1
|
Aida H, Ying BW. Data-driven discovery of the interplay between genetic and environmental factors in bacterial growth. Commun Biol 2024; 7:1691. [PMID: 39719455 DOI: 10.1038/s42003-024-07347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 12/26/2024] Open
Abstract
A complex interplay of genetic and environmental factors influences bacterial growth. Understanding these interactions is crucial for insights into complex living systems. This study employs a data-driven approach to uncover the principles governing bacterial growth changes due to genetic and environmental variation. A pilot survey is conducted across 115 Escherichia coli strains and 135 synthetic media comprising 45 chemicals, generating 13,944 growth profiles. Machine learning analyzes this dataset to predict the chemicals' priorities for bacterial growth. The primary gene-chemical networks are structured hierarchically, with glucose playing a pivotal role. Offset in bacterial growth changes is frequently observed across 1,445,840 combinations of strains and media, with its magnitude correlating to individual alterations in strains or media. This counterbalance in the gene-chemical interplay is supposed to be a general feature beneficial for bacterial population growth.
Collapse
Affiliation(s)
- Honoka Aida
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
2
|
Hao Y, Pan X, You J, Li G, Xu M, Rao Z. Microbial production of branched chain amino acids: Advances and perspectives. BIORESOURCE TECHNOLOGY 2024; 397:130502. [PMID: 38417463 DOI: 10.1016/j.biortech.2024.130502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Branched-chain amino acids (BCAAs) such as L-valine, L-leucine, and L-isoleucine are widely used in food and feed. To comply with sustainable development goals, commercial production of BCAAs has been completely replaced with microbial fermentation. However, the efficient production of BCAAs by microorganisms remains a serious challenge due to their staggered metabolic networks and cell growth. To overcome these difficulties, systemic metabolic engineering has emerged as an effective and feasible strategy for the biosynthesis of BCAA. This review firstly summarizes the research advances in the microbial synthesis of BCAAs and representative engineering strategies. Second, systematic methods, such as high-throughput screening, adaptive laboratory evolution, and omics analysis, can be used to analyses the synthesis of BCAAs at the whole-cell level and further improve the titer of target chemicals. Finally, new tools and engineering strategies that may increase the production output and development direction of the microbial production of BCAAs are discussed.
Collapse
Affiliation(s)
- Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guomin Li
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
4
|
Liang YF, Yan LT, Yue Q, Zhao JK, Luo CY, Gao F, Li H, Gao WY. Preparation of a whole cell catalyst overexpressing acetohydroxyacid synthase of Thermotoga maritima and its application in the syntheses of α-hydroxyketones. Sci Rep 2020; 10:15404. [PMID: 32958806 PMCID: PMC7505981 DOI: 10.1038/s41598-020-72416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
The large catalytic subunit of acetohydroxyacid synthase (AHAS, EC 2.2.1.6) of Thermotoga maritima (TmcAHAS) was prepared in this study. It possesses high specific activity and excellent stability. The protein and a whole cell catalyst overexpressing the protein were applied to the preparation of α-hydroxyketones including acetoin (AC), 3-hydroxy-2-pentanone (HP), and (R)-phenylacetylcarbinol (R-PAC). The results show that AC and HP could be produced in high yields (84% and 62%, respectively), while R-PAC could be synthesized in a high yield (about 78%) with an R/S ratio of 9:1. Therefore, TmcAHAS and the whole cell catalyst overexpressing the protein could be practically useful bio-catalysts in the preparation of α-hydroxyketones including AC, HP, and R-PAC. To the best of our knowledge, this is the first time that bacterial AHAS was used as a catalyst to prepare HP with a good yield, and also the first time that TmcAHAS was employed to synthesize AC and R-PAC.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Le-Tian Yan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Qiao Yue
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ji-Kui Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Cai-Yun Luo
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Feng Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Wang YY, Xu JZ, Zhang WG. Metabolic engineering of l-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol 2019; 39:633-647. [PMID: 31055970 DOI: 10.1080/07388551.2019.1577214] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
l-Leucine, as an essential branched-chain amino acid for humans and animals, has recently been attracting much attention because of its potential for a fast-growing market demand. The applicability ranges from flavor enhancers, animal feed additives and ingredients in cosmetic to specialty nutrients in pharmaceutical and medical fields. Microbial fermentation is the major method for producing l-leucine by using Escherichia coli and Corynebacterium glutamicum as host bacteria. This review gives an overview of the metabolic pathway of l-leucine (i.e. production, import and export systems) and highlights the main regulatory mechanisms of operons in E. coli and C. glutamicum l-leucine biosynthesis. We summarize here the current trends in metabolic engineering techniques and strategies for manipulating l-leucine producing strains. Finally, future perspectives to construct industrially advantageous strains are considered with respect to recent advances in biology.
Collapse
Affiliation(s)
- Ying-Yu Wang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Jian-Zhong Xu
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China.,b The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| | - Wei-Guo Zhang
- a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , WuXi , People's Republic of China
| |
Collapse
|
6
|
Arabzadeh G, Shahpiri A. Heterologous Expression and Functional Characterization of Catalytic Subunit of Rice Acetohydroxyacid Synthase. Protein Pept Lett 2018; 26:176-183. [PMID: 30430933 DOI: 10.2174/0929866525666181114153727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acetohydroxyacid Synthase (AHAS) is the first enzyme in the biosynthesis pathway of the branched chain amino acids. AHAS is the common target site of five herbicide chemical groups: sulfonylurea, imidazolinone, triazolopyrimidine, pyrimidinyl-thiobenzoates, and sulfonyl-aminocarbonyl-triazolinone. OBJECTIVE The purification of protein enabled us to study the physical and biochemical properties of the enzyme. In addition in vitro activity of this enzyme was tested in the presence of four different sulfonylureaherbicides and the feedback regulation of enzyme was analyzed in the presence of branched amino acids. METHODS The gene encoding catalytic subunit of rice AHAS (cOsAHAS) without part of the chloroplast transit sequence was cloned into the bacterial expression vector pET41a and heterologously expressed in Escherichia coli as carboxy-terminal extensions of glutathione-S-transferase (GST).The soluble protein was purified using affinity chromatography. The measurement of GSTOsAHAS activity was performed under optimized conditions at present of branched-chain amino acids and sulfonylurea herbicides independently. RESULTS The optimum pH and temperature for GST-cOsAHAS activity was 8.0 and 37 °C, respectively. The specific activity and Km value of this enzyme toward pyruvate were 0.08 U/mg and 30 mM, respectively.GST-cOsAHAS was inhibited by herbicides tribenuron, sulfosulfuron, nicosulfuron and bensulfuron while the enzyme was insensitivieto end products. CONCLUSION These results suggest that the recombinant form of GST-cOsAHAS is functionally active and carries the binding site for sulfynylurea herbicides. Furthermore, GST-cOsAHAS was insensitive to feedback inhibition by endproducts which indicates the existence of a regulator subunit in rice AHAS as previously has been described in other plant AHASs.
Collapse
Affiliation(s)
- Ghazaleh Arabzadeh
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
7
|
Xie Y, Wen X, Zhao D, Niu C, Zhao Y, Qi H, Xi Z. Interactions between the ACT Domains and Catalytic Subunits of Acetohydroxyacid Synthases (AHASs) from Different Species. Chembiochem 2018; 19:2387-2394. [DOI: 10.1002/cbic.201800367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Dongmei Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Yuefang Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Haoman Qi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
8
|
Li H, Liu N, Hui X, Gao WY. An improved enzymatic method for the preparation of (R)-phenylacetyl carbinol. RSC Adv 2017. [DOI: 10.1039/c7ra04641c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(R)-Phenylacetyl carbinol (R-PAC) is one of the key chiral α-hydroxyketones utilized as a synthon in the synthesis of a number of pharmaceuticals having α- and β-adrenergic properties.
Collapse
Affiliation(s)
- Heng Li
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| | - Nan Liu
- Department of Experimental Surgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Xian Hui
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| |
Collapse
|
9
|
Li H, Liu N, Wang WT, Wang JY, Gao WY. Cloning and characterization of GST fusion tag stabilized large subunit of Escherichia coli acetohydroxyacid synthase I. J Biosci Bioeng 2016; 121:21-26. [DOI: 10.1016/j.jbiosc.2015.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 10/22/2022]
|
10
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
11
|
Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Appl Microbiol Biotechnol 2014; 99:761-74. [DOI: 10.1007/s00253-014-5965-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
12
|
Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors. Biosci Biotechnol Biochem 2010; 74:2281-6. [PMID: 21071847 DOI: 10.1271/bbb.100496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS-PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg(+2), ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 µM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.
Collapse
|
13
|
Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O, Barak Z, Chipman DM. Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Biochemistry 2009; 48:8731-7. [PMID: 19653643 DOI: 10.1021/bi9009488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The large, catalytic subunits (LSUs; ilvB, ilvG and ilvI, respectively) of enterobacterial acetohydroxyacid synthases isozymes (AHAS I, II and III) have molecular weights approximately 60 kDa and are paralogous with a family of other thiamin diphosphate dependent enzymes. The small, regulatory subunits (SSUs) of AHAS I and AHAS III (ilvN and ilvH) are required for valine inhibition, but ilvN and ilvH can only confer valine sensitivity on their own LSUs. AHAS II is valine resistant. The LSUs have only approximately 15, <<1 and approximately 3%, respectively, of the activity of their respective holoenzymes, but the holoenzymes can be reconstituted with complete recovery of activity. We have examined the activation of each of the LSUs by SSUs from different isozymes and ask to what extent such activation is specific; that is, is effective nonspecific interaction possible between LSUs and SSUs of different isozymes? To our surprise, the AHAS II SSU ilvM is able to activate the LSUs of all three of the isozymes, and the truncated AHAS III SSUs ilvH-Delta80, ilvH-Delta86 and ilvH-Delta89 are able to activate the LSUs of both AHAS I and AHAS III. However, none of the heterologously activated enzymes have any feedback sensitivity. Our results imply the existence of a common region in all three LSUs to which regulatory subunits may bind, as well as a similarity between the surfaces of ilvM and the other SSUs. This surface must be included within the N-terminal betaalphabetabetaalphabeta-domain of the SSUs, probably on the helical face of this domain. We suggest hypotheses for the mechanism of valine inhibition, and reject one involving induced dissociation of subunits.
Collapse
Affiliation(s)
- Maria Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Kopecký J, Kyselková M, Šigutová L, Pospíšil S, Felsberg J, Spížek J, Janata J. Deregulation of acetohydroxy-acid synthase: Loss of allosteric inhibition conferred by mutations in the catalytic subunit. Folia Microbiol (Praha) 2009; 53:467-71. [DOI: 10.1007/s12223-008-0073-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 07/28/2008] [Indexed: 11/29/2022]
|
15
|
Mitra A, Sarma SP. Escherichia coli ilvN interacts with the FAD binding domain of ilvB and activates the AHAS I enzyme. Biochemistry 2008; 47:1518-31. [PMID: 18193896 DOI: 10.1021/bi701893b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been exploited to generate polypeptide fragments which, when cloned and expressed, reassemble in the presence of cofactors to yield a catalytically competent enzyme. Multidimensional multinuclear NMR methods have been employed for obtaining near complete sequence specific NMR assignments for backbone HN, 15N, 13Calpha and 13Cbeta atoms of the FAD binding domain of ilvB on samples that were isotopically enriched in 2H, 13C and 15N. Unambiguous assignments were obtained for 169 of 177 backbone Calpha atoms and 127 of 164 side chain Cbeta atoms. The secondary structure determined on the basis of observed 13Calpha secondary chemical shifts and sequential NOEs agrees well with the structure of this domain in the catalytic subunit of yeast AHAS. Binding of ilvN to the ilvBalpha and ilvBbeta domains was studied by both circular dichroism and isotope edited solution nuclear magnetic resonance methods. Changes in CD spectra indicate that ilvN interacts with ilvBalpha and ilvBbeta domains of the catalytic subunit and not with the ilvBgamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvBbeta and proximal to the intrasubunit ilvBalpha/ilvBbeta domain interface. The implication of this interaction on the role of the regulatory subunit on the activity of the holoenzyme is discussed.
Collapse
Affiliation(s)
- Ashima Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
16
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
17
|
Porat I, Vinogradov M, Vyazmensky M, Lu CD, Chipman DM, Abdelal AT, Barak Z. Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus. J Bacteriol 2004; 186:570-4. [PMID: 14702326 PMCID: PMC305746 DOI: 10.1128/jb.186.2.570-574.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five genes from the ilv-leu operon from Bacillus stearothermophilus have been sequenced. Acetohydroxyacid synthase (AHAS) and its subunits were separately cloned, purified, and characterized. This thermophilic enzyme resembles AHAS III of Escherichia coli, and regulatory subunits of AHAS III complement the catalytic subunit of the AHAS of B. stearothermophilus, suggesting that AHAS III is functionally and evolutionally related to the single AHAS of gram-positive bacteria.
Collapse
Affiliation(s)
- Iris Porat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Lange C, Rittmann D, Wendisch VF, Bott M, Sahm H. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of L-valine. Appl Environ Microbiol 2003; 69:2521-32. [PMID: 12732517 PMCID: PMC154540 DOI: 10.1128/aem.69.5.2521-2532.2003] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Addition of L-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 DeltailvA DeltapanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of L-isoleucine could relieve the valine effect on VAL1 whereas L-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.
Collapse
Affiliation(s)
- C Lange
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | | | | | | |
Collapse
|
19
|
Oh KJ, Park EJ, Yoon MY, Han TR, Choi JD. Roles of histidine residues in tobacco acetolactate synthase. Biochem Biophys Res Commun 2001; 282:1237-43. [PMID: 11302749 DOI: 10.1006/bbrc.2001.4714] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine in plants and microorganisms. ALS is the target of several structurally diverse classes of herbicides, including sulfonylureas, imidazolinones, and triazolopyrimidines. The roles of three well-conserved histidine residues (H351, H392, and H487) in tobacco ALS were determined using site-directed mutagenesis. Both H487F and H487L mutations abolished the enzymatic activity as well as the binding affinity for the cofactor FAD. Nevertheless, the mutation of H487F did not affect the secondary structure of the ALS. The K(m) values of H351M, H351Q, and H351F are approximately 18-, 60-, and fivefold higher than that of the wild-type ALS, respectively. Moreover, the K(c) value of H351Q for FAD is about 137-fold higher than that of wALS. Mutants H351M and H351Q showed very strong resistance to Londax (a sulfonylurea) and Cadre (an imidazolinone), whereas mutant H351F was weakly resistant to them. However, the secondary structures of mutants H351M and H351Q appeared to be different from that of wALS. The mutation of H392M did not have any significant effect on the kinetic parameters nor the resistance to ALS-inhibiting herbicides. These results suggest that the His487 residue is located at the active site of the enzyme and is likely involved in the binding of cofactor FAD in tobacco ALS. Mutational analyses of the His351 residue imply that the active site of the ALS is probably close to its binding site of the herbicides, Londax and Cadre.
Collapse
Affiliation(s)
- K J Oh
- School of Life Sciences and Research Institute for Genetic Engineering, Chungbuk National University, Cheongju, 361-763, Korea
| | | | | | | | | |
Collapse
|
20
|
Mendel S, Elkayam T, Sella C, Vinogradov V, Vyazmensky M, Chipman DM, Barak Z. Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J Mol Biol 2001; 307:465-77. [PMID: 11243831 DOI: 10.1006/jmbi.2000.4413] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Valine inhibition of acetohydroxyacid synthase (AHAS) plays an important role in regulation of biosynthesis of branched-chain amino acids in bacteria. Bacterial AHASs are composed of separate catalytic and regulatory subunits; while the catalytic subunits appear to be homologous with several other thiamin diphosphate-dependent enzymes, there has been no model for the structure of the small, regulatory subunits (SSUs). AHAS III is one of three isozymes in Escherichia coli. Its large subunit (encoded by ilvI) by itself has 3-5 % activity of the holoenzyme and is not sensitive to inhibition by valine. The SSU (encoded by ilvH) associates with the large subunit and is required for full catalytic activity and valine sensitivity. The isolated SSU binds valine. The properties of several mutant SSUs shed light on the relation between their structure and regulatory function. Three mutant SSUs were obtained from spontaneous Val(R) bacterial mutants and three more were designed on the basis of an alignment of SSU sequences from valine-sensitive and resistant isozymes, or consideration of the molecular model developed here. Mutant SSUs N11A, G14D, N29H and A36V, when reconstituted with wild-type large subunit, lead to a holoenzyme with drastically reduced valine sensitivity, but with a specific activity similar to that of the wild-type. The isolated G14D and N29H subunits do not bind valine. Mutant Q59L leads to a valine-sensitive holoenzyme and isolated Q59L binds valine. T34I has an intermediate valine sensitivity. The effects of mutations on the affinity of the large subunits for SSUs also vary. D. Fischer's hybrid fold prediction method suggested a fold similarity between the N terminus of the ilvH product and the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. On the basis of this prediction, together with the properties of the mutants, a model for the structure of the AHAS SSUs and the location of the valine-binding sites can be proposed.
Collapse
Affiliation(s)
- S Mendel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Vyazmensky M, Elkayam T, Chipman DM, Barak Z. Isolation of subunits of acetohydroxy acid synthase isozyme III and reconstitution of holoenzyme. Methods Enzymol 2001; 324:95-103. [PMID: 10989421 DOI: 10.1016/s0076-6879(00)24222-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- M Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
22
|
Vyazmensky M, Barak Z, Chipman DM, Eichler J. Characterization of acetohydroxy acid synthase activity in the archaeon Haloferax volcanii. Comp Biochem Physiol B Biochem Mol Biol 2000; 125:205-10. [PMID: 10817907 DOI: 10.1016/s0305-0491(99)00170-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Whereas the biochemistry of acetohydroxy acid synthase has been extensively studied in bacteria and eukaryotes, relatively little is known about the enzyme in archaea, the third kingdom of life. The present study biochemically characterizes acetohydroxy acid synthase activity in the halophilic archaea Haloferax volcanii. In addressing ion requirements, enzyme inhibition and antibody labeling, the results reveal that, except for its elevated salt requirements, the haloarchaeal enzyme is remarkably similar to its bacterial counterpart.
Collapse
Affiliation(s)
- M Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
23
|
Kopecký J, Janata J, Pospísil S, Felsberg J, Spízek J. Mutations in two distinct regions of acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to end-product inhibition. Biochem Biophys Res Commun 1999; 266:162-6. [PMID: 10581183 DOI: 10.1006/bbrc.1999.1792] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetolactate synthase small subunit encoding ilvN genes from the parental Streptomyces cinnamonensis strain and mutants resistant either to valine analogues or to 2-ketobutyrate were cloned and sequenced. The wild-type IlvN from S. cinnamonensis is composed of 175 amino acid residues and shows a high degree of similarity with the small subunits of other valine-sensitive bacterial acetolactate synthases. Changes in the sequence of ilvN conferring the insensitivity to valine in mutant strains were found in two distinct regions. Certain point mutations were located in the conserved domain near the N terminus, while others resulting in the same phenotype shortened the protein at V(104) or V(107). To confirm whether the described mutations were responsible for the changed biochemical properties of the native enzyme, the wild-type large subunit and the wild-type and mutant forms of the small one were expressed separately in E. coli and combined in vitro to reconstitute the active enzyme.
Collapse
Affiliation(s)
- J Kopecký
- Institute of Microbiology, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry 1999; 38:5222-31. [PMID: 10213630 DOI: 10.1021/bi983013m] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyzes the first step in the biosynthesis of the branched-chain amino acids. In bacteria, the enzyme has a large subunit containing the catalytic machinery and a small subunit with a regulatory role. In eucaryotes, the evidence for a regulatory subunit is largely indirect and circumstantial. We investigated the possibility that the yeast open reading frame YCL009c is an AHAS small subunit. Analysis of the DNA sequence shows that it contains all the appropriate transcription, translation and regulatory signals. YCL009c was shown to be expressed in yeast and the protein localized in mitochondria where it undergoes removal of a transit peptide targeting sequence. This putative small subunit protein (ilv6) and the catalytic subunit of yeast AHAS (ilv2) were each overexpressed in Escherichia coli and purified to near homogeneity. Reconstitution studies showed that the ilv6 protein stimulates the catalytic activity of the ilv2 protein by up to 7-fold (from 6.8 +/- 0.7 to 49.0 +/- 1.8 U/mg) and confers upon it sensitivity to inhibition by valine (Ki = 0.16 +/- 0.02 mM). Valine inhibition is partially reversed by ATP. The reconstitution is favored by high concentrations of potassium phosphate ( approximately 1 M) and at neutral pH. Under optimal conditions for reconstitution, a dissociation constant for the subunits of 70 +/- 7 nM was determined. Valine inhibition is partial, resulting in a specific activity that is similar to that of the ilv2 protein alone. However, measurements of the Km for substrate rule out the possibility that valine inhibition is accomplished by dissociation of the subunits.
Collapse
Affiliation(s)
- S S Pang
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
25
|
Chipman D, Barak Z, Schloss JV. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:401-19. [PMID: 9655946 DOI: 10.1016/s0167-4838(98)00083-1] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two groups of enzymes are classified as acetolactate synthase (EC 4. 1.3.18). This review deals chiefly with the FAD-dependent, biosynthetic enzymes which readily catalyze the formation of acetohydroxybutyrate from pyruvate and 2-oxobutyrate, as well as of acetolactate from two molecules of pyruvate (the ALS/AHAS group). These enzymes are generally susceptible to inhibition by one or more of the branched-chain amino acids which are ultimate products of the acetohydroxyacids, as well as by several classes of herbicides (sulfonylureas, imidazolinones and others). Some ALS/AHASs also catalyze the (non-physiological) oxidative decarboxylation of pyruvate, leading to peracetic acid; the possible relationship of this process to oxygen toxicity is considered. The bacterial ALS/AHAS which have been well characterized consist of catalytic subunits (around 60 kDa) and smaller regulatory subunits in an alpha2beta2 structure. In the case of Escherichia coli isozyme III, assembly and dissociation of the holoenzyme has been studied. The quaternary structure of the eukaryotic enzymes is less clear and in plants and yeast only catalytic polypeptides (homologous to those of bacteria) have been clearly identified. The presence of regulatory polypeptides in these organisms cannot be ruled out, however, and genes which encode putative ALS/AHAS regulatory subunits have been identified in some cases. A consensus sequence can be constructed from the 21 sequences which have been shown experimentally to represent ALS/AHAS catalytic polypeptides. Many other sequences fit this consensus, but some genes identified as putative 'acetolactate synthase genes' are almost certainly not ALS/AHAS. The solution of the crystal structures of several thiamin diphosphate (ThDP)-dependent enzymes which are homologous to ALS/AHAS, together with the availability of many amino acid sequences for the latter enzymes, has made it possible for two laboratories to propose similar, reasonable models for a dimer of catalytic subunits of an ALS/AHAS. A number of characteristics of these enzymes can now be better understood on the basis of such models: the nature of the herbicide binding site, the structural role of FAD and the binding of ThDP-Mg2+. The models are also guides for experimental testing of ideas concerning structure-function relationships in these enzymes, e.g. the nature of the substrate recognition site. Among the important remaining questions is how the enzyme suppresses alternative reactions of the intrinsically reactive hydroxyethylThDP enamine formed by the decarboxylation of the first substrate molecule and specifically promotes its condensation with 2-oxobutyrate or pyruvate.
Collapse
Affiliation(s)
- D Chipman
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
26
|
Abstract
Acetolactate synthase catalyses the first step in branched-chain amino acid biosynthesis. The bacterial enzyme contains two large and two small subunits but there is only limited and circumstantial evidence for a small subunit in the eukaryotic enzyme. Here this evidence is summarised and protein sequences of two putative eukaryotic small subunits, from a yeast and a red alga, are presented.
Collapse
Affiliation(s)
- R G Duggleby
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, University of Queensland, Brisbane, Australia.
| |
Collapse
|
27
|
Ibdah M, Bar-Ilan A, Livnah O, Schloss JV, Barak Z, Chipman DM. Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 1996; 35:16282-91. [PMID: 8973202 DOI: 10.1021/bi961588i] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acetohydroxy acid synthase (AHAS, EC 4.1.3.18) catalyzes the thiamin pyrophosphate (TPP)-dependent decarboxylation of pyruvate and condensation of the resulting two-carbon moiety with a second alpha-keto acid. It belongs to a family of homologous, TPP-dependent enzymes which catalyze different reactions which start from decarboxylation of alpha-keto acids. A model for the structure of Escherichia coli AHAS isozyme II, based on its homology with pyruvate oxidase and experimental testing of the model by site-directed mutagenesis, has been used here to study how AHAS controls the chemical fate of a decarboxylated keto acid. Because of the potential conformational freedom of the reacting substrates, residues interacting with the substrate could not be identified directly from the model of AHAS. Three residues were considered as candidates for involvement in the recognition of alpha-ketobutyrate, as the amino acids at these sites in a unique low-specificity AHAS are different from those in typical AHASs, which are highly specific for reaction with alpha-ketobutyrate as second substrate, in preference to pyruvate. These residues were altered in AHAS II by site-directed mutagenesis. Replacement of Trp464 lowers the specificity by at least 1 order of magnitude, with minor effects on the activity or stability of the enzyme, suggesting that Trp464 contributes > or = 1.3 kcal mol-1 to interaction with the "extra" methyl of alpha-ketobutyrate. Mutations of Met460 or Thr70 have small effects on specificity and do affect other properties of the protein. A model for enzyme-substrate interactions can be proposed on the basis of these results. The model of AHAS also explains previously reported spontaneous mutants of AHAS resistant to sulfonylurea herbicides, which probably bind in the narrow depression which provides access to the bound TPP. A role for the C terminus of the enzyme polypeptide in determination on the reaction pathway is also possible.
Collapse
Affiliation(s)
- M Ibdah
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Cullin C, Baudin-Baillieu A, Guillemet E, Ozier-Kalogeropoulos O. Functional analysis of YCL09C: evidence for a role as the regulatory subunit of acetolactate synthase. Yeast 1996; 12:1511-8. [PMID: 8972574 DOI: 10.1002/(sici)1097-0061(199612)12:15<1511::aid-yea41>3.0.co;2-b] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have analysed the function of the open reading frame (ORF) YCL09C. The deletion of this ORF from chromosome III does not affect the physiology of the corresponding yeast strain enough to give a distinct phenotype. Nevertheless a computational analysis reveals high homology between this ORF and the enterobacterial genes encoding the regulatory subunit of acetolactate synthase. We have therefore tested the possibility that yc109cp is the regulatory subunit of yeast acetolactate synthase by in vitro enzymatic analysis. The acetolactate synthase was previously shown to be retroinhibited by its final product valine. In Escherichia coli this retro-control is assured by the regulatory subunit. Using a yeast strain carrying a complete deletion of YCL09C, we have observed the loss of such retro-inhibition. These results together with the computational predictions show that YCL09C encodes the regulatory subunit of yeast acetolactate synthase.
Collapse
Affiliation(s)
- C Cullin
- Centre de Génétique Moléculaire du CNRS, Laboratoire Propre Associé à l'Université Pierre et Marie Curie, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
29
|
Xing R, Whitman WB. Purification and characterization of the oxygen-sensitive acetohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. J Bacteriol 1994; 176:1207-13. [PMID: 8113159 PMCID: PMC205181 DOI: 10.1128/jb.176.5.1207-1213.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Acetohydroxy acid synthase (EC 4.1.3.18) of the archaebacterium Methanococcus aeolicus was purified 1,150-fold to homogeneity. The molecular weight of the purified enzyme was 125,000, and it contained only one type of subunit (M(r) = 58,000). The amino-terminal sequence had 46 to 57% similarity to those of the large subunits of the eubacterial anabolic enzymes and 37 to 43% similarity to those of the yeast and plant enzymes. The methanococcal enzyme had a pH optimum of 7.6. The pI, estimated by chromatofocusing, was 5.6. Activity required Mg2+ or Mn2+ ions, thiamine pyrophosphate, and a flavin. Flavin adenine dinucleotide, flavin mononucleotide, and riboflavin plus 10 mM phosphate all supported activity. However, activity was strongly inhibited by these flavins at 0.3 mM. The Michaelis constants for pyruvate, MgCl2, MnCl2, thiamine pyrophosphate, flavin adenine dinucleotide, and flavin mononucleotide were 6.8 mM, 0.3 mM, 0.16 mM, 1.6 microM, 0.4 microM, and 1.3 microM, respectively. In cell extracts, the enzyme was sensitive to O2 (half-life = 2.7 min with 5% O2 in the headspace), but the purified enzyme was less sensitive to O2 (half-life = 78.0 min with 20% O2). Reconstitution of the enzyme with flavin adenine dinucleotide increased the sensitivity to O2. Moreover, in the assay the homogeneous enzyme was rapidly inactivated by O2, and the concentration required for 50% inhibition (I50) was obtained with an atmosphere of 0.11% O2. The methanococcal enzyme has similarities to the eubacterial and eucaryotic enzymes, consistent with the ancient origin of the archaebacterial enzyme.
Collapse
Affiliation(s)
- R Xing
- Department of Microbiology, University of Georgia, Athens 30602-2605
| | | |
Collapse
|
30
|
Sella C, Weinstock O, Barak Z, Chipman DM. Subunit association in acetohydroxy acid synthase isozyme III. J Bacteriol 1993; 175:5339-43. [PMID: 8366022 PMCID: PMC206587 DOI: 10.1128/jb.175.17.5339-5343.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Acetohydroxy acid synthase isozyme III (AHAS III) from Escherichia coli is composed of large and small subunits (encoded by the genes ilvI and ilvH) in an alpha 2 beta 2 structure. The large (61-kDa) subunit apparently contains the catalytic machinery of the enzyme, while the small (17-kDa) subunit is required for specific stabilization of the active conformation of the large subunit as well as for valine sensitivity. The interaction between subunits has been studied by using purified enzyme and extracts containing subcloned subunits. The association between large and small subunits is reversible, with a dissociation constant sufficiently high to have important experimental consequences: the activity of the enzyme shows a concentration dependence curve which is concave upward, and this dependence becomes linear upon the addition of excess large or small subunits. We estimate that at a concentration of 10(-7) M for each subunit (7 micrograms of enzyme ml-1), the large subunits are only half associated as the I2H2 active holoenzyme. This dissociation constant is high enough to cause underestimation of the activity of AHAS III in bacterial extracts. The true activity of this isozyme in extracts is observed in the presence of excess small subunits, which maintain the enzyme in its associated form. Reexamination of an E. coli K-12 ilvBN+ ilvIH+ strain grown in glucose indicates that AHAS III is the major isozyme expressed. As an excess of small subunits does not influence the apparent Ki for valine inhibition of the purified enzyme, it is likely that valine binds to and inhibits I2H2 rather than inducing dissociation. AHAS I and II seem to show a much lower tendency to dissociate than does AHAS III.
Collapse
Affiliation(s)
- C Sella
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
31
|
Jackson JH, Herring PA, Patterson EB, Blatt JM. A mechanism for valine-resistant growth of Escherichia coli K-12 supported by the valine-sensitive acetohydroxy acid synthase IV activity from ilvJ662. Biochimie 1993; 75:759-65. [PMID: 8274527 DOI: 10.1016/0300-9084(93)90125-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acetohydroxy acid synthase (EC 4.1.3.18; AHAS) isozymes I and III are expressed in Escherichia coli strain K-12 and, when inhibited by L-valine, cannot support cell growth. AHAS IV, expressed from mutation at ilvJ662, exhibits valine-sensitivity similar to that of AHAS III, yet AHAS IV does support cell growth in valine minimal medium. Rate equations were derived for AHAS III and AHAS IV reaction in crude extracts and for partially purified AHAS IV. Values of kinetic constants in these equations were determined in order to model a probable reaction mechanism. Computer modeling of initial velocity reactions at physiological substrate concentrations simulated consequences of valine-inhibition and revealed that AHAS IV synthesized AHB at a maximal rate over four times faster than AHAS III under these conditions. The simulations predicted that cells depending upon AHAS III for growth in valine minimal medium would accumulate higher levels of 2-ketobutyrate than cells using AHAS IV. Experiments on growth inhibition by valine revealed more than a five-fold difference in 2-ketobutyrate accumulation, thus confirming these predictions. These data support the hypothesis that valine inhibition of growth is a consequence of 2-ketobutyrate accumulation to toxic levels. We propose that the valine-inhibited AHAS IV activity prevents growth inhibition by keeping 2-ketobutyrate accumulation to a lower level than resulting from AHAS III activity.
Collapse
Affiliation(s)
- J H Jackson
- Department of Microbiology and Public Health, Michigan State University, East Lansing
| | | | | | | |
Collapse
|
32
|
Weinstock O, Sella C, Chipman DM, Barak Z. Properties of subcloned subunits of bacterial acetohydroxy acid synthases. J Bacteriol 1992; 174:5560-6. [PMID: 1512191 PMCID: PMC206499 DOI: 10.1128/jb.174.17.5560-5566.1992] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The acetohydroxy acid synthase (AHAS) isozymes from enterobacteria are each composed of a large and small subunit in an alpha 2 beta 2 structure. It has been generally accepted that the large (ca. 60-kDa) subunits are catalytic, while the small ones are regulatory. In order to further characterize the roles of the subunits as well as the nature and the specificities of their interactions, we have constructed plasmids encoding the large or small subunits of isozymes AHAS I and AHAS III, each with limited remnants of the other peptide. The catalytic properties of the large subunits have been characterized and compared with those of extracts containing the intact enzyme or of purified enzymes. Antisera to the isolated subunits have been used in Western blot (immunoblot) analyses for qualitative and semiquantitative determinations of the presence of the polypeptides in extracts. The large subunits of AHAS isozymes I and III have lower activities than the intact enzymes: Vmax/Km is 20 to 50 times lower in both cases. However, for AHAS I, most of this difference is due to the raised Km of the large subunit alone, while for AHAS III, it is due to a lowered Vmax. The substrate specificities, R, of large subunits are close to those of the intact enzymes. The catalytic activity of the large subunits of AHAS I is dependent on flavin adenine dinucleotide (FAD), as is that of the intact enzyme, although the apparent affinities of the large subunits alone for FAD are 10-fold lower. Isolated subunits are insensitive to valine inhibition. Nearly all of the properties of the intact AHAS isozyme I or III can be reconstituted by mixing extracts containing the respective large and small subunits. The mixing of subunits from different enzymes does not lead to activation of the large subunits. It is concluded that the catalytic machinery of these AHAS isozymes is entirely contained within the large subunits. The small subunits are required, however, for specific stabilization of an active conformation of the large subunits as well as for value sensitivity.
Collapse
Affiliation(s)
- O Weinstock
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
33
|
Singh B, Szamosi I, Hand JM, Misra R. Arabidopsis Acetohydroxyacid Synthase Expressed in Escherichia coli Is Insensitive to the Feedback Inhibitors. PLANT PHYSIOLOGY 1992; 99:812-6. [PMID: 16669005 PMCID: PMC1080549 DOI: 10.1104/pp.99.3.812] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acetohydroxyacid synthase (AHAS), the first enzyme unique to the biosynthesis of isoleucine, leucine, and valine, is the target enzyme for several classes of herbicides. The AHAS gene from Arabidopsis thaliana, including the chloroplast transit peptide, was cloned into the bacterial expression plasmid pKK233-2. The resulting plasmid was used to transform an AHAS-deficient Escherichia coli strain MF2000. The growth of the MF2000 strain of E. coli was complemented by the functional expression of the Arabidopsis AHAS. The AHAS protein was processed to a molecular mass of 65 kilodaltons that was similar to the mature protein isolated from Arabidopsis seedlings. The AHAS activity extracted from the transformed E. coli cells was inhibited by imidazolinone and sulfonylurea herbicides. AHAS activity extracted from Arabidopsis is inhibited by valine and leucine; however, this activity was insensitive to these feedback inhibitors when extracted from the transformed E. coli.
Collapse
Affiliation(s)
- B Singh
- American Cyanamid Company, P.O. Box 400, Princeton, New Jersey 08543-0400
| | | | | | | |
Collapse
|
34
|
Lopes JM, Soliman N, Smith PK, Lawther RP. Transcriptional polarity enhances the contribution of the internal promoter, ilvEp, in the expression of the ilvGMEDA operon in wild-type Escherichia coli K12. Mol Microbiol 1989; 3:1039-51. [PMID: 2691839 DOI: 10.1111/j.1365-2958.1989.tb00254.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ilvG gene of Escherichia coli K12 produces a cryptic peptide as a result of a frameshift mutation located approximately halfway through the coding sequence of the gene. This mutation is polar on expression of the downstream genes (ilvEDA) because transcription terminates within the translationally barren region that results from the mutation. Contrary to this, Salmonella typhimurium produces a full-length functional ilvG protein and is therefore unlikely to manifest this polarity event. E. coli K12 strains with mutations either in the ilvG gene (which restores a full-length protein) or in the rho gene, relieve this polarity suggesting that this event couples transcription and translation in a manner analogous to attenuation. This paper describes experiments designed to determine the molecular nature and location of the polarity event. Most significantly, this work establishes the contribution of the internal promoter (ilvEp, located downstream of the polar site) to the expression of the downstream genes in E. coli K12 wild-type and mutant strains (ilvG) and by extension to the role of this promoter in S. typhimurium. This analysis suggests that ilvEp contributes as much as 90% of ilvEDA expression in wild-type E. coli K12 and only 15% in wild-type S. typhimurium when grown under non-repressing conditions.
Collapse
Affiliation(s)
- J M Lopes
- Biology Department, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
35
|
Weber RF, Silverman PM. The cpx proteins of Escherichia coli K12. Structure of the cpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467-78. [PMID: 3058985 DOI: 10.1016/0022-2836(88)90013-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gene cpxA of Escherichia coli K12 encodes the 52,000 Mr CpxA polypeptide. The complete cpxA nucleotide sequence, reported here, predicted that CpxA contains two extended, hydrophobic segments in its amino-terminal half and could therefore be a membrane protein. Using a lac-cpxA operon fusion plasmid to overproduce CpxA and an immunochemical assay to detect the polypeptide, we show that CpxA fractionated with the bacterial inner membrane during differential and isopycnic sedimentation. Moreover, the protein could be solubilized by extraction of crude membranes with non-ionic detergents but not with KCl or NaOH, indicating that Cpx is an intrinsic membrane component. Analysis of TnphoA insertions in cpxA indicated that the region between the hydrophobic segments of CpxA is periplasmic, whereas the region carboxy-terminal to the second such segment is cytoplasmic. Based on these structural data, we propose that CpxA functions as a trans-membrane sensory protein. The DNA sequence data also indicate that cpxA is the 3' gene of an operon.
Collapse
Affiliation(s)
- R F Weber
- Department of Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
36
|
Chang YY, Cronan JE. Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino acid biosynthetic pathway. J Bacteriol 1988; 170:3937-45. [PMID: 3045082 PMCID: PMC211393 DOI: 10.1128/jb.170.9.3937-3945.1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A number of enzymes require flavin for their catalytic activity, although the reaction catalyzed involves no redox reaction. The best studied of these enigmatic nonredox flavoproteins are the acetohydroxy acid synthases (AHAS), which catalyze early steps in the synthesis of branched-chain amino acids in bacteria, yeasts, and plants. Previously, work from our laboratory showed strong amino acid sequence homology between these enzymes and Escherichia coli pyruvate oxidase, a classical flavoprotein dehydrogenase that catalyzes the decarboxylation of pyruvate to acetate. We have now shown this homology (i) to also be present in the DNA sequences and (ii) to represent functional homology in that pyruvate oxidase has AHAS activity and a protein consisting of the amino-terminal half of pyruvate oxidase and the carboxy-terminal half of E. coli AHAS I allows native E. coli AHAS I to function without added flavin. The hybrid protein contains tightly bound flavin, which is essential for the flavin substitution activity. These data, together with the sequence homologies and identical cofactors and substrates, led us to propose that the AHAS enzymes are descended from pyruvate oxidase (or a similar protein) and, thus, that the flavin requirement of the AHAS enzymes is a vestigial remnant, which may have been conserved to play a structural rather than a chemical function.
Collapse
Affiliation(s)
- Y Y Chang
- Department of Microbiology, University of Illinois, Urbana 61801
| | | |
Collapse
|
37
|
Eoyang L, Silverman PM. Purification and assays of acetolactate synthase I from Escherichia coli K12. Methods Enzymol 1988; 166:435-45. [PMID: 3071719 DOI: 10.1016/s0076-6879(88)66057-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Silverman PM, Eoyang L. Alkylation of acetohydroxyacid synthase I from Escherichia coli K-12 by 3-bromopyruvate: evidence for a single active site catalyzing acetolactate and acetohydroxybutyrate synthesis. J Bacteriol 1987; 169:2494-9. [PMID: 3294793 PMCID: PMC212102 DOI: 10.1128/jb.169.6.2494-2499.1987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acetohydroxyacid synthase I (AHAS I) purified from Escherichia coli K-12 was irreversibly inactivated by incubation with 3-bromopyruvate. Inactivation was specific, insofar as bromoacetate and iodoacetate were much less effective than bromopyruvate. Inactivation was accompanied by incorporation of radioactivity from 3-bromo[2-14C]pyruvate into acid-insoluble material. More than 95% of the incorporated radioactivity coelectrophoresed with the 60-kilodalton IlvB subunit of the enzyme through a sodium dodecyl sulfate-polyacrylamide gel; less than 5% coelectrophoresed with the 11.2-kilodalton IlvN subunit. The stoichiometry of incorporation at nearly complete inactivation was 1 mol of 14C per mol of IlvB polypeptide. These data indicate that bromopyruvate inactivates AHAS I by alkylating an amino acid at or near a single active site located in the IlvB subunit of the enzyme. We confirmed that this alkylation inactivated both AHAS reactions normally catalyzed by AHAS I. These results provide the first direct evidence that AHAS I catalyzes both acetohydroxybutyrate and acetolactate synthesis from the same active site.
Collapse
|
39
|
Dailey FE, Cronan JE, Maloy SR. Acetohydroxy acid synthase I is required for isoleucine and valine biosynthesis by Salmonella typhimurium LT2 during growth on acetate or long-chain fatty acids. J Bacteriol 1987; 169:917-9. [PMID: 3542980 PMCID: PMC211871 DOI: 10.1128/jb.169.2.917-919.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella typhimurium LT2 normally expresses two acetohydroxy acid synthases (AHAS I and AHAS II). The function of AHAS I in this organism was unclear, since AHAS I-deficient (ilvBN) mutants of LT2 grew well on glucose or succinate minimal media, whereas AHAS II-deficient (ilvGM) mutants requried isoleucine for normal growth on glucose minimal media. We report that AHAS I-deficient mutants of S. typhimurium required isoleucine and valine for growth on acetate or oleate minimal media, whereas AHAS II-deficient mutants were able to grow on these media without isoleucine supplementation.
Collapse
|
40
|
Lu MF, Umbarger HE. Effects of deletion and insertion mutations in the ilvM gene of Escherichia coli. J Bacteriol 1987; 169:600-4. [PMID: 3027038 PMCID: PMC211820 DOI: 10.1128/jb.169.2.600-604.1987] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A plasmid was constructed that carried the ilvG and ilvM genes and the associated promoter and leader regions derived from the K-12 strain of Escherichia coli. The ilvG gene contained a + 1 frameshift mutation that enabled the plasmid to specify acetohydroxyacid synthase II. The plasmid was modified by deletions in the terminus of and within the ilvM gene and by insertions into the ilvM gene. The effects of these modifications on the phenotypes of the plasmids were examined in a host strain that lacked all three isozymes of acetohydroxyacid synthase. Most of the ilvM mutant plasmids so obtained permitted growth of the host strain in the absence of isoleucine but not in the absence of valine. Growth in the presence of valine, however, was very slow. No significant acetohydroxyacid synthase activity could be detected even when the cells were grown in a valine-supplemented minimal medium. It thus appears that, at most, only a very low level of acetohydroxyacid synthase activity occurred with ilvG in the absence of ilvM and that low activity was more effective for acetohydroxy butyrate formation than for acetolactate formation. The ilvM gene product could be formed under the control of the lac promoter in the presence of a plasmid that carried an in-frame gene fusion between lacZ and the downstream portion of ilvG. Extracts from the host strain that contained such an IlvG(-)-IlvM+ plasmid could be combined with extracts from cells that contained one of the IlvG+-IlvM- plasmids to yield acetohydroxyacid synthase activity. Thus, the ilvM and ilvG genes could be expressed independently of each other.
Collapse
|