1
|
Kiran K, Patil KN. Characterization of Staphylococcus aureus RecX protein: Molecular insights into negative regulation of RecA protein and implications in HR processes. J Biochem 2023; 174:227-237. [PMID: 37115499 DOI: 10.1093/jb/mvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Xia S, Chen J, Liu L, Wei Y, Deng Z, Wang L, Chen S. Tight control of genomic phosphorothioate modification by the ATP-modulated autoregulation and reusability of DndB. Mol Microbiol 2019; 111:938-950. [PMID: 30552823 DOI: 10.1111/mmi.14186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
DNA phosphorothioate (PT) modification was recently identified to occur naturally in diverse bacteria and to be governed by DndABCDE proteins. The nuclease resistance as well as the redox and nucleophilic properties of PT sulfur make PT modification a versatile player in restriction-modification (R-M) defense, epigenetic regulation, environmental fitness and the maintenance of cellular redox homeostasis. In this study, we discovered that tight control of PT levels is mediated by the ATPase activity of DndB. The ATP-binding activity of DndB stimulates the dissociation of the DndB-DNA complex, allowing transcriptional initiation, whereas its ATP hydrolysis activity promotes the conversion of DndB-ATP to free DndB that is capable of rebinding to promoter DNA for transcriptional inhibition. Since sulfur incorporation is an ATP-consuming process, these activities provide an economical way to fine-tune PT modification in an ATP-sensing manner. To our knowledge, this ATP-mediated regulation is a rare example among DNA epigenetic modification systems; the features of autoregulation and the repeated usage of DndB allow the dedicated regulation of PT levels in response to cellular ATP concentrations, providing insight into PT function and its role in physiology.
Collapse
Affiliation(s)
- Sisi Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| |
Collapse
|
3
|
Bell JC, Kowalczykowski SC. RecA: Regulation and Mechanism of a Molecular Search Engine. Trends Biochem Sci 2016; 41:491-507. [PMID: 27156117 PMCID: PMC4892382 DOI: 10.1016/j.tibs.2016.04.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
Abstract
Homologous recombination maintains genomic integrity by repairing broken chromosomes. The broken chromosome is partially resected to produce single-stranded DNA (ssDNA) that is used to search for homologous double-stranded DNA (dsDNA). This homology driven 'search and rescue' is catalyzed by a class of DNA strand exchange proteins that are defined in relation to Escherichia coli RecA, which forms a filament on ssDNA. Here, we review the regulation of RecA filament assembly and the mechanism by which RecA quickly and efficiently searches for and identifies a unique homologous sequence among a vast excess of heterologous DNA. Given that RecA is the prototypic DNA strand exchange protein, its behavior affords insight into the actions of eukaryotic RAD51 orthologs and their regulators, BRCA2 and other tumor suppressors.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Mayola A, Irazoki O, Martínez IA, Petrov D, Menolascina F, Stocker R, Reyes-Darias JA, Krell T, Barbé J, Campoy S. RecA protein plays a role in the chemotactic response and chemoreceptor clustering of Salmonella enterica. PLoS One 2014; 9:e105578. [PMID: 25147953 PMCID: PMC4141790 DOI: 10.1371/journal.pone.0105578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
The RecA protein is the main bacterial recombinase and the activator of the SOS system. In Escherichia coli and Salmonella enterica sv. Typhimurium, RecA is also essential for swarming, a flagellar-driven surface translocation mechanism widespread among bacteria. In this work, the direct interaction between RecA and the CheW coupling protein was confirmed, and the motility and chemotactic phenotype of a S. Typhimurium ΔrecA mutant was characterized through microfluidics, optical trapping, and quantitative capillary assays. The results demonstrate the tight association of RecA with the chemotaxis pathway and also its involvement in polar chemoreceptor cluster formation. RecA is therefore necessary for standard flagellar rotation switching, implying its essential role not only in swarming motility but also in the normal chemotactic response of S. Typhimurium.
Collapse
Affiliation(s)
- Albert Mayola
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Oihane Irazoki
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Dmitri Petrov
- ICFO-Institut de Ciències Fotòniques, Castelldefels, Spain
| | - Filippo Menolascina
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Roman Stocker
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - José A. Reyes-Darias
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
- * E-mail:
| |
Collapse
|
5
|
Weel-Sneve R, Kristiansen KI, Odsbu I, Dalhus B, Booth J, Rognes T, Skarstad K, Bjørås M. Single transmembrane peptide DinQ modulates membrane-dependent activities. PLoS Genet 2013; 9:e1003260. [PMID: 23408903 PMCID: PMC3567139 DOI: 10.1371/journal.pgen.1003260] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
The functions of several SOS regulated genes in Escherichia coli are still unknown, including dinQ. In this work we characterize dinQ and two small RNAs, agrA and agrB, with antisense complementarity to dinQ. Northern analysis revealed five dinQ transcripts, but only one transcript (+44) is actively translated. The +44 dinQ transcript translates into a toxic single transmembrane peptide localized in the inner membrane. AgrB regulates dinQ RNA by RNA interference to counteract DinQ toxicity. Thus the dinQ-agr locus shows the classical features of a type I TA system and has many similarities to the tisB-istR locus. DinQ overexpression depolarizes the cell membrane and decreases the intracellular ATP concentration, demonstrating that DinQ can modulate membrane-dependent processes. Augmented DinQ strongly inhibits marker transfer by Hfr conjugation, indicating a role in recombination. Furthermore, DinQ affects transformation of nucleoid morphology in response to UV damage. We hypothesize that DinQ is a transmembrane peptide that modulates membrane-dependent activities such as nucleoid compaction and recombination. Exposure of the bacterium Escherichia coli to DNA damaging agents induces the SOS response, which up-regulates gene functions involved in numerous cellular processes such as DNA repair, cell division, and replication. Most of the SOS regulated genes in E. coli have been characterized, but still there are several genes of unknown function. One of these uncharacterized genes is dinQ. In this work we characterize dinQ and two novel small RNAs, agrA and agrB, that regulate expression of dinQ. The DinQ peptide is localized in the inner membrane as a single transmembrane peptide of 27 amino acids. Small proteins of less than 50 amino acids are important in cellular processes such as regulation, signalling, and antibacterial action. Here we demonstrate that DinQ modulates recombination and transformation of nucleoid morphology in response to UV damage. Our results provide new insights into small hydrophobic peptides that could regulate important DNA metabolic processes dependent on the inner membrane of the cell.
Collapse
Affiliation(s)
- Ragnhild Weel-Sneve
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Knut Ivan Kristiansen
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail: (KIK); (MB)
| | - Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, University of Oslo and Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Bjørn Dalhus
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Biochemistry, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - James Booth
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, University of Oslo and Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Magnar Bjørås
- Centre for Molecular Biology and Neuroscience (CMBN), University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Microbiology, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Biochemistry, University of Oslo and Oslo University Hospital, Rikshospitalet, Oslo, Norway
- * E-mail: (KIK); (MB)
| |
Collapse
|
6
|
Polosina YY, Cupples CG. Wot the 'L-Does MutL do? Mutat Res 2010; 705:228-38. [PMID: 20667509 DOI: 10.1016/j.mrrev.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
Abstract
In model DNA, A pairs with T, and C with G. However, in vivo, the complementarity of the DNA strands may be disrupted by errors in DNA replication, biochemical modification of bases and recombination. In prokaryotic organisms, mispaired bases are recognized by MutS homologs which, together with MutL homologs, initiate mismatch repair. These same proteins also participate in base excision repair and nucleotide excision repair. In eukaryotes they regulate not just DNA repair but also meiotic recombination, cell-cycle delay and/or apoptosis in response to DNA damage, and hypermutation in immunoglobulin genes. Significantly, the same DNA mismatches that trigger repair in some circumstances trigger non-repair pathways in others. In this review, we argue that mismatch recognition by the MutS proteins is linked to these disparate biological outcomes through regulated interaction of MutL proteins with a wide variety of effector proteins.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055, STN CSC, Victoria, BC, Canada.
| | | |
Collapse
|
7
|
Overexpression of the recA gene decreases oral but not intraperitoneal fitness of Salmonella enterica. Infect Immun 2010; 78:3217-25. [PMID: 20457791 DOI: 10.1128/iai.01321-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Salmonella enterica recA gene is negatively controlled by the LexA protein, the repressor of the SOS response. The introduction of a mutation (recAo6869) in the LexA binding site, in the promoter region of the S. enterica ATCC 14028 recA gene, allowed the analysis of the effect that RecA protein overproduction has on the fitness of this virulent strain. The fitness of orally but not intraperitoneally inoculated recAo6869 cells decreased dramatically. However, the SOS response of this mutant was induced normally, and there was no increase in the sensitivity of the strain toward DNA-damaging agents, bile salts, or alterations in pH. Nevertheless, S. enterica recAo6869 cells were unable to swarm and their capacity to cross the intestinal epithelium was significantly reduced. The swarming deficiency in recAo6869 cells is independent of the flagellar phase. Moreover, swimming activity of the recAo6869 strain was not diminished with respect to the wild type, indicating that the flagellar synthesis is not affected by RecA protein overproduction. In contrast, swarming was recovered in a recAo6869 derivative that overproduced CheW, a protein known to be essential for this function. These data demonstrate that an equilibrium between the intracellular concentrations of RecA and CheW is necessary for swarming in S. enterica. Our results are the first to point out that the SOS response plays a critical role in the prevention of DNA damage by abolishing bacterial swarming in the presence of a genotoxic compound.
Collapse
|
8
|
Polosina YY, Cupples CG. MutL: conducting the cell's response to mismatched and misaligned DNA. Bioessays 2010; 32:51-9. [PMID: 19953589 DOI: 10.1002/bies.200900089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Base pair mismatches in DNA arise from errors in DNA replication, recombination, and biochemical modification of bases. Mismatches are inherently transient. They are resolved passively by DNA replication, or actively by enzymatic removal and resynthesis of one of the bases. The first step in removal is recognition of strand discontinuity by one of the MutS proteins. Mismatches arising from errors in DNA replication are repaired in favor of the base on the template strand, but other mismatches trigger base excision or nucleotide excision repair (NER), or non-repair pathways such as hypermutation, cell cycle arrest, or apoptosis. We argue that MutL homologues play a key role in determining biologic outcome by recruiting and/or activating effector proteins in response to lesion recognition by MutS. We suggest that the process is regulated by conformational changes in MutL caused by cycles of ATP binding and hydrolysis, and by physiologic changes which influence effector availability.
Collapse
Affiliation(s)
- Yaroslava Y Polosina
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada.
| | | |
Collapse
|
9
|
Silles E, Osorio H, Maia R, Günther Sillero MA, Sillero A. Micromolar HgCl2 concentrations transitorily duplicate the ATP level in Saccharomyces cerevisiae cells. FEBS Lett 2005; 579:4044-8. [PMID: 16023109 DOI: 10.1016/j.febslet.2005.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/02/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
Abstract
Low concentrations of HgCl2 elicited, in Saccharomyces cerevisiae, a transitory increase in the ATP level followed by a decrease of its concentration, until almost disappearance. At 1 microM HgCl2, the increase in ATP lasted for about 30 min, while at 10 microM the increase was only observed in the first 5 min of treatment. The initial burst of ATP was accompanied by a decrease in the level of hexose phosphates, whereas during the decrease of ATP an increase in the inosine and hexose phosphates levels took place. The treatment with HgCl2 inhibited the plasma membrane proton ATPase but not the activities of hexokinase or 6-phosphofructokinase.
Collapse
Affiliation(s)
- Eduardo Silles
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols UAM/CSIC, Facultad de Medicina, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Dahan-Grobgeld E, Livneh Z, Maretzek AF, Polak-Charcon S, Eichenbaum Z, Degani H. Reversible induction of ATP synthesis by DNA damage and repair in Escherichia coli. In vivo NMR studies. J Biol Chem 1998; 273:30232-8. [PMID: 9804781 DOI: 10.1074/jbc.273.46.30232] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early metabolic events in Escherichia coli exposed to nalidixic acid, a topoisomerase II inhibitor and an inducer of the SOS system, were investigated by in vivo NMR spectroscopy, a technique that permits monitoring of bacteria under controlled physiological conditions. The energetics of AB1157 (wild type) and of its isogenic, SOS-defective mutants, recBC, lexA, and DeltarecA, were studied by 31P and 19F NMR before, during, and after exposure to nalidixic acid. The content of the NTP in E. coli embedded in agarose beads and perfused at 36 degreesC was found to be 4.3 +/- 1.1 x 10(-18) mol/cell, yielding a concentration of approximately 2.7 +/- 0.7 mM. Nalidixic acid induced in the wild type and mutants a rapid 2-fold increase in the content of the NTP, predominantly ATP. This induction did not involve synthesis of uracil derivatives or breakdown of RNA and caused cell proliferation to stop. Removal of nalidixic acid after 40 min of treatment rescued the cells and resulted in a decrease of ATP to control levels and resumption of proliferation. However, in DeltarecA cells, which were more sensitive to the activity of the drug, ATP elevation could not be reversed, and ATP content continued to increase faster than in control cells. The results ruled out association between the elevation of ATP and the induction of the SOS system and suggested involvement of a process reminiscent of apoptosis in the stimulation of ATP synthesis. Thus, the presence of the RecA protein was found to be essential for reversing the ATP increase and cell rescue, possibly by its function in repair of DNA damage.
Collapse
Affiliation(s)
- E Dahan-Grobgeld
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Pueyo M, Gibert I, Barbé J. Relationship between the functional regions of the RecA protein and ATP hydrolysis in UV-irradiated Escherichia coli cells. Mutat Res 1992; 293:21-30. [PMID: 1383807 DOI: 10.1016/0921-8777(92)90004-m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The time course of the intracellular ATP concentration in several UV-irradiated RecA protease constitutive (Cptc) mutants of E. coli has been studied. All Cptc mutants harboring a mutation in region 3 of the RecA protein (including amino acid residues 298-301) increased ATP after UV damage but without any subsequent decrease. Nevertheless, these mutants induced the SOS response after UV irradiation. Likewise, truncated RecA proteins lacking region 3 are also unable to carry out massive ATP hydrolysis in UV-irradiated cells. On the other hand, mutants in region 1 (including amino acids 25-39) or 2 (amino acids 157-184) of the RecA protein showed an increase in ATP concentration during the first 20 min following UV irradiation, which dropped afterwards to the basal level. All these data indicate that region 3 of the RecA protein must be involved in the ATP hydrolysis process. Furthermore, a relationship between the quantity of the UV-mediated ATP produced and the strength of the different RecA Cptc mutants has also been found. Accordingly, both lexA71::Tn5 and null lexA mutants of E. coli only show a cellular ATP increase after UV irradiation when containing a multicopy plasmid carrying either a wild-type lexA or a lexA (Ind-) gene.
Collapse
Affiliation(s)
- M Pueyo
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
12
|
Abstract
Deletion of genes for adenylate cyclase (delta cya) or cAMP receptor protein (delta crp) in E. coli K-12 confers a phenotype that includes resistance to UV radiation (254 nm). Such mutations lead to UV resistance of uvr+, uvrA, lexA and recA strains which could partly be abolished by the addition of cAMP to delta cya but not to delta crp strain culture medium. This effect was not related to either inducibility of major DNA repair genes or growth rate of the bacteria. Enhanced survival was also observed for UV-irradiated lambda bacteriophage indicating that a repair mechanism of UV lesions was involved in this phenomenon.
Collapse
Affiliation(s)
- M F Puyo
- Laboratoire de Pharmacologie et Toxicologie Fondamentales CNRS, Toulouse, France
| | | | | |
Collapse
|
13
|
Villaverde A, Barbé J. SOS system induction in Escherichia coli cells with distinct levels of ribonucleotide reductase activity. Mutat Res 1992; 281:137-41. [PMID: 1370982 DOI: 10.1016/0165-7992(92)90049-n] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The UV-mediated induction of recA and sfiA genes in Escherichia coli cells with distinct levels of dATP has been studied. Low levels of dATP were obtained by using either a temperature-sensitive ribonucleotide (RDP) reductase-deficient (nrdA) mutant or a wild-type strain treated with hydroxyurea. High pools of dATP were achieved by using a plasmid overproducing RDP reductase. The results obtained show that expression of the recA and sfiA genes was inhibited neither in the UV-irradiated nrdA mutant at 42 degrees C nor in the wild-type strain in the presence of hydroxyurea. Likewise, the increase of the dATP pool did not enhance recA and sfiA gene expression after UV irradiation. All these data suggest that the basal level of dATP is not a limiting factor in the process of induction of the SOS system in Escherichia coli.
Collapse
Affiliation(s)
- A Villaverde
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Spain
| | | |
Collapse
|
14
|
Gibert I, Calero S, Barbé J. Measurement of in vivo expression of nrdA and nrdB genes of Escherichia coli by using lacZ gene fusions. MOLECULAR & GENERAL GENETICS : MGG 1990; 220:400-8. [PMID: 2187154 DOI: 10.1007/bf00391745] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By using a promoter probe plasmid we investigated expression of the linked nrdA and nrdB genes coding for the two different subunits of the ribonucleoside diphosphate reductase enzyme of Escherichia coli. For this reason, nrdA-lacZ, nrdAB-lacZ and nrdB-lacZ fusions were constructed. Results obtained indicate that the nrdB gene has a promoter from which it may be transcribed independently of the nrdA gene. Furthermore, the nrdB gene may also be transcribed from the nrdA promoter. The expression of the nrdB gene is about 14-fold higher from the nrdA promoter than from its own promoter. The induction of both nrdA and nrdB genes by DNA-damaging agents in the wild-type strain as well as in several SOS mutants was also studied; nrdA gene expression was increased by these treatments in RecA+, RecA-, and LexAInd- strains, although in both RecA- and LexAInd- mutants the nrdA gene expression was considerably lower than that in RecA+ cells. nrdB gene expression was stimulated by DNA damage only when its transcription was from the nrdA promoter, but there was no effect when nrdB was transcribed from its own promoter. In addition, the basal level of nrdA-lacZ and nrdAB-lacZ fusions was reduced in strains containing either RecA- and LexAInd- mutations or a multicopy plasmid carrying the lexA+ gene, whereas the presence of a LexA51Def mutation increased the constitutive expression of both fusions. On the contrary, the basal level of the nrdB-lacZ fusion remained constant in all these strains. Together these results indicate that induction of the SOS response enhances expression of the nrd genes from the nrdA promoter.
Collapse
Affiliation(s)
- I Gibert
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University, Barcelona, Spain
| | | | | |
Collapse
|
15
|
Salles B, Weinstock GM. Interaction of the CRP-cAMP complex with the cea regulatory region. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:537-42. [PMID: 2540417 DOI: 10.1007/bf00427053] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analysis of the induction of expression of cea-lacZ fusions in cya and crp mutants showed that catabolite repression affects the kinetics of induction and the rate of induced synthesis. In a cya mutant, addition of cAMP reduced the induction lag and increased the amount of beta-galactosidase produced. The CRP-cAMP complex was found to bind to two sites 5' to the cea promoter, but deletion analysis showed that only one of these was involved in the control of cea. Deletion of this site resulted in a loss of the stimulatory effects of cAMP in a cya mutant.
Collapse
Affiliation(s)
- B Salles
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
16
|
Wang WB, Sassanfar M, Tessman I, Roberts JW, Tessman ES. Activation of protease-constitutive recA proteins of Escherichia coli by all of the common nucleoside triphosphates. J Bacteriol 1988; 170:4816-22. [PMID: 3049549 PMCID: PMC211525 DOI: 10.1128/jb.170.10.4816-4822.1988] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand why the RecA proteins of the protease-constitutive recA1202 and recA1211 mutants show very high protease activities in vivo without the usual need for DNA damage (E. S. Tessman and P. Peterson, J. Bacteriol. 163:677-687, 1985), we examined the activation of the mutant proteins by nucleoside triphosphates (NTPs) in vitro. In vivo, the mutant protease activities are resistant to inhibition by cytidine plus guanosine (C + G) in the growth medium, in contrast to the activities of weaker mutants, such as recA441, which are sensitive to C + G inhibition. We found that RecA1202 and RecA1211 proteins, in contrast to RecA+, can use natural NTPs other than ATP and dATP as cofactors in the cleavage of LexA repressor. The effectiveness of NTPs in promoting LexA cleavage by RecA1202 and RecA1211 proteins decreased in roughly the following order: dATP greater than ATP greater than UTP greater than ATP-gamma S greater than dCTP greater than CTP greater than dGTP greater than GTP greater than TTP. These mutant proteins showed higher affinities for ATP and single-stranded DNA and higher repressor cleavage activities than RecA+ protein. With the various effectors (single-stranded DNA or NTPs), the RecA1202 protein always showed more activity than RecA1211 in the cleavage of LexA repressor in vitro, which is consistent with the greater activity of the recA1202 mutant in vivo. The results explain, in part, why some recA mutants have unusually high constitutive RecA protease activity and why that activity is more or less resistant to C + G inhibition.
Collapse
Affiliation(s)
- W B Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | |
Collapse
|
17
|
Villaverde A, Gibert I, Barbé J. Evidence for a specific regulation of recA gene transcription in Escherichia coli. Mutat Res 1988; 199:123-30. [PMID: 3283544 DOI: 10.1016/0027-5107(88)90237-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kinetics of the recA, sfiA and umuDC genes transcription were studied during a double SOS-inducing treatment in Escherichia coli cells using several strains carrying lacZ gene fusions. A transient inhibition in recA, but not in sfiA or umuDC promoted beta-galactosidase synthesis was detected after successive UV-irradiations. Results obtained with a recA--lacZ fusion introduced in several DNA-repair mutants demonstrated that neither a lower LexA inactivation nor a decrease in the production of the inducing signal are the events through which the successive UV-irradiation promoted the arrest of recA transcription. On the contrary, a specific UV-dose-dependent delay appears to be the reason for the inhibition of the recA gene transcription in cells irradiated twice.
Collapse
Affiliation(s)
- A Villaverde
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Spain
| | | | | |
Collapse
|
18
|
Tuovila BJ, Dobbs FC, Larock PA, Siegel BZ. Preservation of ATP in Hypersaline Environments. Appl Environ Microbiol 1987; 53:2749-53. [PMID: 16347491 PMCID: PMC204192 DOI: 10.1128/aem.53.12.2749-2753.1987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High concentrations of particulate ATP were found in the anoxic brines of the Orca Basin and East Flower Garden, Gulf of Mexico. Other measurements indicative of growth and respiration suggested that the microbial community in the brines was inactive, but somehow the ATP associated with the cells persisted. Conceivably, when cells growing just above the interface sank into the brine, the increased osmotic stress could elicit an osmoregulatory response resulting in increased ATP. It was also possible that hydrolytic enzymes were inactivated, resulting in the preservation of ATP. Experiments in which a culture of marine bacteria was suspended in menstrua of different salinities comparable to those found across the Orca Basin interface revealed that as salinity increased, ATP increased three- to sixfold. Within 24 h the ATP fell to its initial level and remained at that concentration for 3 days, at which time the experiment was terminated. In contrast, the control suspensions, at a salinity of 28% (grams per liter) had 1/10th of the initial ATP concentration when the experiment was ended. Cells were also exposed to killing UV irradiation, enabling us to demonstrate with absolute certainty that cellular ATP could be preserved. At the end of the experiment, the viable component of the population was reduced by orders of magnitude by UV irradiation, but the ATP levels of the cells suspended in brine did not decrease. In certain environments it appears that the conventional analytical tools of the microbial ecologist must be interpreted with caution.
Collapse
Affiliation(s)
- B J Tuovila
- Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, and Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96822
| | | | | | | |
Collapse
|
19
|
Barbé J, Villaverde A, Guerrero R. Induction of the SOS response by hydroxyurea in Escherichia coli K12. Mutat Res 1987; 192:105-8. [PMID: 3309645 DOI: 10.1016/0165-7992(87)90105-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hydroxyurea at concentrations higher than 10(-2) M induced the recA and sfiA genes of E. coli as well as the lambda prophage by a pathway independent of the recBC genes. In addition, the hydroxyurea-mediated induction of the SOS response is accompanied by a recA-dependent decrease on the cellular ATP pool. The presence of the multicopy plasmid pPS2, harboring the nrdAB genes (encoding the ribonucleoside reductase enzyme), abolished the hydroxyurea-induced expression of the recA gene. These data lead us to suggest that induction of the SOS response by hydroxyurea is due to the blocking of DNA replication by the inhibition of the ribonucleoside reductase complex activity.
Collapse
Affiliation(s)
- J Barbé
- Department of Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Spain
| | | | | |
Collapse
|