1
|
A Genome-Scale Metabolic Model of Anabaena 33047 to Guide Genetic Modifications to Overproduce Nylon Monomers. Metabolites 2021; 11:metabo11030168. [PMID: 33804103 PMCID: PMC7999273 DOI: 10.3390/metabo11030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022] Open
Abstract
Nitrogen fixing-cyanobacteria can significantly improve the economic feasibility of cyanobacterial production processes by eliminating the requirement for reduced nitrogen. Anabaena sp. ATCC 33047 is a marine, heterocyst forming, nitrogen fixing cyanobacteria with a very short doubling time of 3.8 h. We developed a comprehensive genome-scale metabolic (GSM) model, iAnC892, for this organism using annotations and content obtained from multiple databases. iAnC892 describes both the vegetative and heterocyst cell types found in the filaments of Anabaena sp. ATCC 33047. iAnC892 includes 953 unique reactions and accounts for the annotation of 892 genes. Comparison of iAnC892 reaction content with the GSM of Anabaena sp. PCC 7120 revealed that there are 109 reactions including uptake hydrogenase, pyruvate decarboxylase, and pyruvate-formate lyase unique to iAnC892. iAnC892 enabled the analysis of energy production pathways in the heterocyst by allowing the cell specific deactivation of light dependent electron transport chain and glucose-6-phosphate metabolizing pathways. The analysis revealed the importance of light dependent electron transport in generating ATP and NADPH at the required ratio for optimal N2 fixation. When used alongside the strain design algorithm, OptForce, iAnC892 recapitulated several of the experimentally successful genetic intervention strategies that over produced valerolactam and caprolactam precursors.
Collapse
|
2
|
Pernil R, Schleiff E. Metalloproteins in the Biology of Heterocysts. Life (Basel) 2019; 9:E32. [PMID: 30987221 PMCID: PMC6616624 DOI: 10.3390/life9020032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are photoautotrophic microorganisms present in almost all ecologically niches on Earth. They exist as single-cell or filamentous forms and the latter often contain specialized cells for N₂ fixation known as heterocysts. Heterocysts arise from photosynthetic active vegetative cells by multiple morphological and physiological rearrangements including the absence of O₂ evolution and CO₂ fixation. The key function of this cell type is carried out by the metalloprotein complex known as nitrogenase. Additionally, many other important processes in heterocysts also depend on metalloproteins. This leads to a high metal demand exceeding the one of other bacteria in content and concentration during heterocyst development and in mature heterocysts. This review provides an overview on the current knowledge of the transition metals and metalloproteins required by heterocysts in heterocyst-forming cyanobacteria. It discusses the molecular, physiological, and physicochemical properties of metalloproteins involved in N₂ fixation, H₂ metabolism, electron transport chains, oxidative stress management, storage, energy metabolism, and metabolic networks in the diazotrophic filament. This provides a detailed and comprehensive picture on the heterocyst demands for Fe, Cu, Mo, Ni, Mn, V, and Zn as cofactors for metalloproteins and highlights the importance of such metalloproteins for the biology of cyanobacterial heterocysts.
Collapse
Affiliation(s)
- Rafael Pernil
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straβe 9, 60438 Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straβe 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Zhao W, Ye Z, Zhao J. RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp. PCC 7120. Mol Microbiol 2008; 66:1219-30. [PMID: 18001348 DOI: 10.1111/j.1365-2958.2007.05994.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterocyst is a specialized cell for nitrogen fixation in some filamentous cyanobacteria. Here we report that a rubrerythrin (RbrA) from Anabaena sp. PCC 7120 functions as a peroxidase in heterocysts and plays an important role in protection of nitrogenase. The electron donor for RbrA in H(2)O(2) reduction is NADPH and the electron transfer from NADPH to RbrA depends on ferredoxin:NADP(+) oxidoreductase. A rbrA mutant (r27) grew much more slowly than the wild type under diazotrophic conditions. Its nitrogenase activity measured in air was only 8% of that measured under anoxic conditions. Staining r27 filaments with 2',7'-dichlorodihydrofluorescein diacetate indicated that heterocysts had a higher H(2)O(2) concentration than the vegetative cells. The expression of rbrA was controlled by two promoters and the promoter for the smaller transcript was regulated by HetR. Spatial expression of rbrA was studied and the results showed that the transcription is localized predominantly in heterocysts. In a mutant lacking nifH and rbrA, the H(2)O(2) concentration in heterocysts was lower than that in the vegetative cells, suggesting that NifH is involved in H(2)O(2) generation. Our results demonstrate that RbrA is a critical enzyme for H(2)O(2) decomposition and provide evidence that nitrogenase autoprotection is important in heterocysts.
Collapse
Affiliation(s)
- Weixing Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
4
|
Sakurai H, Masukawa H. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:128-45. [PMID: 17340220 DOI: 10.1007/s10126-006-6073-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/25/2006] [Indexed: 05/14/2023]
Abstract
This review article explores the potential of using mariculture-raised cyanobacteria as solar energy converters of hydrogen (H(2)). The exploitation of the sea surface for large-scale renewable energy production and the reasons for selecting the economical, nitrogenase-based systems of cyanobacteria for H(2) production, are described in terms of societal benefits. Reports of cyanobacterial photobiological H(2) production are summarized with respect to specific activity, efficiency of solar energy conversion, and maximum H(2) concentration attainable. The need for further improvements in biological parameters such as low-light saturation properties, sustainability of H(2) production, and so forth, and the means to overcome these difficulties through the identification of promising wild-type strains followed by optimization of the selected strains using genetic engineering are also discussed. Finally, a possible mechanism for the development of economical large-scale mariculture operations in conjunction with international cooperation and social acceptance is outlined.
Collapse
Affiliation(s)
- Hidehiro Sakurai
- Department of Biology, School of Education, and Major in Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1, Shinjuku, Tokyo, 169-8050, Japan.
| | | |
Collapse
|
5
|
Lindberg P, Lindblad P, Cournac L. Gas exchange in the filamentous cyanobacterium Nostoc punctiforme strain ATCC 29133 and Its hydrogenase-deficient mutant strain NHM5. Appl Environ Microbiol 2004; 70:2137-45. [PMID: 15066806 PMCID: PMC383079 DOI: 10.1128/aem.70.4.2137-2145.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 12/18/2003] [Indexed: 11/20/2022] Open
Abstract
Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.
Collapse
Affiliation(s)
- Pia Lindberg
- Department of Physiological Botany, Evolutionary Biology Centre, Commissariat à l'Energie Atomique (CEA), Uppsala University, SE-752 36 Uppsala, Sweden
| | | | | |
Collapse
|
6
|
Stevens SE, Smith RL. Isolation and characterization of five genotypic mutants of chlorate-resistant cyanobacteria unable to utilize nitrate. Curr Microbiol 1994. [DOI: 10.1007/bf01570222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Kumar D, Kumar HD. Effects of some inhibitors and carbon sources on acetylene reduction and hydrogen production of isolated heterocysts ofAnabaenasp. (strain CA). ACTA ACUST UNITED AC 1990. [DOI: 10.1080/00071619000650421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
The effect of shikimate onNostoc linckia. World J Microbiol Biotechnol 1990; 6:343-5. [DOI: 10.1007/bf01201310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/1990] [Accepted: 03/25/1990] [Indexed: 11/25/2022]
|
9
|
Smith RL, Tabita F, Baalen C. Hydrogen uptake inAnabaenasp. strain CA does not protect nitrogenase from inactivation by hyperbaric oxygen. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02592.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
|
11
|
Smith RL, Van Baalen C, Tabita FR. Alteration of the Fe protein of nitrogenase by oxygen in the cyanobacterium Anabaena sp. strain CA. J Bacteriol 1987; 169:2537-42. [PMID: 3108236 PMCID: PMC212115 DOI: 10.1128/jb.169.6.2537-2542.1987] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Changes in protein composition were noted when heterocysts of Anabaena sp. strain CA were isolated from filaments grown in 1% CO2-99% N2 and subsequently exposed to oxygen. Immunospecific Western blot analysis showed that the Fe protein of nitrogenase is altered. In cells grown under microaerobic conditions, the Fe protein was found in a form with an apparent molecular weight of 30,000. Exposure to oxygen caused a shift in the migration of this polypeptide to a position corresponding to an apparent molecular weight of 31,500. This modification was reversible upon removal of oxygen from the culture. Chloramphenicol did not inhibit the alteration in either direction. Suppression by ammonium nitrate of the recovery of nitrogenase activity from the effects of oxygen did not prevent the alteration of the protein. Other inhibitors of nitrogenase activity, (metronidazole, carbonyl cyanide m-chlorophenylhydrazone, and phenazine methosulfate) were tested for their effect on Fe protein modification. Alteration of the Fe protein may relate to the protection of nitrogenase from the deleterious effects of oxygen.
Collapse
|
12
|
Abstract
The photosynthetic prokaryotes possess diverse metabolic capabilities, both in carrying out different types of photosynthesis and in their other growth modes. The nature of the coupling of these energy-generating processes with the basic metabolic demands of the cell, such as nitrogen fixation, has stimulated research for many years. In addition, nitrogen fixation by photosynthetic prokaryotes exhibits several unique features; the oxygen-evolving cyanobacteria have developed various strategies for protection of the oxygen-labile nitrogenase proteins, and some photosynthetic bacteria have been found to regulate their nitrogenase (N2ase) activity in a rapid response to fixed nitrogen, thus saving substantial amounts of energy. Recent advances in the biochemistry, physiology, and genetics of nitrogen fixation by cyanobacteria and photosynthetic bacteria are reviewed, with special emphasis on the unique features found in these organisms. Several major topics in cyanobacterial nitrogen fixation are reviewed. The isolation and characterization of N2ase and the isolation and sequence of N2ase structural genes have shown a great deal of similarity with other organisms. The possible pathways of electron flow to N2ase, the mechanisms of oxygen protection, and the control of nif expression and heterocyst differentiation will be discussed. Several recent advances in the physiology and biochemistry of nitrogen fixation by the photosynthetic bacteria are reviewed. Photosynthetic bacteria have been found to fix nitrogen microaerobically in darkness. The regulation of nif expression and possible pathways of electron flow to N2ase are discussed. The isolation of N2ase proteins, particularly the covalent modification of the Fe protein, the nature of the modifying group, properties of the activating enzyme, and regulating factors of the inactivation/activation process are reviewed.
Collapse
|
13
|
Rai LC, Raizada M. NICKEL INDUCED STIMULATION OF GROWTH, HETEROCYST DIFFERENTIATION, 14 CO 2 UPTAKE AND NITROGENASE ACTIVITY IN NOSTOC MUSCORUM. THE NEW PHYTOLOGIST 1986; 104:111-114. [PMID: 33873812 DOI: 10.1111/j.1469-8137.1986.tb00638.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Addition of nickel stimulates growth, heterocyst differentiation, 14 CO2 uptake and nitrogenase activity in Nostnc muscorum. The significance of this observation is discussed.
Collapse
Affiliation(s)
- L C Rai
- Laboratory of Algal Biology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Meena Raizada
- Laboratory of Algal Biology, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
14
|
Pederson DM, Daday A, Smith GD. The use of nickel to probe the role of hydrogen metabolism in cyanobacterial nitrogen fixation. Biochimie 1986; 68:113-20. [PMID: 3089304 DOI: 10.1016/s0300-9084(86)81076-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hydrogenase activities of the heterocystous cyanobacteria Anabaena cylindrica and Mastigocladus laminosus are nickel dependent, based on their inability to consume hydrogen with various electron acceptors or produce hydrogen with dithionite-reduced methyl viologen, after growth in nickel-depleted medium. Upon addition of nickel ions to nickel-deficient cultures of A. cylindrica, the hydrogenase activity recovered in a manner which was protein synthesis-dependent, the recovery being inhibited by chloramphenicol. We have used the nickel dependence of the hydrogenase as a probe of the possible roles of H2 consumption in enhancing nitrogen fixation, and particularly for protecting nitrogenase against oxygen inhibition. Although at the usual growth temperatures (25 degrees for A. cylindrica and 40 degrees for M. laminosus), the cells consume H2 vigorously in an oxyhydrogen reaction after growth in the presence of nickel ions, we have not found that the reaction confers any significant additional protection of nitrogenase, either at aerobic pO2 (for both organisms) or at elevated pO2 (for A. cylindrica). However, at elevated temperatures (e.g., 40 degrees for A. cylindrica and 48 degrees for M. laminosus) a definite protective effect was observed. At these temperatures both organisms rapidly lost acetylene reduction activity under aerobic conditions. When hydrogen gas (10%) was present, the cells retained approximately 50% of the nitrogenase activity observed under anaerobic conditions (argon gas phase). No such protection by hydrogen gas was observed with nickel-deficient cells. Studies with cell-free extracts of A. cylindrica showed that the predominant effect of temperature was not due to thermal inactivation of nitrogenase.
Collapse
|