1
|
Kourtaki K, Buchner D, Martin PR, Thompson KJ, Haderlein SB. Influence of organophosphonates as alternative P-sources on bacterial transformation of glyphosate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125872. [PMID: 39984020 DOI: 10.1016/j.envpol.2025.125872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Glyphosate biotransformation under phosphorus (P)-limiting conditions has been demonstrated for numerous bacterial strains. However, besides glyphosate bacteria can utilize a broad spectrum of other biogenic and synthetic organophosphorus compounds (e.g., organophosphonates, OPs) as P-sources. The ubiquity of OPs in the environment reduces the likelihood that bacteria will encounter conditions where glyphosate is the only P-containing compound. To study the impact of co-existing OPs on the biotransformation of glyphosate, we conducted batch cultivation experiments with the bacterial strains Achromobacter insolitus strain Kg 19 (A. Kg 19) and Ochrobactrum pituitosum strain GPr1-13 (O. GPr1-13) in which glyphosate and an additional OP were simultaneously provided as P-sources. Experiments with glyphosate and one additional monophosphonate (aminomethylphosphonate (AMPA), 2-aminoethylphosphonate (AEP), or phenylphosphonate (PPA)) showed that glyphosate was the least preferred P-source. Furthermore, the repeated supply of excess AMPA or AEP hindered the biotransformation of glyphosate. For strain A. Kg 19, AEP and AMPA threshold concentrations above which no glyphosate transformation occurred were approximately 40 and 120 μM, respectively. Conversely, in the presence of a synthetic diphosphonate (iminodi(methylene phosphonate) (IDMP) or 1-hydroxyethane 1,1-diphosphonate (HEDP)), strain A. Kg 19 preferred glyphosate as P-source. While IDMP was transformed after the depletion of glyphosate, HEDP concentration remained constant throughout the experiment and its presence retarded both cell growth and transformation of glyphosate. In light of the ubiquitous presence of AMPA and other OPs in the environment, our findings indicate that the presence of OPs may compromise the biotransformation potential of glyphosate, leading to lower transformation rates than those reported in previous studies.
Collapse
Affiliation(s)
- Kleanthi Kourtaki
- Department of Geosciences, Eberhard Karls University Tübingen, Germany
| | - Daniel Buchner
- Department of Geosciences, Eberhard Karls University Tübingen, Germany.
| | - Philipp R Martin
- Department of Geosciences, Eberhard Karls University Tübingen, Germany
| | - Katharine J Thompson
- Institute of Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Germany
| | | |
Collapse
|
2
|
Ruffolo F, Dinhof T, Murray L, Zangelmi E, Chin JP, Pallitsch K, Peracchi A. The Microbial Degradation of Natural and Anthropogenic Phosphonates. Molecules 2023; 28:6863. [PMID: 37836707 PMCID: PMC10574752 DOI: 10.3390/molecules28196863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Phosphonates are compounds containing a direct carbon-phosphorus (C-P) bond, which is particularly resistant to chemical and enzymatic degradation. They are environmentally ubiquitous: some of them are produced by microorganisms and invertebrates, whereas others derive from anthropogenic activities. Because of their chemical stability and potential toxicity, man-made phosphonates pose pollution problems, and many studies have tried to identify biocompatible systems for their elimination. On the other hand, phosphonates are a resource for microorganisms living in environments where the availability of phosphate is limited; thus, bacteria in particular have evolved systems to uptake and catabolize phosphonates. Such systems can be either selective for a narrow subset of compounds or show a broader specificity. The role, distribution, and evolution of microbial genes and enzymes dedicated to phosphonate degradation, as well as their regulation, have been the subjects of substantial studies. At least three enzyme systems have been identified so far, schematically distinguished based on the mechanism by which the C-P bond is ultimately cleaved-i.e., through either a hydrolytic, radical, or oxidative reaction. This review summarizes our current understanding of the molecular systems and pathways that serve to catabolize phosphonates, as well as the regulatory mechanisms that govern their activity.
Collapse
Affiliation(s)
- Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, A-1090 Vienna, Austria
| | - Leanne Murray
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria;
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, I-43124 Parma, Italy (E.Z.)
| |
Collapse
|
3
|
Murphy ARJ, Scanlan DJ, Chen Y, Adams NBP, Cadman WA, Bottrill A, Bending G, Hammond JP, Hitchcock A, Wellington EMH, Lidbury IDEA. Transporter characterisation reveals aminoethylphosphonate mineralisation as a key step in the marine phosphorus redox cycle. Nat Commun 2021; 12:4554. [PMID: 34315891 PMCID: PMC8316502 DOI: 10.1038/s41467-021-24646-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
The planktonic synthesis of reduced organophosphorus molecules, such as alkylphosphonates and aminophosphonates, represents one half of a vast global oceanic phosphorus redox cycle. Whilst alkylphosphonates tend to accumulate in recalcitrant dissolved organic matter, aminophosphonates do not. Here, we identify three bacterial 2-aminoethylphosphonate (2AEP) transporters, named AepXVW, AepP and AepSTU, whose synthesis is independent of phosphate concentrations (phosphate-insensitive). AepXVW is found in diverse marine heterotrophs and is ubiquitously distributed in mesopelagic and epipelagic waters. Unlike the archetypal phosphonate binding protein, PhnD, AepX has high affinity and high specificity for 2AEP (Stappia stellulata AepX Kd 23 ± 4 nM; methylphosphonate Kd 3.4 ± 0.3 mM). In the global ocean, aepX is heavily transcribed (~100-fold>phnD) independently of phosphate and nitrogen concentrations. Collectively, our data identifies a mechanism responsible for a major oxidation process in the marine phosphorus redox cycle and suggests 2AEP may be an important source of regenerated phosphate and ammonium, which are required for oceanic primary production.
Collapse
Affiliation(s)
- Andrew R J Murphy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Nathan B P Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Nanotemper Technologies GmbH, Flößergasse 4, Munich, Germany
| | - William A Cadman
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Andrew Bottrill
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - Gary Bending
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, UK
| | - John P Hammond
- School of Agriculture, Policy, and Development, University of Reading, Earley Gate, Whiteknights, Reading, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Ian D E A Lidbury
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
4
|
The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities. mBio 2020; 11:mBio.01718-20. [PMID: 33109755 PMCID: PMC7593963 DOI: 10.1128/mbio.01718-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. Phosphorus (P) is an essential nutrient that is often in limited supply, with P availability constraining biomass production in many terrestrial ecosystems. Despite decades of work on plant responses to P deficiency and the importance of soil microbes to terrestrial ecosystem processes, how soil microbes respond to, and cope with, P deficiencies remains poorly understood. We studied 583 soils from two independent sample sets that each span broad natural gradients in extractable soil P and collectively represent diverse biomes, including tropical forests, temperate grasslands, and arid shrublands. We paired marker gene and shotgun metagenomic analyses to determine how soil bacterial and archaeal communities respond to differences in soil P availability and to detect corresponding shifts in functional attributes. We identified microbial taxa that are consistently responsive to extractable soil P, with those taxa found in low P soils being more likely to have traits typical of oligotrophic life history strategies. Using environmental niche modeling of genes and gene pathways, we found an enriched abundance of key genes in low P soils linked to the carbon-phosphorus (C-P) lyase and phosphonotase degradation pathways, along with key components of the high-affinity phosphate-specific transporter (Pst) and phosphate regulon (Pho) systems. Taken together, these analyses suggest that catabolism of phosphonates is an important strategy used by bacteria to scavenge phosphate in P-limited soils. Surprisingly, these same pathways are important for bacterial growth in P-limited marine waters, highlighting the shared metabolic strategies used by both terrestrial and marine microbes to cope with P limitation.
Collapse
|
5
|
Stosiek N, Talma M, Klimek-Ochab M. Carbon-Phosphorus Lyase-the State of the Art. Appl Biochem Biotechnol 2020; 190:1525-1552. [PMID: 31792787 DOI: 10.1007/s12010-019-03161-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 11/27/2022]
Abstract
Organophosphonates are molecules that contain a very chemically stable carbon-phosphorus (C-P) bond. Microorganisms can utilize phosphonates as potential source of crucial elements for their growth, as developed several pathways to metabolize these compounds. One among these pathways is catalyzed by C-P lyase complex, which has a broad substrate specifity; therefore, it has a wide application in degradation of herbicides deposited in the environment, such as glyphosate. This multi-enzyme system accurately recognized in Escherichia coli and genetic studies have demonstrated that it is encoded by phn operon containing 14 genes (phnC-phnP). The phn operon is a member of the Pho regulon induced by phosphate starvation. Ability to degradation of phosphonates is also found in other microorganisms, especially soil and marine bacteria, that have homologous genes to those in E. coli. Despite the existence of differences in structure and composition of phn gene cluster, each of these strains contains phnGHIJKLM genes necessary in the C-P bond cleavage mechanism. The review provides a detailed description and summary of achievements on the C-P lyase enzymatic pathway over the last 50 years.
Collapse
Affiliation(s)
- Natalia Stosiek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Magdalena Klimek-Ochab
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
6
|
Acosta-Cortés AG, Martinez-Ledezma C, López-Chuken UJ, Kaushik G, Nimesh S, Villarreal-Chiu JF. Polyphosphate recovery by a native Bacillus cereus strain as a direct effect of glyphosate uptake. THE ISME JOURNAL 2019; 13:1497-1505. [PMID: 30742059 PMCID: PMC6776029 DOI: 10.1038/s41396-019-0366-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 01/15/2019] [Accepted: 01/22/2019] [Indexed: 11/18/2022]
Abstract
Seven bacterial strains isolated from a glyphosate-exposed orange plantation site were exposed to 1 mM N-(phosphonomethyl)glycine supplied as a phosphorus source. While some exhibited good biodegradation profiles, the strain 6 P, identified as Bacillus cereus, was the only strain capable of releasing inorganic phosphate to the culture supernatant, while accumulating polyphosphate intracellularly along the experimentation time. The composition and purity of the intracellular polyphosphate accumulated by the strain 6 P were confirmed by FTIR analysis. To date, the biological conversion of glyphosate into polyphosphate has not been reported. However, given the importance of this biopolymer in the survival of microorganisms, it can be expected that this process could represent an important ecological advantage for the adaptation of this strain to an ecological niche exposed to this herbicide. The polyphosphate production yield was calculated as 4 mg l-1, while the glyphosate biodegradation kinetic constant was calculated on 0.003 h-1 using the modified Hockey-Stick first-order kinetic model, with a half-life of 279 h. Our results suggest that B. cereus 6 P is a potential candidate for the generation of an innovative biotechnological process to produce polyphosphate through the biodegradation of the herbicide glyphosate.
Collapse
Affiliation(s)
- Alejandra Guadalupe Acosta-Cortés
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología. Av, Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Cesar Martinez-Ledezma
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología. Av, Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Ulrico Javier López-Chuken
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Investigación en Ciencias Ambientales. Av, Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455, Mexico
| | - Garima Kaushik
- Department of Environmental Science. School of Earth Science, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Surendra Nimesh
- Department of Biotechnology. School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología. Av, Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| |
Collapse
|
7
|
Sosa OA, Repeta DJ, DeLong EF, Ashkezari MD, Karl DM. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon-phosphorus lyase pathway for phosphonate degradation. Environ Microbiol 2019; 21:2402-2414. [PMID: 30972938 PMCID: PMC6852614 DOI: 10.1111/1462-2920.14628] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/25/2022]
Abstract
In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon–phosphorus (C–P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C–P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C–P lyase was found to become more prevalent as phosphate concentrations decreased. C–P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C–P lyase was prevalent in several lineages of Alphaproteobacteria (Pelagibacter, SAR116, Roseobacter and Rhodospirillales), Gammaproteobacteria, and Actinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C–P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean.
Collapse
Affiliation(s)
- Oscar A Sosa
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Daniel J Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02540, USA
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | | | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
8
|
Ulrich EC, Kamat SS, Hove-Jensen B, Zechel DL. Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria. Methods Enzymol 2018; 605:351-426. [DOI: 10.1016/bs.mie.2018.01.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Abstract
After an undergraduate degree in biology at Harvard, I started graduate school at The Rockefeller Institute for Medical Research in New York City in July 1965. I was attracted to the chemical side of biochemistry and joined Fritz Lipmann's large, hierarchical laboratory to study enzyme mechanisms. That work led to postdoctoral research with Robert Abeles at Brandeis, then a center of what, 30 years later, would be called chemical biology. I spent 15 years on the Massachusetts Institute of Technology faculty, in both the Chemistry and Biology Departments, and then 26 years on the Harvard Medical School Faculty. My research interests have been at the intersection of chemistry, biology, and medicine. One unanticipated major focus has been investigating the chemical logic and enzymatic machinery of natural product biosynthesis, including antibiotics and antitumor agents. In this postgenomic era it is now recognized that there may be from 105 to 106 biosynthetic gene clusters as yet uncharacterized for potential new therapeutic agents.
Collapse
Affiliation(s)
- Christopher T Walsh
- Department of Chemistry and Institute for Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, California;
| |
Collapse
|
10
|
Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J. Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 2016; 19:1065-1076. [PMID: 27907245 DOI: 10.1111/1462-2920.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyanobacteria, the only prokaryotes capable of oxygenic photosynthesis, play a major role in carbon, nitrogen and phosphorus global cycling. Under conditions of increased P availability and nutrient loading, some cyanobacteria are capable of blooming, rapidly multiplying and possibly altering the ecological structure of the ecosystem. Because of their ability of using non-conventional P sources, these microalgae can be used for bioremediation purposes. Under this perspective, the metabolization of the polyphosphonate diethylenetriaminepenta(methylenephosphonic) acid (DTPMP) by the strain CCALA 007 of Anabaena variabilis was investigated using 31 P NMR analysis. Results showed a quantitative breakdown of DTPMP by cell-free extracts from cyanobacterial cells grown in the absence of any phosphonate. The identification of intermediates and products allowed us to propose a unique and new biodegradation pathway in which the formation of (N-acetylaminomethyl)phosphonic acid represents a key step. This hypothesis was strengthened by the results obtained by incubating cell-free extracts with pathway intermediates. When Anabaena cultures were grown in the presence of the phosphonate, or phosphorus-starved before the extraction, significantly higher biodegradation rates were found.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, Ferrara, I-44121, Italy
| | - Jochen Vermander
- Odisee Technologiecampus, Gebroeders de Smetstraat 1, Ghent, 9000, Belgium
| | - Paweł Kafarski
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże, Wyspiańskiego 27, 50-370, Wrocław
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, Opole, 45-052, Poland
| |
Collapse
|
11
|
Abstract
Organophosphonic acids are unique as natural products in terms of stability and mimicry. The C-P bond that defines these compounds resists hydrolytic cleavage, while the phosphonyl group is a versatile mimic of transition-states, intermediates, and primary metabolites. This versatility may explain why a variety of organisms have extensively explored the use organophosphonic acids as bioactive secondary metabolites. Several of these compounds, such as fosfomycin and bialaphos, figure prominently in human health and agriculture. The enzyme reactions that create these molecules are an interesting mix of chemistry that has been adopted from primary metabolism as well as those with no chemical precedent. Additionally, the phosphonate moiety represents a source of inorganic phosphate to microorganisms that live in environments that lack this nutrient; thus, unusual enzyme reactions have also evolved to cleave the C-P bond. This review is a comprehensive summary of the occurrence and function of organophosphonic acids natural products along with the mechanisms of the enzymes that synthesize and catabolize these molecules.
Collapse
Affiliation(s)
- Geoff P Horsman
- Department of Chemistry and Biochemistry, Wilfrid Laurier University , Waterloo, Ontario N2L 3C5, Canada
| | - David L Zechel
- Department of Chemistry, Queen's University , Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
12
|
Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun 2014; 5:4346. [PMID: 25000228 DOI: 10.1038/ncomms5346] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/09/2014] [Indexed: 11/08/2022] Open
Abstract
The oxygenated surface waters of the world's oceans are supersaturated with methane relative to the atmosphere, a phenomenon termed the 'marine methane paradox'. The production of methylphosphonic acid (MPn) by marine archaea related to Nitrosopumilus maritimus and subsequent decomposition of MPn by phosphate-starved bacterioplankton may partially explain the excess methane in surface waters. Here we show that Pelagibacterales sp. strain HTCC7211, an isolate of the SAR11 clade of marine α-proteobacteria, produces methane from MPn, stoichiometric to phosphorus consumption, when starved for phosphate. Gene transcripts encoding phosphonate transport and hydrolysis proteins are upregulated under phosphate limitation, suggesting a genetic basis for the methanogenic phenotype. Strain HTCC7211 can also use 2-aminoethylphosphonate and assorted phosphate esters for phosphorus nutrition. Despite strain-specific differences in phosphorus utilization, these findings identify Pelagibacterales bacteria as a source of biogenic methane and further implicate phosphate starvation of chemoheterotrophic bacteria in the long-observed methane supersaturation in oxygenated waters.
Collapse
|
13
|
Kamat SS, Raushel FM. The enzymatic conversion of phosphonates to phosphate by bacteria. Curr Opin Chem Biol 2013; 17:589-96. [DOI: 10.1016/j.cbpa.2013.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 11/24/2022]
|
14
|
The catalytic mechanism for aerobic formation of methane by bacteria. Nature 2013; 497:132-6. [DOI: 10.1038/nature12061] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/08/2013] [Indexed: 11/08/2022]
|
15
|
He SM, Wathier M, Podzelinska K, Wong M, McSorley FR, Asfaw A, Hove-Jensen B, Jia Z, Zechel DL. Structure and mechanism of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway. Biochemistry 2011; 50:8603-15. [PMID: 21830807 DOI: 10.1021/bi2005398] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase superfamily, PhnP is most homologous in sequence and structure to tRNase Z phosphodiesterases. X-ray structural analysis of PhnP complexed with orthovanadate to 1.5 Å resolution revealed this inhibitor bound in a tetrahedral geometry by the two catalytic manganese ions and the putative general acid residue H200. Guided by this structure, we probed the contributions of first- and second-sphere active site residues to catalysis and metal ion binding by site-directed mutagenesis, kinetic analysis, and ICP-MS. Alteration of H200 to alanine resulted in a 6-33-fold decrease in k(cat)/K(M) with substituted methyl phenylphosphate diesters with leaving group pK(a) values ranging from 4 to 8.4. With bis(p-nitrophenyl)phosphate as a substrate, there was a 10-fold decrease in k(cat)/K(M), primarily the result of a large increase in K(M). Moreover, the nickel ion-activated H200A PhnP displayed a bell-shaped pH dependence for k(cat)/K(M) with pK(a) values (pK(a1) = 6.3; pK(a2) = 7.8) that were comparable to those of the wild-type enzyme (pK(a1) = 6.5; pK(a2) = 7.8). Such modest effects are counter to what is expected for a general acid catalyst and suggest an alternate role for H200 in this enzyme. A Brønsted analysis of the PhnP reaction with a series of substituted phenyl methyl phosphate esters yielded a linear correlation, a β(lg) of -1.06 ± 0.1, and a Leffler α value of 0.61, consistent with a synchronous transition state for phosphoryl transfer. On the basis of these data, we propose a mechanism for PhnP.
Collapse
Affiliation(s)
- Shu-Mei He
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hartley LE, Kaakoush NO, Ford JL, Korolik V, Mendz GL. Characterisation of Campylobacter jejuni genes potentially involved in phosphonate degradation. Gut Pathog 2009; 1:13. [PMID: 19555480 PMCID: PMC2715421 DOI: 10.1186/1757-4749-1-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/25/2009] [Indexed: 11/12/2022] Open
Abstract
Potential biological roles of the Campylobacter jejuni genes cj0641, cj0774c and cj1663 were investigated. The proteins encoded by these genes showed sequence similarities to the phosphonate utilisation PhnH, K and L gene products of Escherichia coli. The genes cj0641, cj0774c and cj1663 were amplified from the pathogenic C. jejuni strain 81116, sequenced, and cloned into pGEM-T Easy vectors. Recombinant plasmids were used to disrupt each one of the genes by inserting a kanamycin resistance (KmR) cassette employing site-directed mutagenesis or inverse PCR. Campylobacter jejuni 81116 isogenic mutants were generated by integration of the mutated genes into the genome of the wild-type strain. The C. jejuni mutants grew on primary isolation plates, but they could not be purified by subsequent passages owing to cell death. The mutant C. jejuni strains survived and proliferated in co-cultures with wild-type bacteria or in media in which wild-type C. jejuni had been previously grown. PCR analyses of mixed wild-type/mutant cultures served to verify the presence of the mutated gene in the genome of a fraction of the total bacterial population. The data suggested that each mutation inactivated a gene essential for survival. Rates of phosphonate catabolism in lysates of E. coli strain DH5α were determined using proton nuclear magnetic resonance spectroscopy. Whole-cell lysates of the wild-type degraded phosphonoacetate, phenylphosphonate and aminomethylphosphonate. Significant differences in the rates of phosphonate degradation were observed between lysates of wild-type E. coli, and of bacteria transformed with each one of the vectors carrying one of the C. jejuni genes, suggesting that these genes were involved in phosphonate catabolism.
Collapse
Affiliation(s)
- Lauren E Hartley
- Institute for Glycomics, Griffith University, Gold Coast, Australia.
| | | | | | | | | |
Collapse
|
17
|
Pipke R, Amrhein N. Carbon-phosphorus lyase activity in permeabilized cells ofArthrobactersp. GLP-1. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80301-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Matys S, Laurinavichius K, Krupyanko V, Nesmeyanova M. Optimization of degradation of methylphosphonate — analogue of toxic pollutants with direct CP bond by Escherichia coli. Process Biochem 2001. [DOI: 10.1016/s0032-9592(00)00294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
20
|
VanBogelen RA, Olson ER. Application of two-dimensional protein gels in biotechnology. BIOTECHNOLOGY ANNUAL REVIEW 1998; 1:69-103. [PMID: 9704085 DOI: 10.1016/s1387-2656(08)70048-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The optimal use of biological systems for technologically developed products will not be achieved until biological systems are completely defined in biochemical terms. Two-dimensional polyacrylamide gel electrophoresis, 2-D gels, are contributing to this goal. These gels separate complex mixtures of proteins into individual polypeptide species. The ultimate use of 2-D gels is the construction of cellular 2-D gel databases which identify the proteins on the gels and catalog their responses to different environmental conditions. In addition to these global analyses, many applications for 2-D gels in basic, applied and clinical research have been shown.
Collapse
Affiliation(s)
- R A VanBogelen
- Department of Biotechnology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert, Ann Arbor, Michigan 48105, USA
| | | |
Collapse
|
21
|
Ternan NG, Quinn JP. In vitro cleavage of the carbon-phosphorus bond of phosphonopyruvate by cell extracts of an environmental Burkholderia cepacia isolate. Biochem Biophys Res Commun 1998; 248:378-81. [PMID: 9675144 DOI: 10.1006/bbrc.1998.8962] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell-free extracts of Burkholderia cepacia strain Pal6 catalysed the degradation of 3-phosphonopyruvate to pyruvate and inorganic phosphate; the products were detected in equimolar quantities. The stable in vitro activity responsible was distinct from both phosphonoactealdehyde hydrolase and phosphonoacetate hydrolase and from phosphoenolpyruvate phosphomutase and appears to represent a novel mode of carbon-phosphorus bond cleavage.
Collapse
Affiliation(s)
- N G Ternan
- School of Biology and Biochemistry, The Queen's University of Belfast, Belfast, Northern Ireland.
| | | |
Collapse
|
22
|
Elashvili I, Defrank JJ, Culotta VC. phnE and glpT genes enhance utilization of organophosphates in Escherichia coli K-12. Appl Environ Microbiol 1998; 64:2601-8. [PMID: 9647836 PMCID: PMC106432 DOI: 10.1128/aem.64.7.2601-2608.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wild-type Escherichia coli K-12 strain JA221 grows poorly on low concentrations (< or = 1 mM) of diisopropyl fluorophosphate and its hydrolysis product, diisopropyl phosphate (DIPP), as sole phosphorus sources. Spontaneous organophosphate utilization (OPU) mutants were isolated that efficiently utilized these alternate sources of phosphate. A genomic library was constructed from one such OPU mutant, and two genes were isolated that conferred the OPU phenotype to strain JA221 upon transformation. These genes were identified as phnE and glpT. The original OPU mutation represented phnE gene activation and corresponded to the same 8-bp unit deletion from the cryptic wild-type E. coli K-12 phnE gene that has been shown previously to result in phnE activation. In comparison, sequence analysis revealed that the observed OPU phenotype conferred by the glpT gene was not the result of a mutation. PCR clones of glpT from both the mutant and the wild type were found to confer the OPU phenotype to JA221 when they were present on the high-copy-number pUC19 plasmid but not when they were present on the low-copy-number pWSK29 plasmid. This suggests that the OPU phenotype associated with the glpT gene is the result of amplification and overproduction of the glpT gene product. Both the active phnE and multicopy glpT genes facilitated effective metabolism of low concentrations of DIPP, whereas only the active phnE gene could confer the ability to break down a chromogenic substrate, 5-bromo-4-chloro-3-indoxyl phosphate-p-toluidine (X-Pi). This result indicates that in E. coli, X-Pi is transported exclusively by the Phn system, whereas DIPP (or its metabolite) may be transported by both Phn and Glp systems.
Collapse
Affiliation(s)
- I Elashvili
- Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
23
|
Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine-mineralizing strain of burkholderia cepacia. Appl Environ Microbiol 1998; 64:2291-4. [PMID: 9603854 PMCID: PMC106318 DOI: 10.1128/aem.64.6.2291-2294.1998] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A strain of Burkholderia cepacia isolated by enrichment culture utilized L-2-amino-3-phosphonopropionic acid (phosphonoalanine) at concentrations up to 20 mM as a carbon, nitrogen, and phosphorus source in a phosphate-insensitive manner. Cells contained phosphoenolpyruvate phosphomutase activity, presumed to be responsible for cleavage of the C---P bond of phosphonopyruvate, the transamination product of L-phosphonoalanine; this was inducible in the presence of phosphonoalanine.
Collapse
|
24
|
Dumora C, Marche M, Doignon F, Aigle M, Cassaigne A, Crouzet M. First characterization of the phosphonoacetaldehyde hydrolase gene of Pseudomonas aeruginosa. Gene X 1997; 197:405-12. [PMID: 9332393 DOI: 10.1016/s0378-1119(97)00185-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phnX gene encoding the phosphonoacetaldehyde hydrolase (phosphonatase) from the Gram-negative bacterium Pseudomonas aeruginosa A237 has been cloned and its sequence determined. The open reading frame consists of 825 nucleotides specifying a protein of 275 amino acid residues corresponding to a predicted molecular weight of 29929. The deduced amino acid sequence of PhnX did not share significant amino acid sequence similarity with any other polypeptide. Expression of the phosphonoacetaldehyde hydrolase coding sequence in Escherichia coli under control of the E. coli tac promoter resulted in the production of enzymatically active protein with an affinity constant similar to that of the phosphonoacetaldehyde hydrolase purified from P. aeruginosa A237. This is the first nucleic sequence report of the phosphonoacetaldehyde hydrolase, an enzyme involved in the carbon-phosphorus bond cleavage.
Collapse
Affiliation(s)
- C Dumora
- Département de Biochimie Médicale et Biologie Moléculaire, Université de Bordeaux 2, France.
| | | | | | | | | | | |
Collapse
|
25
|
Jiang W, Metcalf WW, Lee KS, Wanner BL. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. J Bacteriol 1995; 177:6411-21. [PMID: 7592415 PMCID: PMC177490 DOI: 10.1128/jb.177.22.6411-6421.1995] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two pathways exist for cleavage of the carbon-phosphorus (C-P) bond of phosphonates, the C-P lyase and the phosphonatase pathways. It was previously demonstrated that Escherichia coli carries genes (named phn) only for the C-P lyase pathway and that Enterobacter aerogenes carries genes for both pathways (K.-S. Lee, W. W. Metcalf, and B. L. Wanner, J. Bacteriol. 174:2501-2510, 1992). In contrast, here it is shown that Salmonella typhimurium LT2 carries genes only for the phosphonatase pathway. Genes for the S. typhimurium phosphonatase pathway were cloned by complementation of E. coli delta phn mutants. Genes for these pathways were proven not to be homologous and to lie in different chromosomal regions. The S. typhimurium phn locus lies near 10 min; the E. coli phn locus lies near 93 min. The S. typhimurium phn gene cluster is about 7.2 kb in length and, on the basis of gene fusion analysis, appears to consist of two (or more) genes or operons that are divergently transcribed. Like that of the E. coli phn locus, the expression of the S. typhimurium phn locus is activated under conditions of Pi limitation and is subject to Pho regulon control. This was shown both by complementation of the appropriate E. coli mutants and by the construction of S. typhimurium mutants with lesions in the phoB and pst loci, which are required for activation and inhibition of Pho regulon gene expression, respectively. Complementation studies indicate that the S. typhimurium phn locus probably includes genes both for phosphonate transport and for catalysis of C-P bond cleavage.
Collapse
Affiliation(s)
- W Jiang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
26
|
Homolytic carbon to phosphorus bond scission of some phosphonates catalyzed by bacterial carbon-phosphorus lyase. Biodegradation 1995. [DOI: 10.1007/bf00695346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Abstract
Phosphonates (Pn) are a large class of organophosphorus molecules that have direct carbon-phosphorus (C-P) bonds in place of the carbon-oxygen-phosphorus ester bond. In bacteria two pathways exist for Pn breakdown for use as a P source: the phosphonatase and C-P lyase pathways. These pathways differ both in regard to their substrate specificity and their cleavage mechanism. The phosphonatase pathway acts on the natural Pn alpha-aminoethylphosphonate (AEPn). In a two-step process it leads to cleavage of the C-P bond by a hydrolysis reaction requiring an adjacent carbonyl group. In contrast the C-P lyase pathway has a broad substrate specificity. It leads to cleavage of substituted Pn (such as AEPn) as well as unsubstituted Pn by a mechanism involving redox or radical chemistry. Due to its broad substrate specificity, the C-P lyase pathway is generally thought to be responsible for the breakdown of Pn herbicides (such as glyphosate) by bacteria. As a way to gain a more in-depth understanding of these Pn degradative pathways, their respective genes have been isolated and characterized. In the absence of a biochemical assay for the C-P lyase pathway such molecular approaches have been especially valuable. The roles of individual genes have been inferred from DNA sequence analysis and mutational effects. Genes for the C-P lyase pathway exist in a fourteen-gene operon that appears to encode both a binding protein-dependent Pn transporter and a C-P lyase. Genes for the phosphonatase pathway also exist in a gene cluster containing Pn uptake and degradative genes. A combination of biochemistry, molecular biology, and molecular genetics approaches has provided more detailed understanding of the mechanisms of C-P bond cleavage. Such basic information may provide a new handle for improvement of Pn degradation capabilities in bacteria, or in other cells in which the respective genes may be introduced and expressed.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
28
|
Selvapandiyan A, Bhatnagar RK. Cloning of genes encoding for C-P lyase fromPseudomonas isolates PG2982 and GLC11: Identification of a cryptic allele on the chromosome ofP. aeruginosa. Curr Microbiol 1994. [DOI: 10.1007/bf01577437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Kertesz MA, Cook AM, Leisinger T. Microbial metabolism of sulfur- and phosphorus-containing xenobiotics. FEMS Microbiol Rev 1994; 15:195-215. [PMID: 7946467 DOI: 10.1111/j.1574-6976.1994.tb00135.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The enzymes involved in the microbial metabolism of many important phosphorus- or sulfur-containing xenobiotics, including organophosphate insecticides and precursors to organosulfate and organosulfonate detergents and dyestuffs have been characterized. In several instances their genes have been cloned and analysed. For phosphonate xenobiotics, the enzyme system responsible for the cleavage of the carbon-phosphorus bond has not yet been observed in vitro, though much is understood on a genetic level about phosphonate degradation. Phosphonate metabolism is regulated as part of the Pho regulon, under phosphate starvation control. For organophosphorothionate pesticides the situation is not so clear, and the mode of regulation appears to depend on whether the compounds are utilized to provide phosphorus, carbon or sulfur for cell growth. The same is true for organosulfonate metabolism, where different (and differently regulated) enzymatic pathways are involved in the utilization of sulfonates as carbon and as sulfur sources, respectively. Observations at the protein level in a number of bacteria suggest that a regulatory system is present which responds to sulfate limitation and controls the synthesis of proteins involved in providing sulfur to the cell and which may reveal analogies between the regulation of phosphorus and sulfur metabolism.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich
| | | | | |
Collapse
|
30
|
McMullan G, Quinn JP. The utilization of aminoalkylphosphonic acids as sole nitrogen source by an environmental bacterial isolate. Lett Appl Microbiol 1993. [DOI: 10.1111/j.1472-765x.1993.tb01442.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Metcalf WW, Wanner BL. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 1993; 129:27-32. [PMID: 8335257 DOI: 10.1016/0378-1119(93)90692-v] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Escherichia coli phn (psiD) locus consists of a large gene cluster encoding proteins necessary for the use of phosphonates (Pn) as a sole phosphorus source. On the basis of nucleotide (nt) sequence analysis, the phn locus contains a 12.6-kb operon of seventeen genes named, in alphabetical order, phnA to phnQ [Chen et al., J. Biol. Chem. 265 (1990) 4461-4471]. New Pn+ plasmids were made which are suitable for mutational analysis of this gene cluster. These plasmids contain the R6K origin for DNA replication, can be conjugatively transferred, contain the tetAR genes, and therefore provide a way for allele replacement. The construction of these plasmids showed that phnA and phnB have no role in Pn metabolism. Also, these plasmids were employed to introduce nonpolar phnD::lacZ and phnD::uidA fusions into the chromosome, which allowed us to show that phnD probably has a role in transport. In addition, it was shown that phnP is the most distal gene required for Pn use. This was done by testing the effect of phn::uidA insertions in or near the 3' end of phnP on Pn use. Altogether, these results show that all genes required for Pn use are in the 10.9-kb, fourteen-gene, phnCDEFGHIJKLMNOP locus.
Collapse
Affiliation(s)
- W W Metcalf
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
32
|
Metcalf WW, Wanner BL. Mutational analysis of an Escherichia coli fourteen-gene operon for phosphonate degradation, using TnphoA' elements. J Bacteriol 1993; 175:3430-42. [PMID: 8388873 PMCID: PMC204742 DOI: 10.1128/jb.175.11.3430-3442.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
All genes for phosphonate (Pn) utilization in Escherichia coli are in a large cluster of 14 genes named, in alphabetical order, phnC to phnP. Plasmids carrying these genes were mutagenized by using TnphoA'-1, and 43 mutants containing simple insertions were studied in detail. Their insertion sites were defined by restriction mapping and by DNA sequencing. One or more mutations in each phn gene was identified. In 23 mutants, expression of the TnphoA'-1 lacZ gene was phosphate starvation inducible. These mutants had TnphoA'-1 oriented in line behind the phnC promoter, i.e., in the + orientation. In 20 mutants, the TnphoA'-1 lacZ gene was expressed at a low basal level. These mutants had insertions in the opposite orientation. All 43 phn::TnphoA'-1 insertions were recombined onto the chromosome to test for mutational effects, and their structures on the chromosome were verified by DNA hybridization. Those in the + orientation were switched to TnphoA'-9, which has an outward promoter for expression of downstream genes. These insertions were tested for polar effects by measuring beta-glucuronidase synthesis from a uidA gene transcriptionally fused to the 3' end of the phnP gene. The results indicate the following: (i) the phnC-to-phnP gene cluster is an operon of 14 genes, and the phnC promoter is the sole psi promoter; (ii) three gene products (PhnC, PhnD, and PhnE) probably constitute a binding protein-dependent Pn transporter; (iii) seven gene products (PhnG, PhnH, PhnI, PhnJ, PhnK, PhnL, and PhnM) are required for catalysis and are likely to constitute a membrane-associated carbon-phosphorus (C-P) lyase; (iv) two gene products (PhnN and PhnP) are not absolutely required and may therefore be accessory proteins for the C-P lyase; and (v) two gene products (PhnF and PhnO) are not required for Pn use and may have a regulatory role because they have sequence similarities to regulatory proteins. The mechanism for breaking the C-P bond by a lyase is discussed in light of these results.
Collapse
Affiliation(s)
- W W Metcalf
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
33
|
Abstract
The Escherichia coli phosphate (PHO) regulon includes 31 (or more) genes arranged in eight separate operons. All are coregulated by environmental (extra-cellular) phosphate and are probably involved in phosphorus assimilation. Pi control of these genes requires the sensor PhoR, the response regulator PhoB, the binding protein-dependent Pi-specific transporter Pst, and the accessory protein PhoU. During Pi limitation, PhoR turns on genes of the PHO regulon by phosphorylating PhoB that in turn activates transcription by binding to promoters that share an 18-base consensus PHO Box. When Pi is in excess, PhoR, Pst, and PhoU together turn off the PHO regulon, presumably by dephosphorylating PhoB. In addition, two Pi-independent controls that may be forms of cross regulation turn on the PHO regulon in the absence of PhoR. The sensor CreC, formerly called PhoM, phosphorylates PhoB in response to some (unknown) catabolite, while acetyl phosphate may directly phosphorylate PhoB. Cross regulation of the PHO regulon by CreC and acetyl phosphate may be examples of underlying control mechanisms important for the general (global) control of cell growth and metabolism.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
34
|
Wanner BL, Metcalf WW. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett 1992; 100:133-9. [PMID: 1335942 DOI: 10.1111/j.1574-6968.1992.tb14031.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria that use phosphonates as a phosphorus source must be able to break the stable carbon-phosphorus bond. In Escherichia coli phosphonates are broken down by a C-P lyase that has a broad substrate specificity. Evidence for a lyase is based on in vivo studies of product formation because it has been proven difficult to detect the activity in vitro. By using molecular genetic techniques, we have studied the genes for phosphonate uptake and degradation in E. coli, which are organized in an operon of 14 genes, named phnC to phnP. As expected for genes involved in P acquisition, the phnC-phnP operon is a member of the PHO regulon and is induced many hundred-fold during phosphate limitation. Three gene products (PhnC, PhnD and PhnE) comprise a binding protein-dependent phosphonate transporter, which also transports phosphate, phosphite, and certain phosphate esters such as phosphoserine; two gene products (PhnF and PhnO) may have a role in gene regulation; and nine gene products (PhnG, PhnH, PhnI, PhnJ, PhnK, PhnL, PhnM, PhnN, and PhnP) probably comprise a membrane-associated C-P lyase enzyme complex. Although E. coli can degrade many different phosphonates, the ability to use certain phosphonates appears to be limited by the specificity of the PhnCDE transporter and not by the specificity of the C-P lyase.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | |
Collapse
|
35
|
Wanner BL, Metcalf WW. Molecular genetic studies of a 10.9-kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05694.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Schowanek D, Verstraete W. Phosphonate utilization by bacteria in the presence of alternative phosphorus sources. Biodegradation 1992; 1:43-53. [PMID: 1368141 DOI: 10.1007/bf00117050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Batch and continuous culture experiments were carried out to investigate the effect of orthophosphate and p-nitrophenylphosphate on the utilization of various phosphonates as a P source by bacteria. Detailed tests with methylphosphonate as a model phosphonate and the phosphonate-degrading Pseudomonas paucimobilis strain MMM101a revealed that, in contrast with the majority of literature data, the phosphates did not suppress phosphonate utilization. Under conditions of P stress, strain MMM101a simultaneously took up both P-sources, with a preference for the phosphate-P. Study of the kinetic parameters for strain MMM101a, growing on the different P sources revealed similar, rather low, maximum growth rates (ca. 0.15 h-1). However, the affinity for orthophosphate (Ks:0.17 microM), was more than two orders of magnitude higher than for methylphosphonate (Ks: 66 microM), which might account for the preferential uptake of orthophosphate. Cellular phosphorus yields in continuous cultures varied considerably with the conditions applied. The results suggest that phosphonate degradation can occur also in environments with substantial backgrounds of phosphate.
Collapse
Affiliation(s)
- D Schowanek
- Laboratory of Microbial Ecology, State University Gent, Belgium
| | | |
Collapse
|
37
|
|
38
|
Makino K, Kim SK, Shinagawa H, Amemura M, Nakata A. Molecular analysis of the cryptic and functional phn operons for phosphonate use in Escherichia coli K-12. J Bacteriol 1991; 173:2665-72. [PMID: 1840580 PMCID: PMC207835 DOI: 10.1128/jb.173.8.2665-2672.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We cloned the cryptic phn operon of a K-12 strain, phn(EcoK), and analyzed the nucleotide sequence of the phn region (11,672 bp). An mRNA start site upstream of the phnC gene was identified by S1 nuclease mapping. The pho regulon activator PhoB protects a pho box region near the mRNA start in DNase I footprinting and methylation protection experiments. The sequence of the cryptic phn(EcoK) operon was very similar to that of the functional phn operon of an Escherichia coli B strain, phn(EcoB) (C.-M. Chen, Q.-Z. Ye, Z. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem. 265:4461-4471, 1990). The phnE(EcoK) gene has an 8-bp insertion, absent from the phnE(EcoB) gene, which causes a frameshift mutation. The spontaneous activation of the cryptic phn(EcoK) operon is accompanied by loss of this additional 8-bp insertion. Studies of the structure, regulation, and function of the phn region suggest that the phosphate starvation-inducible phn operon consists of 14 cistrons from phnC to phnP.
Collapse
Affiliation(s)
- K Makino
- Department of Experimental Chemotherapy, Osaka University, Japan
| | | | | | | | | |
Collapse
|
39
|
Metcalf WW, Wanner BL. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J Bacteriol 1991; 173:587-600. [PMID: 1846145 PMCID: PMC207049 DOI: 10.1128/jb.173.2.587-600.1991] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The phn (psiD) gene cluster is induced during Pi limitation and is required for the use of phosphonates (Pn) as a phosphorus (P) source. Twelve independent Pn-negative (Pn-) mutants have lesions in the phn gene cluster which, as determined on the basis of recombination frequencies, is larger than 10 kbp. This distance formed the basis for determining the complete DNA sequence of a 15.6-kbp BamHI fragment, the sequences of which suggested an operon with 17 open reading frames, denoted (in alphabetical order) the phnA to phnQ genes (C.-M. Chen, Q.-Z. Ye, Z. Zhu, B. L. Wanner, and C. T. Walsh, J. Biol. Chem. 265:4461-4471, 1990) Ten Pn- lesions lie in the phnD, phnE, phnH, phnJ, phnK, phnO, and phnP genes. We propose a smaller gene cluster with 14 open reading frames, phnC to phnP, which probably encode transporter and regulatory functions, in addition to proteins needed in Pn biodegradation. On the basis of the effects on phosphite (Pt), Pi ester, and Pi use, we propose that PhnC, PhnD, and PhnE constitute a binding protein-dependent Pn transporter which also transports Pt, Pi esters, and Pi. We propose that PhnO has a regulatory role because a phnO lesion affects no biochemical function, except for those due to polarity. Presumably, the 10 other phn gene products mostly act in an enzyme complex needed for breaking the stable carbon-phosphorus bond. Interestingly, all Pn- mutations abolish the use not only of Pn but also of Pt, in which P is in the +3 oxidation state. Therefore, Pn metabolism and Pt metabolism are related, supporting a biochemical mechanism for carbon-phosphorus bond cleavage which involves redox chemistry at the P center. Furthermore, our discovery of Pi-regulated genes for the assimilation of reduced P suggests that a P redox cycle may be important in biology.
Collapse
Affiliation(s)
- W W Metcalf
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
40
|
Schowanek D, Verstraete W. Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl Environ Microbiol 1990; 56:895-903. [PMID: 2339877 PMCID: PMC184318 DOI: 10.1128/aem.56.4.895-903.1990] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A selection of axenic microbial strains and a variety of environmental samples were investigated with respect to the utilization of a series of natural and xenobiotic phosphonates as the sole phosphorus source for growth. Phosphonate degradation was observed only with bacteria and not with eucaryotic microorganisms. All representatives of the phosphonates examined supported bacterial growth, with the exception of methylphosphonate diethylester. Yet, distinctly different phosphonate utilization patterns were noted between phosphonate-positive strains. C-P bond cleavage by a photosynthetic bacterium is reported for the first time; growing photoheterotrophically, Rhodobacter capsulatus ATCC 23782 was able to utilize 2-aminoethylphosphonate and alkylphosphonates. Bacteria with the potential to utilize at least one of the phosphonate moieties from the xenobiotic phosphonates Dequest 2010, Dequest 2041, and Dequest 2060 were detected in all environments, with only two exceptions for Dequest 2010. Phosphonate P utilization to an extent of 94 and 97%, for Dequest 2010 and Dequest 2041, respectively, provided evidence that a complete breakdown of these compounds with respect to the C-P bond cleavage can be achieved by some bacteria. The results suggest that phosphonate-utilizing bacteria are ubiquitous, and that selected strains can degrade phosphonates that are more complex than those described previously.
Collapse
Affiliation(s)
- D Schowanek
- Laboratory of Microbial Ecology, State University of Ghent, Belgium
| | | |
Collapse
|
41
|
Chen CM, Ye QZ, Zhu ZM, Wanner BL, Walsh CT. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39587-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Wanner BL, Boline JA. Mapping and molecular cloning of the phn (psiD) locus for phosphonate utilization in Escherichia coli. J Bacteriol 1990; 172:1186-96. [PMID: 2155195 PMCID: PMC208583 DOI: 10.1128/jb.172.3.1186-1196.1990] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Escherichia coli phn (psiD) locus encodes genes for phosphonate (Pn) utilization, for phn (psiD) mutations abolish the ability to use as a sole P source a Pn with a substituted C-2 or unsubstituted hydrocarbon group such as 2-aminoethylphosphonate (AEPn) or methylphosphonate (MPn), respectively. Even though the E. coli K-12 phosphate starvation-inducible (psi) phn (psiD) gene(s) shows normal phosphate (Pi) control, Pn utilization is cryptic in E. coli K-12, as well as in several members of the E. coli reference (ECOR) collection which are closely related to K-12. For these bacteria, an activating mutation near the phn (psiD) gene is necessary for growth on a Pn as the sole P source. Most E. coli strains, including E. coli B, are naturally Phn+; a few E. coli strains are Phn- and are deleted for phn DNA sequences. The Phn+ phn(EcoB) DNA was molecularly cloned by using the mini-Mu in vivo cloning procedure and complementation of an E. coli K-12 delta phn mutant. The phn(EcoB) DNA hybridized to overlapping lambda clones in the E. coli K-12 gene library (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) which contain the 93-min region, thus showing that the phn (psiD) locus was itself cloned and verifying our genetic data on its map location. The cryptic phn(EcoK) DNA has an additional 100 base pairs that is absent in the naturally Phn+ phn(EcoB) sequence. However, no gross structural change was detected in independent Phn+ phn(EcoK) mutants that have activating mutations near the phn locus.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Layfayette, Indiana 47907
| | | |
Collapse
|
43
|
|
44
|
Properties of the phosphate and phosphite transport systems of Phytophthora palmivora. Arch Microbiol 1989. [DOI: 10.1007/bf00446924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Xie WQ, Whitton BA, Simon JW, Jäger K, Reed D, Potts M. Nostoc commune UTEX 584 gene expressing indole phosphate hydrolase activity in Escherichia coli. J Bacteriol 1989; 171:708-13. [PMID: 2536677 PMCID: PMC209655 DOI: 10.1128/jb.171.2.708-713.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A gene encoding an enzyme capable of hydrolyzing indole phosphate was isolated from a recombinant gene library of Nostoc commune UTEX 584 DNA in lambda gt10. The gene (designated iph) is located on a 2.9-kilobase EcoRI restriction fragment and is present in a single copy in the genome of N. commune UTEX 584. The iph gene was expressed when the purified 2.9-kilobase DNA fragment, free of any vector sequences, was added to a cell-free coupled transcription-translation system. A polypeptide with an Mr of 74,000 was synthesized when the iph gene or different iph-vector DNA templates were expressed in vitro. When carried by different multicopy plasmids and phagemids (pMP005, pBH6, pB8) the cyanobacterial iph gene conferred an Iph+ phenotype upon various strains of Escherichia coli, including a phoA mutant. Hydrolysis of 5-bromo-4-chloro-3-indolyl phosphate was detected in recombinant E. coli strains grown in phosphate-rich medium, and the activity persisted in assay buffers that contained phosphate. In contrast, indole phosphate hydrolase activity only developed in cells of N. commune UTEX 584, when they were partially depleted of phosphorus, and the activity associated with these cells was suppressed partially by the addition of phosphate to assay buffers. Indole phosphate hydrolase activity was detected in periplasmic extracts from E. coli (Iph+) transformants.
Collapse
Affiliation(s)
- W Q Xie
- Department of Biochemistry and Nutrition, State University, Blacksburg, Virginia 24061
| | | | | | | | | | | |
Collapse
|
46
|
Factors Determining the Fate of Organic Chemicals in the Environment: the Role of Bacterial Transformations and Binding to Sediments. SPRINGER SERIES ON ENVIRONMENTAL MANAGEMENT 1989. [DOI: 10.1007/978-3-642-61334-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Thayer JS. The formation and transformation of phosphorus-carbon bonds in living organisms. Appl Organomet Chem 1989. [DOI: 10.1002/aoc.590030302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Murata K, Higaki N, Kimura A. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes. Biochem Biophys Res Commun 1988; 157:190-5. [PMID: 3196331 DOI: 10.1016/s0006-291x(88)80031-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bacterium Enterobacter aerogenes could grow on a medium containing alkylphosphonic acid as a phosphorus source. The extracts prepared from the cells grown on phosphonoacetic acid as a sole source of phosphorus showed an activity of carbon-phosphorus lyase and hydrolyzed methyl-phosphonic acid, phosphonoacetic acid and phenylphosphonic acid with a liberation of inorganic phosphates.
Collapse
Affiliation(s)
- K Murata
- Research Institute for Food Science, Kyoto University, Japan
| | | | | |
Collapse
|
49
|
Filloux A, Bally M, Soscia C, Murgier M, Lazdunski A. Phosphate regulation in Pseudomonas aeruginosa: cloning of the alkaline phosphatase gene and identification of phoB- and phoR-like genes. MOLECULAR & GENERAL GENETICS : MGG 1988; 212:510-3. [PMID: 3138529 DOI: 10.1007/bf00330857] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In Pseudomonas aeruginosa, phosphate limitation results in the synthesis of several protein species. We report the cloning of the P. aeruginosa alkaline phosphatase structural gene, phoA, and we show that this gene is regulated normally in Escherichia coli. We have also identified and cloned two P. aeruginosa genes which can complement phoB and phoR mutations in E. coli. This suggests that a pho regulon system similar to that in E. coli may exist in P. aeruginosa, using at least two similar regulatory factors.
Collapse
Affiliation(s)
- A Filloux
- Laboratoire de Chimie Bactérienne, C.N.R.S., Marseille, France
| | | | | | | | | |
Collapse
|
50
|
Wanner BL, Wilmes MR, Hunter E. Molecular cloning of the wild-type phoM operon in Escherichia coli K-12. J Bacteriol 1988; 170:279-88. [PMID: 3275616 PMCID: PMC210639 DOI: 10.1128/jb.170.1.279-288.1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A metastable bacterial alkaline phosphatase (Bap) phenotype is seen in phoR mutants, which alternately express a Bap-constitutive or -negative phenotype. The alteration is affected by mutations in the phoM region near 0 min. By molecular cloning of the wild-type phoM operon onto a multicopy plasmid and recombining onto the plasmid the pho-510 mutation that abolishes variation, the phoM operon, rather than some nearby gene, was shown to control variation. Complementation tests indicated that the wild-type phoM allele is dominant to the pho-510 mutation when both are in single copy, but whichever allele is present in higher copy appears as dominant when multicopy plasmids are examined. The alternating phenotypic variation of BAP synthesis was not seen in phoR+ cells with multicopy wild-type phoM plasmids, thus showing that the variation is associated with phoM-dependent Bap expression. The alternation acted at the level of phoA transcription; it was also recA independent. BAP clonal variation is phenotypically similar to Salmonella phase variation, which is controlled by a DNA rearrangement. No evidence was found for a DNA change near the phoM operon that might be responsible for the variable Bap phenotype.
Collapse
Affiliation(s)
- B L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|