligation to a restriction fragment bearing the clindamycin resistance (Ccr) determinant from a Bacteroides R plasmid, pBF4;Ccr was not expressed in E. coli. The chimeric plasmids ranged from 5.3 to 7.3 kb in size and contained at least 10 unique restriction enzyme recognition sites suitable for cloning. Transformation of B. fragilis with the chimeric plasmids was dependent upon the source of the DNA; generally 10(5) transformants micrograms-1 of DNA were recovered when plasmid purified from B. fragilis was used. When the source of DNA was E. coli, there was a 1,000-fold decrease in the number of transformants obtained. Two of the shuttle plasmids not containing the pBF4 Ccr determinant were used in an analysis of the transposon-like structure encoding Ccr in the R plasmid pBI136. This gene encoding Ccr was located on a 0.85-kb EcoRI-HaeII fragment and cloned nonselectively in E. coli. Recombinants containing the gene inserted in both orientations at the unique ClaI site within the pBI143 portion of the shuttle plasmids could transform B. fragilis to clindamycin resistance. These results together with previous structural data show that the gene encoding Ccr lies directly adjacent to one of the repeated sequences of the pBI136 transposon-like structure.
Collapse
|
23
|
Martínez-Suárez JV, Baquero F, Reig M, Pérez-Díaz JC. Transferable plasmid-linked chloramphenicol acetyltransferase conferring high-level resistance in Bacteroides uniformis. Antimicrob Agents Chemother 1985; 28:113-7. [PMID: 3899001 PMCID: PMC176320 DOI: 10.1128/aac.28.1.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacteroides uniformis RYC3373 resistant to 64 micrograms of chloramphenicol per ml was isolated from a peritoneal pelvic abscess of a patient not previously treated with this drug. Chloramphenicol resistance was transferable at low frequency to a suitable Bacteroides fragilis recipient. The acquisition of resistance was linked to the presence of a 39.5-kilobase plasmid (pRYC3373), which was subsequently transferred to a secondary recipient. The transfer of Cm resistance occurred by a conjugation-like process. Donor and transconjugant strains produced chloramphenicol acetyltransferase constitutively. The Km for chloramphenicol was 40 microM, and its inactivation by 5-5'-dithiobis(2-nitrobenzoic acid) suggested its similarity to the type II enterobacterial enzymes encoded by different conjugative plasmids and also to a previously described enzyme of B. fragilis F47 and F48. The specific activity and the resistance level in pRYC3373-bearing strains were more than 10-fold higher than in the case of the enzyme from B. fragilis strains F47 and F48. The genetic basis of chloramphenicol acetyltransferase synthesis in Bacteroides spp. had not been previously established.
Collapse
|
24
|
Smith CJ, Gonda MA. Comparison of the transposon-like structures encoding clindamycin resistance in Bacteroides R-plasmids. Plasmid 1985; 13:182-92. [PMID: 2987997 DOI: 10.1016/0147-619x(85)90041-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The R-plasmids pBF4, pBFTM10, and pBI136 encode transmissible clindamycin resistance (Ccr) in Bacteroides spp. These plasmids are distinct replicons but the regions implicated in Ccr share some homology and appear to have a transposon-like structure. To better understand the mechanism of dissemination and to locate the Ccr determinant(s), the genetic and structural properties of the Ccr regions of each plasmid were compared and contrasted. For this work a single EcoRI restriction fragment containing the Ccr region from each plasmid was cloned into pBR322 in Escherichia coli. Results of restriction mapping and heteroduplex experiments showed that the pBF4 EcoRI-D and pBFTM10 EcoRI-B fragments shared more than 90% base sequence homology but that the EcoRI-C fragment of pBI136 had diverged significantly. The pBI136 fragment also did not confer tetracycline resistance in E. coli as shown for the pBF4 EcoRI-D fragment (D.G. Guiney, P. Hasegawa, and C. E. Davis, 1984, Plasmid 11, 248-252). Heteroduplex experiments showed that the pBI136 EcoRI-C and pBF4 EcoRI-D fragments shared a 1.2-kb region of homology attributed to a directly repeated sequence which bounds the Ccr region. Southern hybridization studies indicated that an additional 0.85 kb of the pBI136 EcoRI-C fragment was homologous to the EcoRI-D fragment of pBF4. This region was characterized by its sequential restriction endonuclease sites for HindIII, AvaII, and DdeI, and it is proposed that the Ccr gene(s) resides in this area.
Collapse
|
25
|
Evidence that the clindamycin-erythromycin resistance gene of Bacteroides plasmid pBF4 is on a transposable element. J Bacteriol 1985; 162:626-32. [PMID: 2985540 PMCID: PMC218895 DOI: 10.1128/jb.162.2.626-632.1985] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We constructed a shuttle vector, pE5-2, which can replicate in both Bacteroides spp. and Escherichia coli. pE5-2 contains a cryptic Bacteroides plasmid (pB8-51), a 3.8-kilobase (kb) EcoRI-D fragment from the 41-kb Bacteroides fragilis plasmid pBF4, and RSF1010, an IncQ E. coli plasmid. pE5-2 was mobilized by R751, an IncP E. coli plasmid, between E. coli strains with a frequency of 5 X 10(-2) to 3.8 X 10(-1) transconjugants per recipient. R751 also mobilized pE5-2 from E. coli donors to Bacteroides uniformis 0061RT and Bacteroides thetaiotaomicron 5482 with a frequency of 0.9 X 10(-6) to 2.5 X 10(-6). The Bacteroides transconjugants contained only pE5-2 and were resistant to clindamycin and erythromycin. Thus, the gene for clindamycin and erythromycin resistance must be located within the Eco RI-D fragment of BF4. A second recombinant plasmid, pSS-2, which contained 33 kb of pBF4 (including the EcoRI-D fragment and contiguous regions) could also be mobilized by R751 between E. coli strains. In some transconjugants, a 5.5-kb (+/- 0.3 kb) segment of the pBF4 portion of pSS2 was inserted into one of several sites on R751. In some other transconjugants this same 5.5-kb segment was integrated into the E. coli chromosome. This segment could transfer a second time onto R751. Transfer was RecA independent. The transferred segment included the entire EcoRI-D fragment, and thus the clindamycin-erythromycin resistance determinant, from pBF4.
Collapse
|
26
|
Characterization of Bacteroides ovatus plasmid pBI136 and structure of its clindamycin resistance region. J Bacteriol 1985; 161:1069-73. [PMID: 2982783 PMCID: PMC215008 DOI: 10.1128/jb.161.3.1069-1073.1985] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic and physical analyses were used to characterize the Bacteroides ovatus R plasmid pBI136. Results from restriction endonuclease cleavage studies were used to construct a physical map of the plasmid for the enzymes EcoRI, BamHI, ClaI, XbaI, SalI, and SmaI. Based on the sizes of restriction fragments generated in these studies, the plasmid was estimated to be 80.6 kilobase pairs (kb). A 7.2-kb region of the plasmid required for resistance to lincosamide and macrolide (LM) antibiotics was mapped by analysis of spontaneously occurring LM-sensitive deletion derivatives. Hybridization studies showed that this region and an adjoining 2.9-kb EcoRI fragment were responsible for the previously reported homology among Bacteroides plasmids pBF4, pBFTM10, and pBI136. Within this region of homology, 0.5 kb was attributed to a directly repeated sequence thought to bound the LM resistance determinant on pBF4 and pBFTM10. Two pBI136 EcoRI fragments spanning the putative LM resistance region were cloned in Escherichia coli, and heteroduplex analysis of these recombinant plasmids revealed the presence of a 1.2-kb directly repeated sequence. These results suggested that the pBI136 LM resistance determinant resides on an 8.4-kb segment of DNA containing 6.0 kb of intervening DNA sequences bounded by a 1.2-kb directly repeated sequence.
Collapse
|
27
|
Smith CJ, Liechty MC, Rasmussen JL, Macrina FL. Genetics of clindamycin resistance in Bacteroides. BASIC LIFE SCIENCES 1985; 30:555-70. [PMID: 2990428 DOI: 10.1007/978-1-4613-2447-8_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Results presented in this paper have shown that a widely distributed LM-resistance determinant is present on at least 3 distinct Bacteroides R-plasmids. In fact these plasmids bear no homology outside of the defined regions implicated in the LM resistance. This resistance determinant on pBF4, pBFTM10, and pBI136 is located within DNA segments bounded on each side by a directly repeated sequence of more than 500 bp. The intervening sequences of these 3 elements are variable, and range in size from about 3.7 kb to 7.2 kb (Fig. 7). Apart from the EcoRI/AvaI restriction sites which characterize the repeated sequence, there is a notable lack of common restriction sites within these elements. These results suggest that the elements do possess a certain degree of structural similarity but significant evolutionary divergence has occurred. The presence and location of the directly repeated sequences, their association with specific deletions, and their association with an antibiotic-resistance determinant, are features common to many antibiotic-resistance transposons described for other prokaryotes. In addition, these elements are highly mobile, being found on a number of R-plasmids. The unique relationship between pBF4, pBI106, and pBI136 described here is a clear indication of the potential for these DNA sequences to move from one molecule to another. Given the extensive dissemination and the genetic and structural characteristics described above, it seems likely that the LM-resistance determinant is carried on transposon-like elements present in pBF4, pBFTM10, and pBI136. However, further experimentation will be necessary to document the transposition event. Bacteroides strains such as B. fragilis V503, possess a transmissible LM-resistance determinant which does not appear to be associated with detectable extrachromosomal elements (5,9,10). Presently, a number of strains of this type have been found over a wide geographic area. The LM-resistance genes associated with these strains are apparently similar to the one carried on the Bacteroides R-plasmids because homology between the 2 has been observed. However, it is important to note that within the limits of Southern filter blot hybridization, neither V503 nor its transconjugants possess the directly repeated sequence found on the LM-resistance plasmids (Fig. 8). The elusive nature of the V503 LM-resistance elements presents an intriguing problem. One model that has been proposed is that these resistance determinants reside on a conjugative transposon similar to Tn916 of Streptococcus faecalis (3).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|