1
|
Xu W, Yuan J, Yang S, Ching CB, Liu J. Programming Saposin-Mediated Compensatory Metabolic Sinks for Enhanced Ubiquinone Production. ACS Synth Biol 2016; 5:1404-1411. [PMID: 27389347 DOI: 10.1021/acssynbio.6b00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microbial synthesis of ubiquinone by fermentation processes has been emerging in recent years. However, as ubiquinone is a primary metabolite that is tightly regulated by the host central metabolism, tweaking the individual pathway components could only result in a marginal improvement on the ubiquinone production. Given that ubiquinone is stored in the lipid bilayer, we hypothesized that introducing additional metabolic sink for storing ubiquinone might improve the CoQ10 production. As human lipid binding/transfer protein saposin B (hSapB) was reported to extract ubiquinone from the lipid bilayer and form the water-soluble complex, hSapB was chosen to build a compensatory metabolic sink for the ubiquinone storage. As a proof-of-concept, hSapB-mediated metabolic sink systems were devised and systematically investigated in the model organism of Escherichia coli. The hSapB-mediated periplasmic sink resulted in more than 200% improvement of CoQ8 over the wild type strain. Further investigation revealed that hSapB-mediated sink systems could also improve the CoQ10 production in a CoQ10-hyperproducing E. coli strain obtained by a modular pathway rewiring approach. As the design principles and the engineering strategies reported here are generalizable to other microbes, compensatory sink systems will be a method of significant interest to the synthetic biology community.
Collapse
Affiliation(s)
- Wen Xu
- School
of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China
- Key
Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China
| | - Jifeng Yuan
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
- Temasek
Laboratories, National University of Singapore, T-Lab Building 5A, 117411 Singapore
| | - Shuiyun Yang
- School
of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China
- Key
Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China
| | - Chi-Bun Ching
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| | - Jiankang Liu
- School
of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China
- Key
Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shannxi, China
| |
Collapse
|
2
|
Wang Y, Ding H, Du P, Gan R, Ye Q. Production of phoA promoter-controlled human epidermal growth factor in fed-batch cultures of Escherichia coli YK537 (pAET-8). Process Biochem 2005. [DOI: 10.1016/j.procbio.2005.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Rahman RNZRA, Leow TC, Basri M, Salleh AB. Secretory expression of thermostable T1 lipase through bacteriocin release protein. Protein Expr Purif 2005; 40:411-6. [PMID: 15766884 DOI: 10.1016/j.pep.2005.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/03/2005] [Indexed: 10/25/2022]
Abstract
The extracellular production of T1 lipase was performed by co-expression of pJL3 vector encoding bacteriocin release protein in prokaryotic system. Secretory expression was optimized by considering several parameters, including host strains, inducer (IPTG) concentration, media, induction at A(600 nm), temperature, and time of induction. Among the host strains tested, Origami B excreted out 18,100 U/ml of lipase activity into culture medium when induced with 50 microM IPTG for 12 h. The Origami B harboring recombinant plasmid pGEX/T1S and pJL3 vector was chosen for further study. IPTG at 0.05 mM, YT medium, induction at A(600 nm) of 1.25, 30 degrees C, and 32 h of induction time were best condition for T1 lipase secretion with Origami B as a host.
Collapse
Affiliation(s)
- Raja Noor Zaliha Raja Abdul Rahman
- Faculty of Biotechnology and Biomolecular Sciences, Enzyme and Microbial Technology Research Group, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| | | | | | | |
Collapse
|
4
|
Wang Y, Du P, Gan R, Li Z, Ye Q. Fed-batch cultivation ofEscherichia coli YK537 (pAET-8) for production ofphoA promoter-controlled human epidermal growth factor. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
van der Wal FJ, Koningstein G, ten Hagen CM, Oudega B, Luirink J. Optimization of bacteriocin release protein (BRP)-mediated protein release by Escherichia coli: random mutagenesis of the pCloDF13-derived BRP gene to uncouple lethality and quasi-lysis from protein release. Appl Environ Microbiol 1998; 64:392-8. [PMID: 9464372 PMCID: PMC106056 DOI: 10.1128/aem.64.2.392-398.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteriocin release proteins (BRPs) can be used for the release of heterologous proteins from the Escherichia coli periplasm into the culture medium. However, high-level expression of BRP causes apparent lysis of the host cells in liquid cultures (quasi-lysis) and inhibition of growth on broth agar plates (lethality). To optimize BRP-mediated protein release, the pCloDF13 BRP gene was subjected to random mutagenesis by using PCR techniques. Mutated BRPs with a strongly reduced capacity to cause growth inhibition on broth agar plates were selected, analyzed by nucleotide sequencing, and further characterized by performing growth and release experiments in liquid cultures. A subset of these BRP derivatives did not cause quasi-lysis and had only a small effect on growth but still functioned in the release of the periplasmic protein beta-lactamase and the periplasmic K88 molecular chaperone FaeE and in the release of the bacteriocin cloacin DF13 into the culture medium. These BRP derivatives can be more efficiently used for extracellular production of proteins by E. coli than can the original BRP.
Collapse
Affiliation(s)
- F J van der Wal
- Department of Molecular Microbiology, BioCentrum Amsterdam Faculty of Biology, Vrije Universiteit, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
van der Wal FJ, Luirink J, Oudega B. Bacteriocin release proteins: mode of action, structure, and biotechnological application. FEMS Microbiol Rev 1995; 17:381-99. [PMID: 8845188 DOI: 10.1111/j.1574-6976.1995.tb00221.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism by which Gram-negative bacteria like Escherichia coli secrete bacteriocins into the culture medium is unique and quite different from the mechanism by which other proteins are translocated across the two bacterial membranes, namely through the known branches of the general secretory pathway. The release of bacteriocins requires the expression and activity of a so-called bacteriocin release protein and the presence of the detergent-resistant phospholipase A in the outer membrane. The bacteriocin release proteins are highly expressed small lipoproteins which are synthesized with a signal peptide that remains stable and which accumulates in the cytoplasmic membrane after cleavage. The combined action of these stable, accumulated signal peptides, the lipid-modified mature bacteriocin release proteins (BRPs) and phospholipase A cause the release of bacteriocins. The structure and mode of action of these BRPs as well as their application in the release of heterologous proteins by E. coli is described in this review.
Collapse
Affiliation(s)
- F J van der Wal
- Department of Molecular Microbiology, IMBW, BioCentrum Amsterdam, Faculty of Biology, The Netherlands
| | | | | |
Collapse
|
7
|
Application of the pCloDF13 bacteriocin release protein in the release of heterologous proteins by Escherichia coli : Production of plant α-galactosidase. Biotechnol Lett 1995. [DOI: 10.1007/bf00129010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hill CW, Sandt CH, Vlazny DA. Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol Microbiol 1994; 12:865-71. [PMID: 7934896 DOI: 10.1111/j.1365-2958.1994.tb01074.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Rhs family comprises a set of composite elements found in the chromosomes of many natural Escherichia coli strains. Five Rhs elements occur in strain K-12. The most prominent Rhs component is a giant core open reading frame (core ORF) whose features are suggestive of a cell surface ligand-binding protein. This hypothetical protein contains a peptide motif, xxGxxxRYxYDxxGRL(I or T)xxxx, that is repeated 28 times. A similar repeated motif is found in a Bacillus subtilis wall-associated protein. The Rhs core ORFs consist of two distinct parts: a large N-terminal core that is conserved in all Rhs elements, and a smaller C-terminus that is highly variable. Distinctive G+C contents of Rhs components indicate that the elements have a recent origin outside the E. coli species, and that they are composites assembled from segments with very different evolutionary histories. The Rhs cores fall into three sub-families that are mutually more than 20% divergent. Downstream of the core ORF is a second, much shorter ORF. Like the adjacent core extension, these are highly variable. In most examples, the hypothetical product of this ORF has a candidate signal sequence for transport across the cytoplasmic membrane. Another Rhs component, the 1.3 kb H-rpt, has features typical of insertion sequences. Structures homologous to H-rpt have been detected in other bacterial genera, such as Vibrio and Salmonella, where they are associated with loci that determine O-antigen variation.
Collapse
Affiliation(s)
- C W Hill
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | |
Collapse
|
9
|
Oudega B, Clark D, Stegehuis F, Majoor MJ, Luirink J. A lipoprotein signal peptide plus a cysteine residue at the amino-terminal end of the periplasmic protein beta-lactamase is sufficient for its lipid modification, processing and membrane localization in Escherichia coli. FEMS Microbiol Lett 1993; 108:353-9. [PMID: 8514122 DOI: 10.1111/j.1574-6968.1993.tb06127.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
By genetic exchange and in vitro mutagenesis a hybrid beta-lactamase was constructed that contained the pCloDF13-encoded bacteriocin release protein signal peptide plus a cysteine residue coupled to the mature portion of beta-lactamase. Immunoblotting, labelling with [3H]palmitate in the presence and absence of globomycin, and pulse-chase experiments revealed that this hybrid construct is modified with lipid and processed into a lipid-modified beta-lactamase. Subcellular localization studies revealed that this hybrid is localized both in the cytoplasmic and outer membranes of Escherichia coli cells. A mutant derivative with an incomplete lipobox (LVG instead of LVAC+1) was not processed and was found in the cytoplasmic membranes.
Collapse
Affiliation(s)
- B Oudega
- Department of Molecular Microbiology, Faculty of Biology, Free University, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Oudega B, Mol O, van Ulsen P, Stegehuis F, van der Wal FJ, Luirink J. Escherichia coli SecB, SecA, and SecY proteins are required for expression and membrane insertion of the bacteriocin release protein, a small lipoprotein. J Bacteriol 1993; 175:1543-7. [PMID: 8444816 PMCID: PMC193245 DOI: 10.1128/jb.175.5.1543-1547.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The SecB, SecA, and SecY dependency of a small outer membrane lipoprotein in Escherichia coli, the bacteriocin release protein (BRP), was studied. The detrimental effect of BRP expression on the culture turbidity (quasi-lysis) was strongly reduced in the sec mutants. Immunoblotting and radioactive labeling experiments showed that the expression, membrane insertion, and processing of the BRP precursor are dependent on SecB, SecA, and SecY. Labeling experiments with hybrid BRP gene constructs revealed that the mature part of the BRP precursor and not its stable signal sequence is important for its SecB dependency.
Collapse
Affiliation(s)
- B Oudega
- Department of Molecular Microbiology, Faculty of Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
van der Wal FJ, Oudega B, Kater MM, ten Hagen-Jongman CM, de Graaf FK, Luirink J. The stable BRP signal peptide causes lethality but is unable to provoke the translocation of cloacin DF13 across the cytoplasmic membrane of Escherichia coli. Mol Microbiol 1992; 6:2309-18. [PMID: 1406270 DOI: 10.1111/j.1365-2958.1992.tb01406.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bacteriocin release protein (BRP) mediates the secretion of cloacin DF13. The BRP precursor is slowly processed to yield the mature BRP and its stable signal peptide which is also involved in cloacin DF13 secretion. The function of the stable BRP signal peptide was analysed by constructing two plasmids. First, the stable BRP signal peptide was fused to the murein lipoprotein and, second, a stop codon was introduced after the BRP signal sequence. Exchange of the unstable murein lipoprotein signal peptide for the stable BRP signal peptide resulted in an accumulation of precursors of the hybrid murein lipoprotein. This indicated that the BRP signal peptide, as part of this hybrid precursor, is responsible for the slow processing. The stable BRP signal peptide itself was not able to direct the transfer of cloacin DF13 into the periplasmic space or into the culture medium. Over-expression of the BRP signal peptide was lethal and caused 'lysis'. Subcellular fractionation experiments revealed that the BRP signal peptide is located exclusively in the cytoplasmic membrane whereas the mature BRP, targeted by either the stable BRP signal peptide or the unstable Lpp signal peptide, is located in both the cytoplasmic and outer membrane. These results are in agreement with the hypothesis that the stable signal peptide and the mature BRP together are required for the passage of cloacin DF13 across the cell envelope.
Collapse
Affiliation(s)
- F J van der Wal
- Department of Molecular Microbiology, Faculty of Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Gennity JM, Kim H, Inouye M. Structural determinants in addition to the amino-terminal sorting sequence influence membrane localization of Escherichia coli lipoproteins. J Bacteriol 1992; 174:2095-101. [PMID: 1551832 PMCID: PMC205825 DOI: 10.1128/jb.174.7.2095-2101.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The lipid-modified nine-residue amino-terminal sequence of the mature form of the major outer membrane lipoprotein of Escherichia coli contains information that is responsible for sorting to either the inner or outer membrane. Fusion of this sorting sequence to beta-lactamase is sufficient for localization of the resultant lipo-beta-lactamase to the outer membrane (J. Ghrayeb and M. Inouye, J. Biol. Chem. 259:463-467, 1984). Substitution of the serine adjacent to the amino-terminal lipid-modified cysteine residue of the sorting sequence with the negatively charged residue aspartate causes inner membrane localization (K. Yamaguchi, F. Yu, and M. Inouye, Cell 53:423-432, 1988). Fusion of the aspartate-containing nine-residue inner membrane localization signal to the normally outer membrane lipoprotein bacteriocin release protein does cause partial localization to the inner membrane. However, a single replacement of the glutamine adjacent to the amino-terminal lipid-modified cysteine residue of bacteriocin release protein with aspartate causes no inner membrane localization. Therefore, an aspartate residue itself lacks the information necessary for inner membrane sorting when removed from the structural context provided by the additional eight residues of the sorting sequence. Although the aspartate-containing inner membrane sorting sequence causes an almost quantitative localization to the inner membrane when fused to the otherwise soluble protein beta-lactamase, this sequence cannot prevent significant outer membrane localization when fused to proteins (bacteriocin release protein and OmpA) normally found in the outer membrane. Therefore, structural determinants in addition to the amino-terminal sorting sequence influence the membrane localization of lipoproteins.
Collapse
Affiliation(s)
- J M Gennity
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854-5635
| | | | | |
Collapse
|
13
|
Luirink J, Duim B, de Gier JW, Oudega B. Functioning of the stable signal peptide of the pCloDF13-encoded bacteriocin release protein. Mol Microbiol 1991; 5:393-9. [PMID: 2041475 DOI: 10.1111/j.1365-2958.1991.tb02121.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pCloDF13-encoded bacteriocin release protein (BRP) is a lipoprotein which is synthesized as a precursor with an amino-terminal signal peptide that appears to be stable after cleavage. The role of the stable signal peptide in the functioning of the BRP was studied with respect to the release of cloacin DF13, 'lysis' and leakage of periplasmic proteins. The BRP gene fragment encoding the stable signal peptide was replaced by a fragment encoding the unstable peptide of the murein lipoprotein (Lpp). The resulting hybrid protein was normally acylated and processed by signal peptidase II, leaving no stable signal peptide in the cells. Expression of the hybrid protein did not result in the specific release of cloacin DF13, whereas 'lysis' and the release of periplasmic enzymes were unaffected. These results indicated a role for the stable BRP signal peptide in the translocation of cloacin DF13 across the cytoplasmic membrane.
Collapse
Affiliation(s)
- J Luirink
- Department of Molecular Microbiology, Faculty of Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
14
|
Abstract
Covalent modification of membrane proteins with lipids appears to be ubiquitous in all living cells. The major outer membrane (Braun's) lipoprotein of E. coli, the prototype of bacterial lipoproteins, is first synthesized as a precursor protein. Analysis of signal sequences of 26 distinct lipoprotein precursors has revealed a consensus sequence of lipoprotein modification/processing site of Leu-(Ala, Ser)-(Gly, Ala)-Cys at -3 to +1 positions which would represent the cleavage region of about three-fourth of all lipoprotein signal sequences in bacteria. Unmodified prolipoprotein with the putative consensus sequence undergoes sequential modification and processing reactions catalyzed by glyceryl transferase, O-acyl transferase(s), prolipoprotein signal peptidase (signal peptidase II), and N-acyl transferase to form mature lipoprotein. Like all exported proteins, the export of lipoprotein requires functional SecA, SecY, and SecD proteins. Thus all precursor proteins are exported through a common pathway accessible to both signal peptidase I and signal peptidase II. The rapidly increasing list of lipid-modified proteins in both prokaryotic as well as eukaryotic cells indicates that lipoproteins comprise a diverse group of structurally and functionally distinct proteins. They share a common structural feature which is derived from a common biosynthetic pathway.
Collapse
Affiliation(s)
- S Hayashi
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | |
Collapse
|
15
|
Witte A, Bläsi U, Halfmann G, Szostak M, Wanner G, Lubitz W. Phi X174 protein E-mediated lysis of Escherichia coli. Biochimie 1990; 72:191-200. [PMID: 2143087 DOI: 10.1016/0300-9084(90)90145-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacteriophage PhiX174 encodes a single lysis gene, E, the function of which is necessary and sufficient to induce lysis of Escherichia coli. Here we present a novel model for E-lysis: physiological, genetic and biochemical data are presented which suggest that a transmembrane tunnel penetrating the inner and outer membrane is formed during the lytic action of protein E. Moreover, using high magnification scanning and transmission electron microscopy in this study, it was possible to visualize the transmembrane lysis structure directly.
Collapse
Affiliation(s)
- A Witte
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Cavard D, Lazdunski C, Howard SP. The acylated precursor form of the colicin A lysis protein is a natural substrate of the DegP protease. J Bacteriol 1989; 171:6316-22. [PMID: 2681163 PMCID: PMC210505 DOI: 10.1128/jb.171.11.6316-6322.1989] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The acylated precursor form of the colicin A lysis protein (pCalm) is specifically cleaved by the DegP protease into two acylated fragments of 6 and 4.5 kilodaltons (kDa). This cleavage was observed after globomycin treatment, which inhibits the processing of pCalm into mature colicin A lysis protein (Cal) and the signal peptide. The cleavage took place in lpp, pldA, and wild-type strans carrying plasmids which express the lysis protein following SOS induction and also in cells containing a plasmid which expresses it under the control of the tac promoter. Furthermore, the DegP protease was responsible for the production of two acylated Cal fragments of 3 and 2.5 kDa in cells carrying plasmids which overproduce the Cal protein, without treatment with globomycin. DegP could also cleave the acylated precursor form of a mutant Cal protein containing a substitution in he amino-terminal portion of the protein, but not that of a mutant Cal containing a frameshift mutation in its carboxyl-terminal end. The functions of Cal in causing protein release, quasi-lysis, and lethality were increased in degP41 cells, suggesting that mature Cal was produced in higher amounts in the mutant than in the wild type. These effects were limited in cells deficient in phospholipase A. Interactions between the DegP protease and phospholipase A were suggested by the characteristics of degP pldA double mutants.
Collapse
Affiliation(s)
- D Cavard
- Centre de Biochimie Biologie Moléculaire du Centre National de la Recherche Scientifique, Marseille, France
| | | | | |
Collapse
|
17
|
Luirink J, Clark DM, Ras J, Verschoor EJ, Stegehuis F, de Graaf FK, Oudega B. pCloDF13-encoded bacteriocin release proteins with shortened carboxyl-terminal segments are lipid modified and processed and function in release of cloacin DF13 and apparent host cell lysis. J Bacteriol 1989; 171:2673-9. [PMID: 2651413 PMCID: PMC209951 DOI: 10.1128/jb.171.5.2673-2679.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
By oligonucleotide-directed mutagenesis, stop codon mutations were introduced at various sites in the pCloDF13-derived bacteriocin release protein (BRP) structural gene. The expression, lipid modification (incorporation of [3H]palmitate), and processing (in the presence and absence of globomycin) of the various carboxyl-terminal shortened BRPs were analyzed by a special electrophoresis system and immunoblotting with an antiserum raised against a synthetic BRP peptide, and their functioning with respect to release of cloacin DF13, lethality, and apparent host cell lysis were studied in Sup-, supF, and supP strains of Escherichia coli. All mutant BRPs were stably expressed, lipid modified, and processed by signal peptidase II, albeit with different efficiencies. The BRP signal peptide appeared to be extremely stable and accumulated in induced cells. Full induction of the mutant BRPs, including the shortest containing only 4 amino acid residues of the mature polypeptide, resulted in phospholipase A-dependent and Mg2+-suppressible apparent cell lysis. The extent of this lysis varied with the mutant BRP used. Induction of all mutant BRPs also prevented colony formation, which appeared to be phospholipase A independent. One shortened BRP, containing 20 amino acid residues of the mature polypeptide, was still able to bring about the release of cloacin DF13. The results indicated that the 8-amino-acid carboxyl-terminal segment of the BRP contains a strong antigenic determinant and that a small segment between amino acid residues 17 and 21, located in the carboxyl-terminal half of the BRP, is important for release of cloacin DF13. Either the stable signal peptide or the acylated amino-terminal BRP fragments (or both) are involved in host cell lysis and lethality.
Collapse
Affiliation(s)
- J Luirink
- Department of Molecular Microbiology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Luirink J, Jong J, Putten AJ, Graaf FK, Oudega B. Functioning of a hybrid BRP-β-lactamase protein in the release of cloacin DF13 and lysis ofEscherichia colicells. FEMS Microbiol Lett 1989. [DOI: 10.1111/j.1574-6968.1989.tb03012.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
van Putten AJ, Stegehuis F, van Bergen en Henegouwen PM, De Graaf FK, Oudega B. Alterations in the carboxy-terminal half of cloacin destabilize the protein and prevent its export by Escherichia coli. Mol Microbiol 1988; 2:553-62. [PMID: 3054421 DOI: 10.1111/j.1365-2958.1988.tb00063.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several overlapping carboxy-terminal and internal deletions were constructed in the cloacin structural gene. The expression, the binding of the cloacin DF13 immunity protein and the release into the culture medium of the mutant cloacin polypeptides were studied by immunoblotting and ELISAs. Minor alterations at the carboxy-terminal end of the cloacin did not affect protein expression, stability or release to a large extent, but larger carboxy-terminal deletions strongly destabilized the protein and no release was observed. The removal of a particular region within the carboxy-terminal portion of cloacin strongly destabilized the polypeptide and made it a target for proteolytic degradation. Binding of immunity protein did not affect stability and release of the mutant polypeptides. By using immunoelectron microscopy, the polypeptides that were not exported were located in the cytoplasm of producing cells. Large aggregates of these mutant polypeptides were not observed in the cytoplasm: the polypeptides were present in a soluble form.
Collapse
Affiliation(s)
- A J van Putten
- Department of Molecular Microbilogy, Vrije Universiteit, Amsterdam
| | | | | | | | | |
Collapse
|
20
|
Luirink J, Hayashi S, Wu HC, Kater MM, de Graaf FK, Oudega B. Effect of a mutation preventing lipid modification on localization of the pCloDF13-encoded bacteriocin release protein and on release of cloacin DF13. J Bacteriol 1988; 170:4153-60. [PMID: 3045086 PMCID: PMC211422 DOI: 10.1128/jb.170.9.4153-4160.1988] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The pCloDF13-encoded bacteriocin release protein (BRP; Mr 2,871) is essential for the translocation of cloacin DF13 across the cell envelope of producing Escherichia coli cells. Overproduction of this BRP provokes lysis (quasilysis) of cells. Construction and analysis of a hybrid BRP-beta-lactamase protein (BRP-Bla) demonstrated that the BRP contains a lipid modified cysteine residue at its amino terminus and is mainly located in the outer membrane. The significance of lipid modification for the localization and functioning of the BRP was investigated. Site-directed mutagenesis was used to substitute the cysteine residue for a glycine residue in the lipobox of the BRP and the BRP-Bla protein. The mutated BRP was unable to bring about the release of cloacin DF13 and could not provide the lysis (quasilysis) of host cells. However, the mutated BRP strongly inhibited the colony-forming ability of the cells, indicating that induction of the mutated protein still affected cell viability. In contrast to the wild-type BRP-Bla protein, the mutated BRP-Bla protein was mainly located in the cytoplasmic membrane, indicating that the mutation prevented the proper localization of the protein. The results indicated that lipid modification of the BRP is required for its localization and release of cloacin DF13, but not for its lethality to host cells.
Collapse
Affiliation(s)
- J Luirink
- Department of Molecular Microbiology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Pugsley AP. The immunity and lysis genes of ColN plasmid pCHAP4. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:335-41. [PMID: 3280946 DOI: 10.1007/bf00330613] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleotide sequencing of part of the plasmid pCHAP4, which encodes the ca. 42,000 Da putative poreforming colicin N, confirmed previous results indicating that the colicin N immunity gene (cni) and the colicin release or lysis gene (cnl) are located immediately downstream from the colicin N structural gene (cna) in the order cna-cni-cnl. The cni gene is transcribed in the opposite direction to cna and probably encodes an Mr 15239 Da protein. The putative immunity protein was detected among the [35S]methionine-labelled proteins produced by minicells carrying cni cloned under lac promoter control, and when the gene was subcloned into expression vectors under the control of a bacteriophage T7 promoter. Deletion of the region immediately upstream from cni completely abolished colicin N immunity, presumably because the natural promoter had been deleted. cnl is in the same operon as cna, and encodes a typical Col plasmid pro-lysis protein comprising a signal peptide and a 34 residue mature polypeptide with high homology to all but one of the other known Col lysis proteins, including the fatty acylated amino-terminal cysteine residue which was specifically labelled with 3H-palmitate. Cell fractionation studies indicated that the cnl gene product was located predominantly in the outer membrane.
Collapse
Affiliation(s)
- A P Pugsley
- Unité de Génétique Moléculaire, Institut Pasteur, Paris, France
| |
Collapse
|