1
|
Physiological Properties of a Neutralo-sensitive Mutant Derived from Facultative AlkaliphilicBacillussp. C-125. Biosci Biotechnol Biochem 2014; 62:788-91. [DOI: 10.1271/bbb.62.788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
A Bacillus flagellar motor that can use both Na+ and K+ as a coupling ion is converted by a single mutation to use only Na+. PLoS One 2012; 7:e46248. [PMID: 23049994 PMCID: PMC3457975 DOI: 10.1371/journal.pone.0046248] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022] Open
Abstract
In bacteria, the sodium ion (Na(+)) cycle plays a critical role in negotiating the challenges of an extremely alkaline and sodium-rich environment. Alkaliphilic bacteria that grow optimally at high pH values use Na(+) for solute uptake and flagellar rotation because the proton (H(+)) motive force is insufficient for use at extremely alkaline pH. Only three types of electrically driven rotary motors exist in nature: the F-type ATPase, the V-type ATPase, and the bacterial flagellar motor. Until now, only H(+) and Na(+) have been reported as coupling ions for these motors. Here, we report that the alkaliphilic bacterium Bacillus alcalophilus Vedder 1934 can grow not only under a Na(+)-rich and potassium ion (K(+))-poor condition but also under the opposite condition in an extremely alkaline environment. In this organism, swimming performance depends on concentrations of Na(+), K(+) or Rb(+). In the absence of Na(+), swimming behavior is clearly K(+)- dependent. This pattern was confirmed in swimming assays of stator-less Bacillus subtilis and Escherichia coli mutants expressing MotPS from B. alcalophilus (BA-MotPS). Furthermore, a single mutation in BA-MotS was identified that converted the naturally bi-functional BA-MotPS to stators that cannot use K(+) or Rb(+). This is the first report that describes a flagellar motor that can use K(+) and Rb(+) as coupling ions. The finding will affect the understanding of the operating principles of flagellar motors and the molecular mechanisms of ion selectivity, the field of the evolution of environmental changes and stresses, and areas of nanotechnology.
Collapse
|
3
|
Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 2010; 60:61-66. [DOI: 10.1099/ijs.0.005843-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three xylanase-producing alkaliphilic strains, SU1T, 36AC4 and 36AC6, were isolated from the guts of larvae of the Japanese horned beetle (Trypoxylus dichotomus septentrionalis). The isolates stained Gram-positive and were aerobic, spore-forming, non-motile and rod-shaped and grew optimally at 30 °C and pH 9. They contained MK-7 as the major isoprenoid quinone and iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C contents of the strains were 37.4–37.7 mol%. On the basis of 16S rRNA gene sequence similarity, these strains were shown to belong to the genus Bacillus. Although their 16S rRNA gene sequence similarity to the type strains of the alkaliphilic species Bacillus pseudalcaliphilus and B. alcalophilus was 97 %, the novel isolates formed a distinct group in the phylogenetic trees and DNA–DNA relatedness values to the type strains of these species were less than 30 %. Results of physiological and biochemical tests, including salt preference, enabled these strains to be differentiated phenotypically from described Bacillus species. Therefore, strains SU1T, 36AC4 and 36AC6 represent a novel species for which the name Bacillus trypoxylicola sp. nov. is proposed; the type strain is SU1T (=NBRC 102646T =KCTC 13244T).
Collapse
Affiliation(s)
- Tomoko Aizawa
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | - Makoto Urai
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | - Noriyuki Iwabuchi
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | - Mutsuyasu Nakajima
- Environmental Program, Nihon University Advanced Research Institute for the Sciences and Humanities, 12-5 Goban-cho Chiyoda, Tokyo 102-8251, Japan
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | - Michio Sunairi
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| |
Collapse
|
4
|
Ulezlo IV, Bezborodov AM. Consumption of volatile organic compounds by alcaliphilic microorganisms. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Ohkuma M, Shimizu H, Thongaram T, Kosono S, Moriya K, Trakulnaleamsai S, Noparatnaraporn N, Kudo T. An Alkaliphilic and Xylanolytic Paenibacillus Species Isolated from the Gut of a Soil-Feeding Termite. Microbes Environ 2003. [DOI: 10.1264/jsme2.18.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Moriya Ohkuma
- RIKEN
- PRESTO, Japan Science and Technology Agency (JST)
- ICORP, JST
| | | | | | | | | | - Savitr Trakulnaleamsai
- Bioscience Program, Graduate School, Kasetsart University
- Department of Microbiology, Kasetsart University, and Kasetsart University Research and Development Institute (KURDI)
| | - Napavarn Noparatnaraporn
- Bioscience Program, Graduate School, Kasetsart University
- Department of Microbiology, Kasetsart University, and Kasetsart University Research and Development Institute (KURDI)
| | - Toshiaki Kudo
- RIKEN
- ICORP, JST
- Graduate School of Integrated Science, Yokohama City University
| |
Collapse
|
6
|
Krulwich TA, Ito M, Gilmour R, Sturr MG, Guffanti AA, Hicks DB. Energetic problems of extremely alkaliphilic aerobes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1275:21-6. [PMID: 8688448 DOI: 10.1016/0005-2728(96)00044-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Over a decade of work on extremely alkaliphilic Bacillus species has clarified the extraordinary capacity that these bacteria have for regulating their cytoplasmic pH during growth at pH values well over 10. However, a variety of interesting energetic problems related to their Na(+)-dependent pH homeostatic mechanism are yet to be solved. They include: (1) the clarification of how cell surface layers play a role in a category of alkaliphiles for which this is the case; (2) identification of the putative, electrogenic Na+/H+ antiporter(s) that, in at least some alkaliphiles, may completely account for a cytoplasmic pH that is over 2 pH units lower than the external pH; (3) the determination of whether specific modules or accessory proteins are essential for the efficacy of such antiporters; (4) the mechanistic basis for the increase in the transmembrane electrical potential at the high external pH values at which the potential-consuming antiporter(s) must be most active; and (5) an explanation for the Na(+)-specificity of pH homeostasis in the extremely alkaliphilic bacilli as opposed to the almost equivalent efficacy of K+ for pH homeostasis in at least some non-alkaliphilic aerobes. The current status of such studies and future strategies will be outlined for this central area of alkaliphile energetics. Also considered, will be strategies to elucidate the basis for robust H(+)-coupled oxidative phosphorylation by alkaliphiles at pH values over 10. The maintenance of a cytoplasmic pH over 2 units below the high external pH results in a low bulk electrochemical proton gradient (delta p). To bypass this low delta p, Na(+)-coupling is used for solute uptake even by alkaliphiles that are mesophiles from environments that are not especially Na(+)-rich. This indicates that these bacteria indeed experience a low delta p, to which such coupling is an adaptation. Possible reasons and mechanisms for using a H(+)-coupled rather than a Na(+)-coupled ATP synthase under such circumstances will be discussed.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Isolation and characterization of a novel facultatively alkaliphilic bacterium, Corynebacterium sp., grown on n-alkanes. Arch Microbiol 1994. [DOI: 10.1007/bf00282101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Kitada M, Hashimoto M, Kudo T, Horikoshi K. Properties of two different Na+/H+ antiport systems in alkaliphilic Bacillus sp. strain C-125. J Bacteriol 1994; 176:6464-9. [PMID: 7961397 PMCID: PMC196999 DOI: 10.1128/jb.176.21.6464-6469.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Na+/H+ antiport was studied in alkaliphilic Bacillus sp. strain C-125, its alkali-sensitive mutant 38154, and a transformant (pALK2) with recovered alkaliphily. The transformed was able to maintain an intracellular pH (pHin) that was lower than that of external milieu and contained an electrogenic Na+/H+ antiporter driven only by delta psi (membrane potential, interior negative). The activity of this delta psi-dependent Na+/H+ antiporter was highly dependent on pHin, increasing with increasing pHin, and was found only in cells grown at alkaline pH. On the other hand, the alkali-sensitive mutant, which had lost the ability to grow above pH 9.5, lacked the delta psi-dependent Na+/H+ antiporter and showed defective regulation of pHin at the alkaline pH range. However, this mutant, like the parent strain, still required sodium ions for growth and for an amino acid transport system. Moreover, another Na+/H+ antiporter, driven by the imposed delta pH (pHin > extracellular pHout), was active in this mutant strain, showing that the previously reported delta pH-dependent antiport activity is probably separate from delta psi-dependent antiporter activity. The delta pH-dependent Na+/H+ antiporter was found in cells grown at either pH 7 or pH 9. This latter antiporter was reconstituted into liposomes by using a dilution method. When a transmembrane pH gradient was applied, downhill sodium efflux was accelerated, showing that the antiporter can be reconstituted into liposomes and still retain its activity.
Collapse
Affiliation(s)
- M Kitada
- Microbiology Laboratory, Institute of Physical and Chemical Research (Riken), Saitama, Japan
| | | | | | | |
Collapse
|
9
|
Guffanti A, Krulwich T. Oxidative phosphorylation by ADP + P(i)-loaded membrane vesicles of alkaliphilic Bacillus firmus OF4. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31843-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Krulwich TA, Guffanti AA. Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria. J Bioenerg Biomembr 1992; 24:587-99. [PMID: 1334072 DOI: 10.1007/bf00762351] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative phosphorylation, which involves an exclusively proton-coupled ATP synthase, and pH homeostasis, which depends upon electrogenic antiport of cytoplasmic Na+ in exchange for H+, are the two known bioenergetic processes that require inward proton translocation in extremely alkaliphilic bacteria. Energy coupling to oxidative phosphorylation is particularly difficult to fit to a strictly chemiosmotic model because of the low bulk electrochemical proton gradient that follows from the maintenance of a cytoplasmic pH just above 8 during growth at pH 10.5 and higher. A large quantitative and variable discrepancy between the putative chemiosmotic driving force and the phosphorylation potential results. This is compounded by a nonequivalence between respiration-dependent bulk gradients and artificially imposed ones in energizing ATP synthesis, and by an apparent requirement for specific respiratory chain complexes that do not relate solely to their role in generation of bulk gradients. Special features of the synthase may contribute to the mode of energization, just as novel features of the Na+ cycle may relate to the extraordinary capacity of the extreme alkaliphiles to achieve pH homeostasis during growth at, or sudden shifts to, an external pH of 10.5 and above.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029
| | | |
Collapse
|
11
|
Atsumi T, Sugiyama S, Cragoe EJ, Imae Y. Specific inhibition of the Na(+)-driven flagellar motors of alkalophilic Bacillus strains by the amiloride analog phenamil. J Bacteriol 1990; 172:1634-9. [PMID: 2155207 PMCID: PMC208642 DOI: 10.1128/jb.172.3.1634-1639.1990] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amiloride, a specific inhibitor for the Na(+)-driven flagellar motors of alkalophilic Bacillus strains, was found to cause growth inhibition; therefore, the use of amiloride for the isolation of motility mutants was difficult. On the other hand, phenamil, an amiloride analog, inhibited motor rotation without affecting cell growth. A concentration of 50 microM phenamil completely inhibited the motility of strain RA-1 but showed no effect on the membrane potential, the intracellular pH, or Na(+)-coupled amino acid transport, which was consistent with the fact that there was no effect on cell growth. Kinetic analysis of the inhibition of motility by phenamil indicated that the inhibition was noncompetitive with Na+ in the medium. A motility mutant was isolated as a swarmer on a swarm agar plate containing 50 microM phenamil. The motility of the mutant showed an increased resistance to phenamil but normal sensitivity to amiloride. These results suggest that phenamil and amiloride interact at different sites on the motor. By examining various bacterial species, phenamil was found to be a specific and potent inhibitor for the Na(+)-driven flaggellar motors not only in various strains of alkalophilic Bacillus spp. but also in a marine Vibrio sp.
Collapse
Affiliation(s)
- T Atsumi
- Department of Molecular Biology, Faculty of Science, Nagoya University, Japan
| | | | | | | |
Collapse
|
12
|
Kitada M, Onda K, Horikoshi K. The sodium/proton antiport system in a newly isolated alkalophilic Bacillus sp. J Bacteriol 1989; 171:1879-84. [PMID: 2539355 PMCID: PMC209835 DOI: 10.1128/jb.171.4.1879-1884.1989] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pH homeostasis and the sodium/proton antiport system have been studied in the newly isolated alkalophilic Bacillus sp. strain N-6, which could grow on media in a pH range from 7 to 10, and in its nonalkalophilic mutant. After a quick shift in external pH from 8 to 10 by the addition of Na2CO3, the delta pH (inside acid) in the cells of strain N-6 was immediately established, and the pH homeostatic state was maintained for more than 20 min in an alkaline environment. However, under the same conditions, the pH homeostasis was not observed in the cells of nonalkalophilic mutant, and the cytoplasmic pH immediately rose to pH 10. On the other hand, the results of the rapid acidification from pH 9 to 7 showed that the internal pH was maintained as more basic than the external pH in a neutral medium in both strains. The Na+/H+ antiport system has been characterized by either the effect of Na+ on delta pH formation or 22Na+ efflux in Na+-loaded right-side-out membrane vesicles of strain N-6. Na+- or Li+-loaded vesicles exhibited a reversed delta pH (inside acid) after the addition of electron donors (ascorbate plus tetramethyl-p-phenylenediamine) at both pH 7 and 9, whereas choline-loaded vesicles generated delta pHs of the conventional orientation (inside alkaline). 22Na+ was actively extruded from 22Na+-loaded vesicles whose potential was negative at pH 7 and 9. The inclusion of carbonyl cyanide m-chlorophenylhydrazone inhibited 22Na+ efflux in the presence of electron donors. These results indicate that the Na+/H+ antiport system in this strain operates electrogenically over a range of external pHs from 7 to 10 and plays a role in pH homeostasis at the alkaline pH range. The pH homeostasis at neutral ph was studied in more detail. K+ -depleted cells showed no delta pH (acid out) in the neutral conditions in the absence of K+, whereas these cells generated a delta pH if K+ was present in the medium. This increase of internal pH was accompanied by K+ uptake from the medium. These results suggest that electrogenic K+ entry allows extrusion of H+ from cells by the primary proton pump at neutral pH.
Collapse
|
13
|
Abstract
A summary, cum speculation, of the major bioenergetic characteristics of alkalophilic bacilli is presented in Figure 5. Further progress will depend heavily on the purification and characterization of the relevant proteins that catalyze the ion fluxes and on the development of much more potent genetic approaches to the outstanding issues of this interesting group of bacteria.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York
| | | | | | | |
Collapse
|