1
|
Pandey SD, Biswas I. Clp ATPases differentially affect natural competence development in Streptococcus mutans. Microbiologyopen 2022; 11:e1288. [PMID: 35765180 PMCID: PMC9108599 DOI: 10.1002/mbo3.1288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
In naturally competent bacteria, DNA transformation through horizontal gene transfer is an evolutionary mechanism to receive extracellular DNA. Bacteria need to maintain a state of competence to accept foreign DNA, and this is an energy-driven phenomenon that is tightly controlled. In Streptococcus, competence development is a complex process that is not fully understood. In this study, we used Streptococcus mutans, an oral bacterium, to determine how cell density affects competence development. We found that in S. mutans the transformation efficiency is maximum when the transforming DNA was added at low cell density and incubated for 2.5 h before selecting for transformants. We also found that S. mutans cells remain competent until the mid-logarithmic phase, after which the competence decreases drastically. Surprisingly, we observed that individual components of Clp proteolytic complexes differentially regulate competence. If the transformation is carried out at the early growth phase, both ClpP protease and ClpX ATPase are needed for competence. In contrast, we found that both ClpC and ClpE negatively affect competence. We also found that if the transformation is carried out at the mid-logarithmic growth phase ClpX is still required for competence, but ClpP negatively affects competence. While the exact reason for this differential effect of ClpP and ClpX on transformation is currently unknown, we found that both ClpC and ClpE have a negative effect on transformation, which was not reported before.
Collapse
Affiliation(s)
- Satya D. Pandey
- Department of MicrobiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Indranil Biswas
- Department of MicrobiologyUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
2
|
Guiral S, Hénard V, Laaberki MH, Granadel C, Prudhomme M, Martin B, Claverys JP. Construction and evaluation of a chromosomal expression platform (CEP) for ectopic, maltose-driven gene expression in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2006; 152:343-349. [PMID: 16436422 DOI: 10.1099/mic.0.28433-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, the construction and evaluation of a chromosomal expression platform (CEP), which allows controlled gene expression following ectopic integration into the chromosome of Streptococcus pneumoniae, is described. CEP is based on the well-studied maltosaccharide-inducible system. To facilitate integration at CEP, a plasmid, pCEP, capable of replication in Escherichia coli, but not in S. pneumoniae, was assembled. This plasmid contains an expression/selection cassette flanked on each side by more than 2 kb of pneumococcal DNA. The cassette comprises a maltose-inducible promoter, P(M), separated from a kanamycin-resistance gene by NcoI and BamHI cloning sites. Clones harbouring the gene of interest integrated at CEP under the control of P(M) can be obtained through direct transformation of an S. pneumoniae recipient with ligation products between that gene and NcoI/BamHI-digested pCEP DNA, followed by selection for kanamycin-resistant transformants.
Collapse
Affiliation(s)
- Sébastien Guiral
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Vincent Hénard
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Maria-Halima Laaberki
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Chantal Granadel
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Marc Prudhomme
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Bernard Martin
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jean-Pierre Claverys
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 CNRS-Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
3
|
Abstract
An overview of gene cloning in Streptococcus pneumoniae is presented. The advantages of such cloning, especially for pneumococcal genes, are enumerated. The molecular fate of DNA in transformation of S. pneumoniae, in particular, the conversion of DNA to single-strand segments on entry, determines the mechanisms for plasmid establishment and interaction with the chromosome. One of these mechanisms, the chromosomal facilitation of plasmid establishment, is useful for obtaining recombinant plasmids and for introducing an allele from the chromosome into a plasmid. The difference between linear and circular synapsis of donor DNA strands with the chromosome is illustrated. Circular synapsis can give rise to circular integration, which is useful for insertional mutagenesis of chromosomal genes, for coupled cloning in Escherichia coli, and for sequential cloning of DNA along the pneumococcal chromosome. Cloning in S. pneumoniae is not notably affected by DNA mismatch repair or restriction systems in the host cell. Unusual features of gene expression in S. pneumoniae are discussed. Transcription begins most often at promoters with extended -10 sequences, and in a small but significant number of cases, translation does not require a ribosome-binding site with a Shine-Dalgarno sequence.
Collapse
Affiliation(s)
- S A Lacks
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
4
|
Lee MS, Seok C, Morrison DA. Insertion-duplication mutagenesis in Streptococcus pneumoniae: targeting fragment length is a critical parameter in use as a random insertion tool. Appl Environ Microbiol 1998; 64:4796-802. [PMID: 9835564 PMCID: PMC90924 DOI: 10.1128/aem.64.12.4796-4802.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To examine whether insertion-duplication mutagenesis with chimeric DNA as a transformation donor could be valuable as a gene knockout tool for genomic analysis in Streptococcus pneumoniae, we studied the transformation efficiency and targeting specificity of the process by using a nonreplicative vector with homologous targeting inserts of various sizes. Insertional recombination was very specific in targeting homologous sites. While the recombination rate did not depend on which site or region was targeted, it did depend strongly on the size of the targeting insert in the donor plasmid, in proportion to the fifth power of its length for inserts of 100 to 500 bp. The dependence of insertion-duplication events on the length of the targeting homology was quite different from that for linear allele replacement and places certain limits on the design of mutagenesis experiments. The number of independent pneumococcal targeting fragments of uniform size required to knock out any desired fraction of the genes in a model genome with a defined probability was calculated from these data by using a combinatorial theory with simplifying assumptions. The results show that efficient and thorough mutagenesis of a large part of the pneumococcal genome should be practical when using insertion-duplication mutagenesis.
Collapse
Affiliation(s)
- M S Lee
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
5
|
Díaz A, Lacks SA, López P. The 5' to 3' exonuclease activity of DNA polymerase I is essential for Streptococcus pneumoniae. Mol Microbiol 1992; 6:3009-19. [PMID: 1336089 DOI: 10.1111/j.1365-2958.1992.tb01759.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.
Collapse
Affiliation(s)
- A Díaz
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
6
|
Pozzi G, Oggioni MR, Manganelli R, Fischetti VA. Expression of M6 protein gene of Streptococcus pyogenes in Streptococcus gordonii after chromosomal integration and transcriptional fusion. Res Microbiol 1992; 143:449-57. [PMID: 1448621 DOI: 10.1016/0923-2508(92)90090-b] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The M6 protein of Streptococcus pyogenes was expressed on the cell surface and secreted in Streptococcus gordonii Challis (formerly Streptococcus sanguis) after chromosomal integration of a promoterless M6 protein gene (emm-6.1). The ermC gene, conferring resistance to erythromycin, was cloned downstream of emm-6.1, within the same ClaI fragment. The initiation codon of emm-6.1 was 19 bp downstream of a ClaI site, so that ClaI cleavage would leave the gene promoterless. The ClaI fragment containing the promoterless emm-6.1 and ermC was ligated in vitro with a ClaI digest of S. gordonii chromosomal DNA. Random chromosomal integration of the heterologous DNA was obtained by using the ligation mixture to transform the naturally competent S. gordonii Challis. Twenty-eight percent of transformants selected for erythromycin resistance also expressed M6. Among the best M6 producers, 10 clones were selected for the stability of their phenotype. Nine of the 10 clones were shown to harbour one intact copy of the emm-6.1/ermC ClaI fragment integrated into the chromosome. These strains both expressed M6 protein on the surface and secreted different amounts of the molecule, since in each case the protein was produced after a transcriptional fusion of emm-6.1 with a different chromosomal promoter. A S. gordonii strain expressing large amounts of surface M6 protein, as judged by immunofluorescence and Western blot, was compared to the M- parental strain in a standard opsonophagocytosis assay. Of the isogenic pair, M6+ S. gordonii survived better in human blood and was phagocytosed at a slower rate.
Collapse
Affiliation(s)
- G Pozzi
- Dipartimento di Biologia Molecolare, Università di Siena, Italy
| | | | | | | |
Collapse
|
7
|
Abstract
A procedure was devised for sequential cloning of chromosomal DNA by cyclical integration and excision of a plasmid vector so that slightly overlapping chromosomal segments are successively cloned. The method depends on circular integration of the vector into the chromosome of a host nonpermissive for its replication, and on excision and reduction of a recombinant plasmid by use of an appropriately designed set of restriction enzyme sites in the vector. A vector suitable for cloning in Escherichia coli was constructed by combining a segment of pBR322 with a gene encoding chloramphenicol resistance expressible in many species. Sequential cloning was demonstrated in Streptococcus pneumoniae by extending a previously cloned segment of the region of the chromosome encoding maltosaccharide utilization by 8 kb in three cycles of cloning. Accuracy of the method was confirmed by hybridization of cloned DNA with chromosomal restriction fragments. It is pointed out that the similarity of the requisite genetic processes in bacteria and yeasts should allow use of the method for sequential cloning of yeast chromosomal DNA and of human or other mammalian DNA in artificial chromosomes of yeast.
Collapse
Affiliation(s)
- S A Lacks
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973
| | | |
Collapse
|
8
|
Labarre J, Chauvat F, Thuriaux P. Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803. J Bacteriol 1989; 171:3449-57. [PMID: 2498291 PMCID: PMC210070 DOI: 10.1128/jb.171.6.3449-3457.1989] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The facultative heterotrophic cyanobacterium Synechocystis sp. strain PCC 6803 was transformed by HaeII Cmr fragments ligated at random to HaeII DNA fragments of the host genome. A similar transformation was done with an AvaII Kmr marker ligated to AvaII host DNA fragments. Integration of the resistance markers into the host genome led to a high frequency of stable Kmr and Cmr transformants. Physical analysis of individual transformants indicated that this result was due to homologous recombination by conversionlike events leading to insertion of the Cmr (or Kmr) gene between two HaeII (or AvaII) sites of the host genome, with precise deletion of the host DNA between these sites. In contrast, integrative crossover of circular DNA molecules with homology to the host DNA is very rare in this cyanobacterium. Strain PCC 6803 was shown to have about 12 genomic copies per cell in standard growth conditions, which complicates the detection of recessive mutations induced by chemical or UV mutagenesis. Random disruption of the host DNA by insertional transformation provides a convenient alternative to transposon mutagenesis in cyanobacteria and may help to overcome the difficulties encountered in generating recessive mutants by classical mutagenesis.
Collapse
Affiliation(s)
- J Labarre
- Service de Biochimie, Centre d'Etudes Nucléaires de Saclay, Gif sur Yvette, France
| | | | | |
Collapse
|
9
|
Chauvat F, Rouet P, Bottin H, Boussac A. Mutagenesis by random cloning of an Escherichia coli kanamycin resistance gene into the genome of the cyanobacterium Synechocystis PCC 6803: selection of mutants defective in photosynthesis. MOLECULAR & GENERAL GENETICS : MGG 1989; 216:51-9. [PMID: 2499763 DOI: 10.1007/bf00332230] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosynthetic mutants of the cyanobacterium Synechocystis PCC 6803 were produced by a random cartridge mutagenesis method leading to gene inactivation. This procedure relies on random ligation of an Escherichia coli kanamycin resistance (Kmr) gene to restriction fragments of genomic DNA from the host. Then recombination occurring during transformation promotes integration of the marker gene into the genome of the recipient cells. Several mutants impaired in photosynthesis were obtained by this procedure. All are partially or totally defective in photosystem II activity and some of them also harbour a functionally modified photosystem I. Restriction and recombination data showed that one mutant (AK1) is best explained as an insertion of the Kmr gene into an AvaII restriction site of the gene psbD-1. All others harbour a deletion, ranging from at least 1.15 kb (AK3) to more than 50 kb (AK9), which partly or fully overlaps the genes psbB and/or psbD-1, depending on the mutant. A genetic-physical map of the more than 60 kb region of the cyanobacterial genome harbouring the genes psbB, psbC and psbD-1 was constructed by combining published sequence data on these genes with the results of recombination and restriction mapping.
Collapse
Affiliation(s)
- F Chauvat
- Service de Biochimie, Departement de Biologie, Gif-sur Yvette, France
| | | | | | | |
Collapse
|
10
|
Daniell H, Torres-Ruiz JA, Inamdar A, McFadden BA. Amplified expression of ribulose bisphosphate carboxylase/oxygenase in pBR322-transformants of Anacystis nidulans. Arch Microbiol 1988; 151:59-64. [PMID: 2644909 DOI: 10.1007/bf00444670] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prior research suggested that the genes for large (L) and small (S) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) are amplified in ampicillin-resistant pBR322-transformants of Anacystis nidulans 6301. We now report that chromosomal DNA from either untransformed or transformed A. nidulans cells hybridizes with nick-translated [32P]-pBR322 at moderately high stringency. Moreover, nick-translated [32-P]-pCS75, which is a pUC9 derivative containing a PstI insert with L and S subunit genes (for RuBisCO) from A. nidulans, hybridizes at very high stringency with restriction fragments from chromosomal DNA of untransformed and transformed cells as does the 32P-labeled PstI fragment itself. The hybridization patterns suggest the creation of two EcoRI sites in the transformant chromosome by recombination. In pBR322-transformants the RuBisCO activity is elevated 6- to 12-fold in comparison with that of untransformed cells. In spite of the difference in RuBisCO activity, pBR322-transformants grow in the presence of ampicillin at a similar initial rate to that for wild-type cells. Growth characteristics and RuBisCO content during culture in the presence or absence of ampicillin suggest that pBR322-transformants of A. nidulans 6301 are stable. The data also collectively suggest that a given plasmid in the transformed population replicates via a pathway involving recombination between the plasmid and the chromosome.
Collapse
Affiliation(s)
- H Daniell
- Biochemistry/Biophysics Program, Washington State University, Pullman 99164-4660
| | | | | | | |
Collapse
|
11
|
de la Campa AG, Springhorn SS, Kale P, Lacks SA. Proteins encoded by the DpnI restriction gene cassette. Hyperproduction and characterization of the DpnI endonuclease. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68093-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Martinez S, Lopez P, Espinosa M, Lacks SA. Complementation of Bacillus subtilis polA mutants by DNA polymerase I from Streptococcus pneumoniae. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:203-10. [PMID: 3125407 DOI: 10.1007/bf00325685] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The polA gene of Streptococcus pneumoniae cloned in the recombinant plasmid pSM22 is expressed in Bacillus subtilis. Extracts of B. subtilis polA mutants containing pSM22 showed 6 times more DNA polymerase activity than extracts of wild-type cells without the plasmid. Complete complementation of the B. subtilis polA5 and polA59 mutations with respect to in vivo resistance to UV irradiation and methyl methanesulfonate was observed when four copies of the pneumococcal polA gene were present in each cell. Ectopic integration of the polA gene together with a cat marker into the chromosome of B. subtilis gave chromosomal insertions containing single and double doses of the pneumococcal polA gene. Correlation with gene dosage was observed for both chloramphenicol acetyltransferase and DNA polymerase activities measured in vitro. Depending on the number of copies of the S. pneumoniae polA gene present, restoration of DNA repair functions in polA mutants of B. subtilis was either partial or complete.
Collapse
Affiliation(s)
- S Martinez
- Centro de Investigaciones Biologicas, C.S.I.C., Madrid, Spain
| | | | | | | |
Collapse
|
13
|
de la Campa AG, Kale P, Springhorn SS, Lacks SA. Proteins encoded by the DpnII restriction gene cassette. Two methylases and an endonuclease. J Mol Biol 1987; 196:457-69. [PMID: 2824782 DOI: 10.1016/0022-2836(87)90024-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins encoded by three genes in the DpnII restriction enzyme cassette of Streptococcus pneumoniae were purified and characterized. Large amounts of the proteins were produced by subcloning the cassette in an Escherichia coli expression system. All three proteins appear to be dimers composed of identical polypeptide subunits. One is the DpnII endonuclease, and the other two are DNA adenine methylase active at 5' GATC 3' sites. Inactivation of enzyme activity by insertions into the genes and comparison of the DNA sequence with the amino-terminal sequence of amino acid residues in the proteins demonstrated the following correspondence between genes and enzymes. The promoter-proximal gene in the operon, dpnM, encodes a 33 X 10(3) Mr polypeptide that gives rise to a potent DNA methylase. The next gene, dpnA, encodes the 31 x 10(3) Mr polypeptide of a weaker and less-specific methylase. The third gene, dpnB, encodes the 34 x 10(3) Mr polypeptide of the endonuclease. Although the endonuclease polypeptide is initiated from an ordinary ribosome-binding site, each of the methylase polypeptide begins at an atypical site with a consensus sequence entirely different from that of Shine & Dalgarno. This presumptive novel ribosome-binding site is well recognized in both S. pneumoniae and E. coli.
Collapse
Affiliation(s)
- A G de la Campa
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973
| | | | | | | |
Collapse
|
14
|
Lacks SA, Lopez P, Greenberg B, Espinosa M. Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pLS1. J Mol Biol 1986; 192:753-65. [PMID: 2438417 DOI: 10.1016/0022-2836(86)90026-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The streptococcal plasmid pMV158 and its derivative pLS1 are able to replicate and confer tetracycline resistance in both Gram-positive and Gram-negative bacteria. Copy numbers of pLS1 were 24, 4 and 4 molecules per genome in Streptococcus pneumoniae, Bacillus subtilis and Escherichia coli, respectively. Replication of the streptococcal plasmids in E. coli required functional polA and recA genes. A copy-number mutation corresponding to a 332 base-pair deletion of pLS1 doubled the plasmid copy number in all three species. Determination of the complete DNA sequence of pLS1 revealed transcriptional and translational signals and four open reading frames. A putative inhibitory RNA was encoded in the region deleted by the copy-control mutation. Two putative mRNA transcripts encoded proteins for replication functions and tetracycline resistance, respectively. The repB gene encoded a trans-acting, 23,000 Mr protein necessary for replication, and the tet gene encoded a very hydrophobic, 50,000 Mr protein required for tetracycline resistance. The polypeptides corresponding to these proteins were identified by specific labeling of plasmid-encoded products. The tet gene of pLS1 was highly homologous to tet genes in two other plasmids of Gram-positive origin but different in both sequence and mode of regulation from tet genes of Gram-negative origin.
Collapse
|
15
|
Lacks SA, Mannarelli BM, Springhorn SS, Greenberg B. Genetic basis of the complementary DpnI and DpnII restriction systems of S. pneumoniae: an intercellular cassette mechanism. Cell 1986; 46:993-1000. [PMID: 3019562 DOI: 10.1016/0092-8674(86)90698-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells of S. pneumoniae contain either DpnI, a restriction endonuclease that cleaves only the methylated DNA sequence 5'-GmeATC-3', or DpnII, which cleaves the same sequence when not methylated. A chromosomal DNA segment containing DpnII genes was cloned in S. pneumoniae. Nucleotide sequencing of this segment revealed genes encoding the methylase and endonuclease and a third protein of unknown function. When the plasmid was introduced into DpnI cells, recombination during chromosomal facilitation of its establishment substituted genes encoding the DpnI endonuclease and another protein in place of the DpnII genes. DNA hybridization and sequencing showed that the DpnI and DpnII segments share homology on either side but not between themselves or with other regions of the chromosome. Thus, the complementary restriction systems are found on nonhomologous and mutually exclusive cassettes that can be inserted into a particular point in the chromosome of S. pneumoniae on the basis of neighboring homology.
Collapse
|
16
|
Vijayakumar MN, Priebe SD, Guild WR. Structure of a conjugative element in Streptococcus pneumoniae. J Bacteriol 1986; 166:978-84. [PMID: 3011757 PMCID: PMC215221 DOI: 10.1128/jb.166.3.978-984.1986] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have cloned and mapped a 69-kilobase (kb) region of the chromosome of Streptococcus pneumoniae DP1322, which carries the conjugative omega (cat-tet) insertion from S. pneumoniae BM6001. This element proved to be 65.5 kb in size. Location of the junctions was facilitated by cloning a preferred target region from the wild-type strain Rx1 recipient genome. This target site was preferred by both the BM6001 element and the cat-erm-tet element from Streptococcus agalactiae B109. Within the BM6001 element cat and tet were separated by 30 kb, and cat was flanked by two copies of a sequence that was also present in the recipient strain Rx1 DNA. Another sequence at least 2.4 kb in size was found inside the BM6001 element and at two places in the Rx1 genome. Its role is unknown. The ends of the BM6001 element appear to be the same as those of the B109 element, both as seen after transfer to S. pneumoniae and as mapped by others in pDP5 after transposition in Streptococcus faecalis. We see no homology between the ends of the BM6001 element and find no evidence suggesting that it ever circularizes.
Collapse
|
17
|
Martinez S, Lopez P, Espinosa M, Lacks SA. Cloning of a gene encoding a DNA polymerase-exonuclease of Streptococcus pneumoniae. Gene 1986; 44:79-88. [PMID: 3021592 DOI: 10.1016/0378-1119(86)90045-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A procedure was developed for cloning and characterizing genes that encode proteins with nuclease activity in the Streptococcus pneumoniae [pLS1] host/vector system. Clones are screened for nuclease activity by a DNase colony assay and the nucleases that they produce are characterized by detection of enzyme activity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The method was used to clone the gene encoding a DNA polymerase (Pol)-exonuclease of S. pneumoniae. The activity of this enzyme, the predominant DNA Pol of S. pneumoniae, is tenfold greater in cells carrying the multicopy recombinant plasmid than in cells without the plasmid. The enzyme corresponds to a 100-kDa polypeptide, and its properties are similar to PolI of Escherichia coli. A restriction map of the pSM22 plasmid containing the pneumococcal polA gene was obtained. The gene was transferred into Bacillus subtilis and E. coli, and it was expressed in both species. Its direction of transcription was determined by placement of the gene in both orientations in an E. coli hyperexpression plasmid. In one of the orientations the pneumococcal PolI enzyme was produced at a level 50-fold greater than normally found in S. pneumoniae, and it comprised 5% of the total protein.
Collapse
|
18
|
Buzby JS, Porter RD, Stevens SE. Expression of the Escherichia coli lacZ gene on a plasmid vector in a cyanobacterium. Science 1985; 230:805-7. [PMID: 2997920 DOI: 10.1126/science.2997920] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A biphasic plasmid vector was used to introduce the Escherichia coli K-12 lac operon into the unicellular cyanobacterium Agmenellum quadruplicatum PR-6. The PR-6 transformants expressed beta-galactosidase at nearly as high a level as did Escherichia coli transformants. In order to accomplish this, it was necessary to obtain PR-6 mutants that could be transformed by plasmids with unmodified recognition sites for the endogenous PR-6 restriction endonuclease Aqu I. These mutants were generated by a variation of the ectopic mutagenesis techniques that have been used in other naturally transforming bacteria. The ability to assay the expression of lacZ in PR-6 paves the way for the construction of gene fusions with various PR-6 promoters and quantitation of their expression under specific in vivo conditions.
Collapse
|
19
|
Niaudet B, Jannière L, Ehrlich SD. Integration of linear, heterologous DNA molecules into the Bacillus subtilis chromosome: mechanism and use in induction of predictable rearrangements. J Bacteriol 1985; 163:111-20. [PMID: 3924889 PMCID: PMC219087 DOI: 10.1128/jb.163.1.111-120.1985] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Linear DNA molecules composed of a central region nonhomologous with the Bacillus subtilis chromosome and two flanking regions homologous with the chromosome can integrate into the chromosome, provided that the homologous regions have the same relative orientation. The resulting chromosome can be maintained in a haploid or in a merodiploid cell together with a parental chromosome. This can most easily be explained by supposing that the integration occurs by crossing over at each homologous region and that a part of the chromosome between these regions is deleted and replaced by the central nonhomologous region of the integrating molecule. If no essential genes were replaced during that process a haploid cell would be obtained; if essential genes were replaced a merodiploid cell would be obtained. The use of appropriate linear molecules therefore should allow the induction of deletions, extending from a given chromosomal site in a predetermined direction, and defined duplications in the B. subtilis chromosome.
Collapse
|