1
|
Atkinson MR, Blauwkamp TA, Bondarenko V, Studitsky V, Ninfa AJ. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation. J Bacteriol 2002; 184:5358-63. [PMID: 12218022 PMCID: PMC135341 DOI: 10.1128/jb.184.19.5358-5363.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 06/24/2002] [Indexed: 11/20/2022] Open
Abstract
The nitrogen-regulated genes and operons of the Ntr regulon of Escherichia coli are activated by the enhancer-binding transcriptional activator NRI approximately P (NtrC approximately P). Here, we examined the activation of the glnA, glnK, and nac promoters as cells undergo the transition from growth on ammonia to nitrogen starvation and examined the amplification of NRI during this transition. The results indicate that the concentration of NRI is increased as cells become starved for ammonia, concurrent with the activation of Ntr genes that have less- efficient enhancers than does glnA. A diauxic growth pattern was obtained when E. coli was grown on a low concentration of ammonia in combination with arginine as a nitrogen source, consistent with the hypothesis that Ntr genes other than glnA become activated only upon amplification of the NRI concentration.
Collapse
Affiliation(s)
- Mariette R Atkinson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
2
|
Vogel SK, Schulz A, Rippe K. Binding affinity of Escherichia coli RNA polymerase*sigma54 holoenzyme for the glnAp2, nifH and nifL promoters. Nucleic Acids Res 2002; 30:4094-101. [PMID: 12235394 PMCID: PMC137104 DOI: 10.1093/nar/gkf519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli RNA polymerase associated with the sigma54 factor (RNAP*sigma54) is a holoenzyme form that transcribes a special class of promoters not recognized by the standard RNA polymerase*sigma70 com plex. Promoters for RNAP*sigma54 vary in their overall 'strength' and show differences in their response to the presence of DNA curvature between enhancer and promoter. In order to examine whether these effects are related to the promoter affinity, we have determined the equilibrium dissociation constant K(d) for the binding of RNAP*sigma54 to the three promoters glnAp2, nifH and nifL. Binding studies were conducted by monitoring the changes in fluorescence anisotropy upon titrating RNAP*sigma54 to carboxyrhodamine-labeled DNA duplexes. For the glnAp2 and nifH promoters similar values of K(d) = 0.94 +/- 0.55 nM and K(d) = 0.85 +/- 0.30 nM were determined at physiological ionic strength, while the nifL promoter displayed a significantly weaker affinity with K(d) = 8.5 +/- 1.9 nM. The logarithmic dependence of K(d) on the ionic strength I was -Deltalog(K(d))/Deltalog(I) = 6.1 +/- 0.5 for the glnAp2, 5.2 +/- 1.2 for the nifH and 2.1 +/- 0.1 for the nifL promoter. This suggests that the polymerase can form fewer ion pairs with the nifL promoter, which would account for its weaker binding affinity.
Collapse
Affiliation(s)
- Sabine K Vogel
- Deutsches Krebsforschungszentrum, Biophysik der Makromoleküle (H0500), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
3
|
Ninfa AJ, Jiang P, Atkinson MR, Peliska JA. Integration of antagonistic signals in the regulation of nitrogen assimilation in Escherichia coli. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:31-75. [PMID: 10842746 DOI: 10.1016/s0070-2137(01)80002-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- A J Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | | | | | |
Collapse
|
4
|
Abstract
PII proteins, found in Bacteria, Archaea and plants, help coordinate carbon and nitrogen assimilation by regulating the activity of signal transduction enzymes in response to diverse signals. Recent studies of bacterial PII proteins have revealed a solution to the signal transduction problem of how to coordinate multiple receptors in response to diverse stimuli yet permit selective control of these receptors under various conditions and allow adaptation of the system as a whole to long-term stimulation.
Collapse
Affiliation(s)
- A J Ninfa
- Dept of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA.
| | | |
Collapse
|
5
|
Wu SQ, Chai W, Lin JT, Stewart V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5al. J Bacteriol 1999; 181:7274-84. [PMID: 10572131 PMCID: PMC103690 DOI: 10.1128/jb.181.23.7274-7284.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella oxytoca can assimilate nitrate and nitrite by using enzymes encoded by the nasFEDCBA operon. Expression of the nasF operon is controlled by general nitrogen regulation (Ntr) via the NtrC transcription activator and by pathway-specific nitrate and nitrite induction via the NasR transcription antiterminator. This paper reports our analysis of nasR gene expression. We constructed strains bearing single-copy Phi(nasR-lacZ) operon fusions within the chromosomal rhaBAD-rhaSR locus. The expression of DeltarhaBS::[Phi(nasR-lacZ)] operon fusions was induced about 10-fold during nitrogen-limited growth. Induction was reduced in both ntrC and rpoN null mutants, indicating that Ntr control of nasR gene expression requires the NtrC and sigma(N) (sigma(54)) proteins. Sequence inspection of the nasR control region reveals an apparent sigma(N)-dependent promoter but no apparent NtrC protein binding sites. Analysis of site-specific mutations coupled with primer extension analysis authenticated the sigma(N)-dependent nasR promoter. Fusion constructs with only about 70 nucleotides (nt) upstream of the transcription initiation site exhibited patterns of beta-galactosidase expression indistinguishable from Phi(nasR-lacZ) constructs with about 470 nt upstream. Expression was independent of the Nac protein, implying that NtrC is a direct activator of nasR transcription. Together, these results indicate that nasR gene expression does not require specific upstream NtrC-binding sequences, as previously noted for argT gene expression in Salmonella typhimurium (G. Schmitz, K. Nikaido, and G. F.-L. Ames, Mol. Gen. Genet. 215:107-117, 1988).
Collapse
Affiliation(s)
- S Q Wu
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
6
|
Dusha I, Austin S, Dixon R. The upstream region of the nodD3 gene of Sinorhizobium meliloti carries enhancer sequences for the transcriptional activator NtrC. FEMS Microbiol Lett 1999; 179:491-9. [PMID: 10518756 DOI: 10.1111/j.1574-6968.1999.tb08768.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Sinorhizobium meliloti the expression of the nodulation genes nodABC is regulated in response to the level of fixed nitrogen (ammonia). Previous results suggested that the response to the nitrogen status is mediated by the two-component NtrB/NtrC system which controls transcription of the nodD3 gene, encoding a positive regulatory protein for the activation of nodABC transcription. Here we confirm by DNase I footprinting and gel shift assays that NtrC, when phosphorylated by NtrB, is able to interact with the enhancer sequences present upstream of nodD3. A model is proposed whereby NtrC functions to control the transcription from the two promoters in the upstream region of nodD3 in response to nitrogen status.
Collapse
Affiliation(s)
- I Dusha
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, H-6701, Szeged, Hungary.
| | | | | |
Collapse
|
7
|
Abstract
The GlnK and PII signal transduction proteins are paralogues that play distinct roles in nitrogen regulation. Although cells lacking GlnK appear to have normal nitrogen regulation, in the absence of PII, the GlnK protein controls nitrogen assimilation by regulating the activities of the PII receptors glutamine synthetase adenylyltransferase (ATase) and the kinase/phosphatase nitrogen regulator II (NRII or NtrB), which controls transcription from nitrogen-regulated promoters. Here, the wild-type GlnK protein and two mutant forms of GlnK were purified, and their activities were compared with those of PII using purified components. GlnK and PII were observed to have unique properties. Both PII and GlnK were potent activators of the phosphatase activity of NRII, although PII was slightly more active. In contrast, PII was approximately 40-fold more potent than GlnK in the activation of the adenylylation of glutamine synthetase by ATase. While both GlnK and PII were readily uridylylated by the uridylyltransferase activity of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (UTase/UR), only PII approximately UMP was effectively deuridylylated by the UR activity of the UTase/UR. Finally, there were subtle differences in the regulation of GlnK activity by the small molecule effector 2-ketoglutarate compared with the regulation of PII activity by this effector. Altogether, these results suggest that GlnK is unlikely to play a significant role in the regulation of ATase in wild-type cells, and that the main role of GlnK may be to contribute to the regulation of NRII and perhaps additional, unknown receptors in nitrogen-starved cells. Also, the slow deuridylylation of GlnK approximately UMP by the UTase/UR suggests that rapid interconversion of GlnK between uridylylated and unmodified forms is not necessary for GlnK function. One mutant form of GlnK, containing the alteration R47W, was observed to lack specifically the ability to activate the NRII phosphatase in vitro; it was able to be uridylylated by the UTase/UR and to activate the adenylylation activity of ATase. Another mutant form of GlnK, containing the Y51N alteration at the site of uridylylation, was not uridylylated by the UTase/UR and was defective in the activation of both the NRII phosphatase activity and the ATase adenylylation activity.
Collapse
Affiliation(s)
- M R Atkinson
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
8
|
Jovanovic G, Rakonjac J, Model P. In vivo and in vitro activities of the Escherichia coli sigma54 transcription activator, PspF, and its DNA-binding mutant, PspFDeltaHTH. J Mol Biol 1999; 285:469-83. [PMID: 9878422 DOI: 10.1006/jmbi.1998.2263] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription of the phage-shock protein (psp) operon in Escherichia coli is driven by a sigma54 promoter, stimulated by integration host factor and dependent on an upstream, cis-acting sequence and an activator protein, PspF. PspF belongs to the enhancer binding protein family but lacks an N-terminal regulatory domain. Purified PspF is not modified and has an ATPase activity that is increased twofold in the presence of DNA carrying the psp cis-acting sequence. Purified mutant His-tagged PspF that lacks the C-terminal DNA-binding motif has a DNA-independent ATPase activity when present at 30-fold the concentration of the wild-type protein. Both proteins oligomerize in solution in an ATP and DNA-independent manner. The wild-type activator protein, but not the DNA-binding mutant, binds specifically to the cis-acting sequence. Analysis of the sequence protected by PspF demonstrates the presence of two upstream binding sites within the sequence, UAS I and UAS II, which together constitute the psp enhancer. Protection at low protein concentrations is more pronounced and more extensive on a supercoiled DNA than on a linear template. Full expression of the psp operon upon hyperosmotic shock depends on wild-type PspF, but only partially requires the presence of the psp enhancer.
Collapse
Affiliation(s)
- G Jovanovic
- Laboratory of Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10021, USA
| | | | | |
Collapse
|
9
|
He L, Soupene E, Ninfa A, Kustu S. Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 1998; 180:6661-7. [PMID: 9852012 PMCID: PMC107771 DOI: 10.1128/jb.180.24.6661-6667.1998] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Klebsiella pneumoniae, NifA-dependent transcription of nitrogen fixation (nif) genes is inhibited by a flavoprotein, NifL, in the presence of molecular oxygen and/or combined nitrogen. We recently demonstrated that the general nitrogen regulator NtrC is required to relieve NifL inhibition under nitrogen (N)-limiting conditions. We provide evidence that the sole basis for the NtrC requirement is its role as an activator of transcription for glnK, which encodes a PII-like allosteric effector. Relief of NifL inhibition is a unique physiological function for GlnK in that the structurally related GlnB protein of enteric bacteria-apparently a paralogue of GlnK-cannot substitute. Unexpectedly, although covalent modification of GlnK by uridylylation normally occurs under N-limiting conditions, several lines of evidence indicate that uridylylation is not required for relief of NifL inhibition. When GlnK was synthesized constitutively from non-NtrC-dependent promoters, it was able to relieve NifL inhibition in the absence of uridylyltransferase, the product of the glnD gene, and under N excess conditions. Moreover, an altered form of GlnK, GlnKY51N, which cannot be uridylylated due to the absence of the requisite tyrosine, was still able to relieve NifL inhibition.
Collapse
Affiliation(s)
- L He
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | | | | | | |
Collapse
|
10
|
Carmona M, Claverie-Martin F, Magasanik B. DNA bending and the initiation of transcription at sigma54-dependent bacterial promoters. Proc Natl Acad Sci U S A 1997; 94:9568-72. [PMID: 9275163 PMCID: PMC23220 DOI: 10.1073/pnas.94.18.9568] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have examined the effects on transcription initiation of promoter and enhancer strength and of the curvature of the DNA separating these entities on wild-type and mutated enhancer-promoter regions at the Escherichia coli sigma54-dependent promoters glnAp2 and glnHp2 on supercoiled and linear DNA. Our results, together with previously reported observations by other investigators, show that the initiation of transcription on linear DNA requires a single intrinsic or induced bend in the DNA, as well as a promoter with high affinity for sigma54-RNA polymerase, but on supercoiled DNA requires either such a bend or a high affinity promoter but not both. The examination of the DNA sequence of all nif gene activator- or nitrogen regulator I-sigma54 promoters reveals that those lacking a binding site for the integration host factor have an intrinsic single bend in the DNA separating enhancer from promoter.
Collapse
Affiliation(s)
- M Carmona
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
11
|
Feng J, Goss TJ, Bender RA, Ninfa AJ. Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. J Bacteriol 1995; 177:5523-34. [PMID: 7559338 PMCID: PMC177360 DOI: 10.1128/jb.177.19.5523-5534.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nac gene of Klebsiella aerogenes encodes a bifunctional transcription factor that activates or represses the expression of several operons under conditions of nitrogen limitation. In experiments with purified components, transcription from the nac promoter was initiated by sigma 54 RNA polymerase and was activated by the phosphorylated form of nitrogen regulator I (NRI) (NtrC). The activation of the nac promoter required a higher concentration of NRI approximately P than did the activation of the Escherichia coli glnAp2 promoter, and both the promoter and upstream enhancer element contributed to this difference. The nac promoter had a lower affinity for sigma 54 RNA polymerase than did glnAp2, and uninitiated competitor-resistant transcription complexes formed at the nac promoter decayed to competitor-sensitive complexes at a greater rate than did similar complexes formed at the glnAp2 promoter. The nac enhancer, consisting of a single high-affinity NRI-binding site and an adjacent site with low affinity for NRI, was less efficient in stimulating transcription than was the glnA enhancer, which consists of two adjacent high-affinity NRI-binding sites. When these binding sites were exchanged, transcription from the nac promoter was increased and transcription from the glnAp2 promoter was decreased at low concentrations of NRI approximately P. Another indication of the difference in the efficiency of these enhancers is that although activation of a nac promoter construct containing the glnA enhancer was relatively insensitive to subtle alterations in the position of these sites relative to the position of the promoter, activation of the natural nac promoter or a nac promoter construct containing only a single high-affinity NRI approximately P binding site was strongly affected by subtle alterations in the position of the NRI approximately P binding site(s), indicating a face-of-the-helix dependency for activation.
Collapse
Affiliation(s)
- J Feng
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
12
|
Wu J, Benson AK, Newton A. Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 1995; 177:3241-50. [PMID: 7768824 PMCID: PMC177017 DOI: 10.1128/jb.177.11.3241-3250.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Biosynthesis of the Caulobacter crescentus polar flagellum requires the expression of a large number of flagellar (fla) genes that are organized in a regulatory hierarchy of four classes (I to IV). The timing of fla gene expression in the cell cycle is determined by specialized forms of RNA polymerase and the appearance and/or activation of regulatory proteins. Here we report an investigation of the role of the C. crescentus transcriptional regulatory protein FlbD in the activation of sigma 54-dependent class III and class IV fla genes of the hierarchy by reconstituting transcription from these promoters in vitro. Our results demonstrate that transcription from promoters of the class III genes flbG, flgF, and flgI and the class IV gene fliK by Escherichia coli E sigma 54 is activated by FlbD or the mutant protein FlbDS140F (where S140F denotes an S-to-F mutation at position 140), which we show here has a higher potential for transcriptional activation. In vitro studies of the flbG promoter have shown previously that transcriptional activation by the FlbD protein requires ftr (ftr for flagellar transcription regulation) sequence elements. We have now identified multiple ftr sequences that are conserved in both sequence and spatial architecture in all known class III and class IV promoters. These newly identified ftr elements are positioned ca. 100 bp from the transcription start sites of each sigma 54-dependent fla gene promoter, and our studies indicate that they play an important role in controlling the levels of transcription from different class III and class IV promoters. We have also used mutational analysis to show that the ftr sequences are required for full activation by the FlbD protein both in vitro and in vivo. Thus, our results suggest that FlbD, which is encoded by the class II flbD gene, is a global regulator that activates the cell cycle-regulated transcription from all identified sigma 54-dependent promoters in the C. crescentus fla gene hierarchy.
Collapse
Affiliation(s)
- J Wu
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
13
|
Abstract
The enteric NtrC (NRI) protein has been the paradigm for a class of bacterial enhancer-binding proteins (EBPs) that activate transcription of RNA polymerase containing the sigma 54 factor. Activators in the NtrC class are characterized by essentially three properties: (i) they bind to sites distant from the promoters that they activate (> 100 bp upstream of the transcriptional start site), (ii) they contain a conserved nucleotide-binding fold and exhibit ATPase activity that is required for activation, and (iii) they activate the sigma 54 RNA polymerase. We have characterized the NtrC protein from a photosynthetic bacterium, Rhodobacter capsulatus, which represents a metabolically versatile group of bacteria found in aquatic environments. We have shown that the R. capsulatus NtrC protein (RcNtrC) binds to two tandem sites that are distant from promoters that it activates, nifA1 and nifA2. These tandem binding sites are shown to be important for RcNtrC-dependent nitrogen regulation in vivo. Moreover, the conserved nucleotide-binding fold of RcNtrC is required to activate nifA1 and nifA2 but is not required for DNA binding of RcNtrC to upstream activation sequences. However, nifA1 and nifA2 genes do not require the sigma 54 for activation and do not contain the highly conserved nucleotides that are present in all sigma 54-type, EBP-activated promoters. Thus, the NtrC from this photosynthetic bacterium represents a novel member of the class of bacterial EBPs. It is probable that this class of EBPs is more versatile in prokaryotes than previously envisioned.
Collapse
Affiliation(s)
- D Foster-Hartnett
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | | | |
Collapse
|
14
|
Hopper S, Babst M, Schlensog V, Fischer H, Hennecke H, Böck A. Regulated expression in vitro of genes coding for formate hydrogenlyase components of Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32211-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Lee HS, Narberhaus F, Kustu S. In vitro activity of NifL, a signal transduction protein for biological nitrogen fixation. J Bacteriol 1993; 175:7683-8. [PMID: 8244938 PMCID: PMC206926 DOI: 10.1128/jb.175.23.7683-7688.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the free-living diazotroph Klebsiella pneumoniae, the NifA protein is required for transcription of all nif (nitrogen fixation) operons except the regulatory nifLA operon itself. NifA activates transcription of nif operons by the alternative holoenzyme form of RNA polymerase, sigma 54 holoenzyme. In vivo, NifL is known to antagonize the action of NifA in the presence of molecular oxygen or combined nitrogen. We now demonstrate inhibition by NifL in vitro in both a coupled transcription-translation system and a purified transcription system. Crude cell extracts containing NifL inhibit NifA activity in the coupled system, as does NifL that has been solubilized with urea and allowed to refold. Inhibition is specific to NifA in that it does not affect activation by NtrC, a transcriptional activator homologous to NifA, or transcription by sigma 70 holoenzyme. Renatured NifL also inhibits transcriptional activation by a maltose-binding protein fusion to NifA in a purified transcription system, indicating that no protein factor other than NifL is required. Since inhibition in the purified system persists anaerobically, our NifL preparation does not sense molecular oxygen directly.
Collapse
Affiliation(s)
- H S Lee
- Department of Plant Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
16
|
Porter SC, North AK, Wedel AB, Kustu S. Oligomerization of NTRC at the glnA enhancer is required for transcriptional activation. Genes Dev 1993; 7:2258-73. [PMID: 7901122 DOI: 10.1101/gad.7.11.2258] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To activate transcription of the glnA gene, the dimeric NTRC protein (nitrogen regulatory protein C) of enteric bacteria binds to an enhancer located approximately 100 bp upstream of the promoter. The enhancer is composed of two binding sites for NTRC that are three turns of the DNA helix apart. One role of the enhancer is to tether NTRC in high local concentration near the promoter to allow for its frequent interaction with sigma 54 holoenzyme by DNA looping. We have found that a second role of the enhancer is to ensure oligomerization of NTRC into a complex of at least two dimers that is required for transcriptional activation. Formation of this complex is greatly facilitated by a protein-protein interaction between NTRC dimers that is increased when the protein is phosphorylated.
Collapse
Affiliation(s)
- S C Porter
- Department of Plant Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
17
|
Foster-Hartnett D, Cullen PJ, Gabbert KK, Kranz RG. Sequence, genetic, and lacZ fusion analyses of a nifR3-ntrB-ntrC operon in Rhodobacter capsulatus. Mol Microbiol 1993; 8:903-14. [PMID: 8355615 DOI: 10.1111/j.1365-2958.1993.tb01636.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transcription of Rhodobacter capsulatus genes encoding the nitrogenase polypeptides (nifHDK) is repressed by fixed nitrogen and oxygen. Regulatory genes required to sense and relay the nitrogen status of the cell are glnB, ntrB (nifR2), and ntrC (nifR1). R. capsulatus nifA1 and nifA2 require ntrC for activation when fixed nitrogen is limiting. The polypeptides encoded by nifA1 and nifA2 along with the alternate sigma factor RpoN activate nifHDK and the remaining nif genes in the absence of both fixed nitrogen and oxygen. In this study we report the sequence and genetic analysis of the previously identified nifR3-ntrB-ntrC regulatory locus. nifR3 is predicted to encode a 324-amino-acid protein with significant homology to an upstream open reading frame cotranscribed with the Escherichia coli regulatory gene, fis. Analysis of ntrC-lacZ fusions and complementation data indicate that nifR3 ntrBC constitute a single operon. nifR3-lacZ fusions are expressed only when lacZ is in the proper reading frame with the predicted nifR3 gene product. Tn5, a kanamycin-resistance cassette, and miniMu insertions in nifR3 are polar on ntrBC (required for nif transcription). This gene organization suggests that the nifR3 gene product may be involved in nitrogen regulation, although nifR3 is not stringently required for nitrogen fixation when ntrBC are present on a multicopy plasmid. In addition, a R. capsulatus strain with a 22-nucleotide insert in the chromosomal nifR3 gene was constructed. This nifR3 strain is able to fix nitrogen and activate nifA1 and nifA2 genes, again supporting the hypothesis that nifR3 is not stringently required for ntrC-dependent gene activation in R. capsulatus.
Collapse
Affiliation(s)
- D Foster-Hartnett
- Department of Biology, Washington University, St Louis, Missouri 63130
| | | | | | | |
Collapse
|
18
|
Lee HS, Berger DK, Kustu S. Activity of purified NIFA, a transcriptional activator of nitrogen fixation genes. Proc Natl Acad Sci U S A 1993; 90:2266-70. [PMID: 8460132 PMCID: PMC46067 DOI: 10.1073/pnas.90.6.2266] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The NIFA protein activates transcription of nitrogen fixation (nif) operons by the sigma 54-holoenzyme form of RNA polymerase. We purified active NIFA from Klebsiella pneumoniae in the form of a maltose-binding protein (MBP)-NIFA fusion; proteolytic release of MBP yielded inactive and insoluble NIFA. MBP-NIFA activated transcription from the nifHDK promoter in a purified transcription system. Like the related transcriptional activator NTRC, MBP-NIFA catalyzed the ATP-dependent isomerization of closed complexes between sigma 54-holoenzyme and a promoter to open complexes. MBP-NIFA had a broader nucleotide specificity than NTRC, being able to utilize pyrimidine in addition to purine nucleoside triphosphates. Both MBP-NIFA and a purified C-terminal fragment of NIFA bound to the upstream activation sequence for the nifHDK promoter, as assessed by DNAse I footprinting. When assays were performed at 37 degrees C instead of the usual 30 degrees C, transcriptional activation, open complex formation, and DNA binding by MBP-NIFA were all abolished, consistent with the known heat lability of NIFA. However, the purified C-terminal fragment of NIFA still bound the upstream activation sequence at 37 degrees C, indicating that the function of the helix-turn-helix DNA-binding motif is not inherently heat-labile.
Collapse
Affiliation(s)
- H S Lee
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | |
Collapse
|
19
|
Atkinson MR, Ninfa AJ. Characterization of Escherichia coli glnL mutations affecting nitrogen regulation. J Bacteriol 1992; 174:4538-48. [PMID: 1352516 PMCID: PMC206249 DOI: 10.1128/jb.174.14.4538-4548.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen regulator II (NRII), the product of the Escherichia coli glnL (ntrB) gene, regulates the activation of transcription of glnA and the Ntr regulon by catalyzing the phosphorylation and dephosphorylation of the transcription factor NRI. Previous results have indicated that under conditions of nitrogen excess, transcriptional activation is prevented by an NRI-phosphate phosphatase activity that is observed when NRII and another signal transduction protein known as PII (the glnB product) interact. The availability of PII for this interaction is controlled by a uridylytransferase/uridylyl-removing enzyme, encoded by glnD, that reversibly modifies PII in response to intracellular signals of nitrogen availability. Here we describe the isolation and characterization of missense mutations in glnL that suppress the Ntr- phenotype resulting from a leaky glnD mutation. The regulation of glnA expression in the pseudorevertants was found to vary from complete insensitivity to ammonia in some strains (GlnC phenotype) to nearly normal regulation by ammonia in other strains. Sequence analysis indicated that in 16 instances suppression was due to point mutations at 14 different sites; 10 different mutations resulting in a variety of phenotypes were identified in a cluster extending from codons 111 to 154 flanking the site of NRII autophosphorylation at His-139. Complementation experiments with multicopy plasmids encoding NRII or PII showed that suppression by GlnC glnL alleles was eliminated upon introduction of the plasmid encoding NRII but was not affected by introduction of the plasmid encoding PII. Conversely, suppression by certain glnL alleles that resulted in regulated expression of glnA was eliminated upon introduction of either the plasmid encoding NRII or that encoding PII. We hypothesize that mutants of the latter type result in a subtle perturbation of the NRII-PII interaction and suggest two possible mechanisms for their effects.
Collapse
Affiliation(s)
- M R Atkinson
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
20
|
Whitehall S, Austin S, Dixon R. DNA supercoiling response of the sigma 54-dependent Klebsiella pneumoniae nifL promoter in vitro. J Mol Biol 1992; 225:591-607. [PMID: 1602472 DOI: 10.1016/0022-2836(92)90388-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription from the sigma 54-dependent Klebsiella pneumoniae nifL and glnAp2 promoters is activated by the general nitrogen regulatory protein NTRC. Unlike the glnAp2 promoter, which is relatively insensitive to changes in DNA supercoiling, transcription from nifL in vitro in a chloride-based buffer is supercoiling-dependent at physiological salt concentrations. The replacement of chloride with an acetate-based buffer decreases the stringency of the nifL supercoiling response, but open complexes formed on linear nifL promoter DNA under these conditions are unstable and less extensive than those found on supercoiled (form I) DNA. We have introduced mutations in particular elements of the nifL promoter that increase its homology to glnAp2. At the wild-type nifL promoter, sigma 54-RNA polymerase makes only limited contacts with the promoter in the absence of NTRC. However, a G to T change at -26 (nifL74) allows the formation of a stable closed complex with sigma 54-holoenzyme on both linear and form I templates in the absence of the activator. The combination of C to T mutations at -3 and -1 (nifL18) increases the A+T rich nature of the melted region and stabilizes open complexes formed on linear DNA. Open complex formation as a function of superhelical density was assessed at each promoter. Formation of open complexes at glnAp2 peaks at -0.024 and declines at higher superhelical densities, whereas at the wild-type nifL promoter, open complex formation peaks at -0.067 and is not detectable at superhelical densities less than -0.032. Both the nifL74 and nifL18 mutations altered the supercoiling response, increasing the ability to form open complexes at low superhelical densities. The presence of the nifL74 and nifL18 mutations in combination further altered the response of the promoter to DNA supercoiling. These observations suggest that the promoter as a whole, and not any one promoter element, mediates the transcriptional response to DNA supercoiling.
Collapse
Affiliation(s)
- S Whitehall
- AFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, U.K
| | | | | |
Collapse
|
21
|
Weiss DS, Batut J, Klose KE, Keener J, Kustu S. The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 1991; 67:155-67. [PMID: 1833069 DOI: 10.1016/0092-8674(91)90579-n] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The NTRC protein of enteric bacteria is an enhancer-binding protein that activates transcription in response to limitation of combined nitrogen. NTRC activates transcription by catalyzing formation of open complexes by RNA polymerase (sigma 54 holoenzyme form) in an ATP-dependent reaction. To catalyze open complex formation, NTRC must be phosphorylated. We show that phosphorylated NTRC has an ATPase activity, and we present biochemical and genetic evidence that NTRC must hydrolyze ATP to catalyze open complex formation. It is likely that all activators of sigma 54 holoenzyme have an ATPase activity.
Collapse
Affiliation(s)
- D S Weiss
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
22
|
Schneider BL, Shiau SP, Reitzer LJ. Role of multiple environmental stimuli in control of transcription from a nitrogen-regulated promoter in Escherichia coli with weak or no activator-binding sites. J Bacteriol 1991; 173:6355-63. [PMID: 1680849 PMCID: PMC208967 DOI: 10.1128/jb.173.20.6355-6363.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nitrogen regulator I (NRI [or NtrC])-phosphate stimulates transcription from the glnAp2 promoter of the glnALG operon in enteric bacteria. Unlike most activators, NRI-phosphate can stimulate transcription without apparent activator binding sites. We observed that when lacZ was controlled by a minimal glnAp2 promoter (without NRI binding sites) in Escherichia coli, lacZ expression was regulated by two different stimuli, the nitrogen status of the medium and the particular amino acid used as a nitrogen source. The latter stimulus did not affect the activity of the wild-type glnAp2 promoter, which has two high-affinity NRI binding sites. We present several lines of evidence that suggest that the concentration of NRI-phosphate limits the activity of the minimal glnAp2 promoter in vivo. Our results also suggest that nitrogen regulator II-dependent phosphorylation of NRI cannot account for the proposed variations in the concentration of NRI-phosphate. Therefore, to account for the regulation of the minimal glnAp2 promoter by two environmental stimuli, we propose that at least two protein kinases phosphorylate NRI during nitrogen-limited growth. We isolated and characterized mutants in which NRI could not stimulate transcription from the minimal glnAp2 promoter but could activate transcription from the wild-type glnAp2 promoter. These mutants could not utilize arginine or proline as a nitrogen source, suggesting that degradation of some nitrogen sources may require transcription from promoters similar to the minimal glnAp2 promoter.
Collapse
Affiliation(s)
- B L Schneider
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688
| | | | | |
Collapse
|
23
|
Popham D, Keener J, Kustu S. Purification of the alternative sigma factor, sigma 54, from Salmonella typhimurium and characterization of sigma 54-holoenzyme. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55025-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Hoover TR, Santero E, Porter S, Kustu S. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11-22. [PMID: 2208275 DOI: 10.1016/0092-8674(90)90284-l] [Citation(s) in RCA: 312] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regulatory protein NIFA activates transcription of nitrogen fixation (nif) operons by the sigma 54 holoenzyme form of RNA polymerase. NIFA from Klebsiella pneumoniae activates transcription from the nifH promoter in vitro; in addition, the integration host factor, IHF, binds between the nifH promoter and an upstream binding site for NIFA. We demonstrate here that IHF greatly stimulates NIFA-mediated activation of nifH transcription in vitro and thus that the two factors are functionally synergistic. Electron micrographs indicate that IHF bends the DNA in the nifH promoter regulatory region. Although IHF binds close to the nifH promoter, it does not directly stimulate binding of sigma 54 holoenzyme. Rather, the IHF-induced bend may facilitate productive contacts between NIFA and sigma 54 holoenzyme that lead to the formation of open complexes. IHF binds to nif promoter regulatory regions from a variety of organisms within the phylum "purple bacteria," suggesting a general ability to stimulate NIFA-mediated activation of nif transcription.
Collapse
Affiliation(s)
- T R Hoover
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
25
|
Chiurazzi M, Iaccarino M. Transcriptional analysis of the glnB-glnA region of Rhizobium leguminosarum biovar viciae. Mol Microbiol 1990; 4:1727-35. [PMID: 2077357 DOI: 10.1111/j.1365-2958.1990.tb00550.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report that the glnB and glnA genes of Rhizobium leguminosarum biovar viciae are preceded by promoters located upstream of each gene. We find the presence of a glnB-glnA and a glnA mRNA whose intracellular concentration changes two- to three-fold when R. leguminosarum is grown on different nitrogen sources. Primer extension analysis shows unique transcriptional initiation sites upstream of glnB and glnA. The glnB promoter is rpoN(ntrA)-dependent, while the glnA promoter does not contain a typical consensus sequence for previously described promoters. In Klebsiella pneumoniae the glnB promoter requires active ntrC and ntrA genes and a DNA fragment containing 53 nucleotides upstream of the transcription initiation site shows full promoter activity, thus indicating that no NtrC binding sites are necessary for this activation in the glnB upstream region.
Collapse
Affiliation(s)
- M Chiurazzi
- Istituto Internazionale di Genetica e Biofisica, CNR, Napoli, Italy
| | | |
Collapse
|
26
|
Axley MJ, Grahame DA, Stadtman TC. Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44740-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Berger DK, Woods DR, Rawlings DE. Complementation of Escherichia coli sigma 54 (NtrA)-dependent formate hydrogenlyase activity by a cloned Thiobacillus ferrooxidans ntrA gene. J Bacteriol 1990; 172:4399-406. [PMID: 2198257 PMCID: PMC213267 DOI: 10.1128/jb.172.8.4399-4406.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ntrA gene of Thiobacillus ferrooxidans was cloned by complementation of an Escherichia coli ntrA mutant that was unable to produce gas via the sigma 54 (NtrA)-dependent formate hydrogenlyase pathway. Analysis of the DNA sequence showed that the T. ferrooxidans ntrA gene coded for a protein of 475 amino acids (calculated Mr, 52,972). The T. ferrooxidans NtrA protein had 49, 44, 33, and 18% amino acid similarity with the NtrA proteins of Klebsiella pneumoniae, Azotobacter vinelandii, Rhizobium meliloti, and Rhodobacter capsulatus, respectively. The ability of the T. ferrooxidans NtrA protein to direct transcription from sigma 54-dependent promoters was demonstrated in E. coli by using fdhF-lacZ and nifH-lacZ fusions. An open reading frame coding for a protein of 241 amino acids (calculated Mr, 27,023) was situated 12 base pairs upstream of the T. ferrooxidans ntrA gene. Comparison of this protein with the product of the open reading frame ORF1, located upstream of the R. meliloti ntrA gene, showed that the two proteins had 55% amino acid similarity. The cloned T. ferrooxidans ntrA gene was expressed in E. coli from a promoter located within the ORF1 coding region.
Collapse
Affiliation(s)
- D K Berger
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | | | |
Collapse
|
28
|
Ledebur H, Gu B, Sojda J, Nixon BT. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters. J Bacteriol 1990; 172:3888-97. [PMID: 2193923 PMCID: PMC213370 DOI: 10.1128/jb.172.7.3888-3897.1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Free-living rhizobia transport external C4-dicarboxylates to use as sole carbon sources, and uptake of these compounds is essential for nitrogen fixation by rhizobial bacteroids. In both Rhizobium leguminosarum and Rhizobium meliloti, the genes dctB and dctD are believed to form an ntrB/ntrC-like two-component system which regulates the synthesis of a C4-dicarboxylate transport protein encoded by dctA. Here we confirm the identity of sigma 54-dependent promoters previously hypothesized for the R. leguminosarum and R. meliloti dctA genes and demonstrate that repeated, partial dyad symmetry elements located about 75 base pairs upstream of each promoter are essential for fully regulated transcription. Furthermore, we show that both repeats bound dctD protein and that together they resulted in succinate-sensitive transcription when placed upstream of another sigma 54 consensus promoter, that of R. meliloti nifH.
Collapse
Affiliation(s)
- H Ledebur
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
29
|
Wedel A, Weiss DS, Popham D, Dröge P, Kustu S. A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 1990; 248:486-90. [PMID: 1970441 DOI: 10.1126/science.1970441] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The nitrogen regulatory protein NtrC of enteric bacteria activates transcription of the glnA gene by catalyzing isomerization of closed complexes between RNA polymerase and the glnA promoter to open complexes. NtrC binds to sites upstream of glnA that have properties of eukaryotic transcriptional enhancers. NtrC-binding sites were found to facilitate open complex formation when these sites and the glnA promoter were located on different rings of a singly linked catenane, but not when the two rings were decatenated. The results provide evidence that NtrC contacts RNA polymerase-promoter complexes in a process mediated by formation of a DNA loop. NtrC-binding sites serve to tether NtrC near the glnA promoter, thereby increasing the frequency of collisions between NtrC and polymerase-promoter complexes.
Collapse
Affiliation(s)
- A Wedel
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
30
|
Role of the promoter in activation of transcription by nitrogen regulator I phosphate in Escherichia coli. J Bacteriol 1990; 172:818-23. [PMID: 2404958 PMCID: PMC208511 DOI: 10.1128/jb.172.2.818-823.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The protein nitrogen regulator I (NRI)-phosphate is known to activate the initiation of transcription of the Escherichia coli glnA gene. This activation is facilitated by the binding of the protein to NRI-specific sites located upstream of the sigma 54-dependent glnA promoter. To determine whether binding of NRI-phosphate to upstream sites is sufficient for activation, we placed several promoters not normally activated by NRI-phosphate downstream of NRI binding sites and measured activation in intact cells and in an in vitro transcription system. We found that the sigma 70-dependent lac promoter was not activated, that the sigma 54-dependent Klebsiella pneumoniae nifH promoter was weakly activated, and that a nifH promoter altered in the RNA polymerase binding site was almost as well activated as the glnA promoter. We conclude that the sensitivity of the susceptible promoter depends on the presence of NRI binding sites, but that the presence of bound NRI-phosphate upstream of a promoter is not sufficient for activation of transcription by RNA polymerase. This activation is determined by the structure of the RNA polymerase binding site. We suggest that sigma 54-but not sigma 70-dependent promoters are susceptible to activation by NRI-phosphate and that the nucleotide sequence of the sigma 54-RNA polymerase binding site is an important determinant of the efficiency of activation.
Collapse
|
31
|
Austin S, Henderson N, Dixon R. Characterisation of the Klebsiella pneumoniae nitrogen-fixation regulatory proteins NIFA and NIFL in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:353-60. [PMID: 2153546 DOI: 10.1111/j.1432-1033.1990.tb15312.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcriptional activation by the Klebsiella pneumoniae nitrogen-fixation-specific positive control protein, NIFA, (nifA gene product) has been demonstrated in vitro in S30 extracts from cells which overproduce this protein. The activity of NIFA was dramatically reduced in vitro in the presence of the negative regulatory protein NIFL (nifL gene product) but was not inhibited by the presence of a mutant NIFL protein, NIFL2404. Transcriptional activation from the nifH promoter by NIFA was dependent on the alternative sigma factor, sigma 54, and also required the presence of an upstream activator sequence. NIFA activity was temperature-sensitive in vitro (as it is in vivo) which is due, at least in part, to the intrinsic lability of the protein itself. The majority of overproduced NIFA and NIFL was insoluble after low-speed centrifugation and was inactive in vitro. A low level of less aggregated NIFA protein present in cell extracts was responsible for in vitro activity and this fraction was partially purified.
Collapse
Affiliation(s)
- S Austin
- Agriculture and Food Research Council Institute of Plant Science Research, University of Sussex, Brighton, England
| | | | | |
Collapse
|
32
|
|
33
|
Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450-90. [PMID: 2556636 PMCID: PMC372749 DOI: 10.1128/mr.53.4.450-490.1989] [Citation(s) in RCA: 915] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry.
Collapse
|
34
|
Morett E, Buck M. In vivo studies on the interaction of RNA polymerase-sigma 54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. The role of NifA in the formation of an open promoter complex. J Mol Biol 1989; 210:65-77. [PMID: 2685331 DOI: 10.1016/0022-2836(89)90291-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Transcription from the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters requires the positive control protein NifA and the alternative sigma factor sigma 54, encoded by the rpoN gene. Transcription from the K. pneumoniae nifH promoter is fully dependent upon NifA bound at the upstream activator sequence (UAS) whereas the R. meliloti nifH promoter can be efficiently activated in the absence of this sequence and can also be activated by a mutant form of NifA unable to bind the UAS. The in vivo interaction of RNA polymerase-sigma 54 with these promoters was examined using dimethyl sulphate footprinting. The R. meliloti nifH promoter but not the K. pneumoniae nifH promoter showed sigma 54-dependent methylation protection of guanine residues at -14, -25 and -26, the most conserved nucleotides characteristic of sigma 54-dependent promoters. A mutant derivative of the K. pneumoniae nifH promoter bearing transitions at positions from -15 to -17 showed sigma 54-dependent methylation protection of guanines -13, -24 and -25. The enhanced interaction of the RNA polymerase-sigma 54 with this mutant promoter correlates with its increased level of activation by a form of NifA unable to bind the UAS. Use of in vivo KMnO4 footprinting to detect single-stranded pyrimidine residues and in vivo methylation protection demonstrated that the sigma 54-dependent protection observed in the R. meliloti and mutant K. pneumoniae nifH promoter results from the formation of a closed promoter complex. The isomerization of the pre-existing closed complex to an open promoter form, as judged by the local denaturation of promoter DNA which rendered sequences from +5 to -10 reactive towards KMnO4, was shown to be fully dependent on NifA. We propose a model in which the fidelity of activation of sigma 54-dependent promoters relies on a weak activator-independent interaction of RNA polymerase-sigma 54 with the promoter. A specific interaction of the appropriate activator with its respective UAS is then required for the positive control protein to facilitate open complex formation.
Collapse
Affiliation(s)
- E Morett
- AFRC Institute of Plant Science Research, University of Sussex, Brighton, U.K
| | | |
Collapse
|
35
|
Kustu S, Santero E, Keener J, Popham D, Weiss D. Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 1989; 53:367-76. [PMID: 2677638 PMCID: PMC372741 DOI: 10.1128/mr.53.3.367-376.1989] [Citation(s) in RCA: 321] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Birkmann A, Hennecke H, Böck A. Construction of chimaeric promoter regions by exchange of the upstream regulatory sequences from fdhF and nif genes. Mol Microbiol 1989; 3:697-703. [PMID: 2664422 DOI: 10.1111/j.1365-2958.1989.tb00218.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hybrid 5' regulatory regions were constructed in which the upstream activator sequence (UAS) and promoter of various nif genes were exchanged with the upstream regulatory sequence (URS) of the fdhF gene from Escherichia coli. They were analysed for their regulatory response under different growth conditions with the aid of fdhF'-'lacZ or nif'-'lacZ fusions. Placement of the UAS from the Bradyrhizobium japonicum nifH gene in front of the spacer (DNA region between URS and promoter) plus promoter from fdhF renders fdhF expression activatable by the Klebsiella pneumoniae NIFA protein, both under aerobic and anaerobic conditions. This excludes the possibility that the spacer of the fdhF5' flanking region contains a site recognized by a putative oxygen- or nitrate-responsive repressor. There was also considerable activation by NIFA of fdhF expression in a construct lacking the nifH UAS but containing the fdhF spacer plus promoter. Further experimental evidence suggests that this reflects a direct interaction between NIFA and RNA polymerase at the ntrA-dependent promoter. A second set of hybrid constructs in which the URS from fdhF (E. coli) was placed in front of the nifD spacer plus promoter from B. japonicum or in front of the K. pneumoniae nifH, nifU, nifB spacers and promoters, delivered inactive constructs in the case of the nifD, nifU and nifB genes. However, a nifH'-'lacZ fusion preceded by its own spacer and promoter plus the foreign fdhF URS displayed all the regulatory characteristics of fdhF expression, i.e. anaerobic induction with formate and repression by oxygen and nitrate. Although it is not known why only one out of the four nif promoters could be activated by the fdhF URS, this result nevertheless demonstrates that the various regulatory stimuli affecting expression of fdhF in E. coli have their target at the upstream regulatory sequence.
Collapse
Affiliation(s)
- A Birkmann
- Lehrstuhl für Mikrobiologie der Universität München, FRG
| | | | | |
Collapse
|
37
|
Popham DL, Szeto D, Keener J, Kustu S. Function of a bacterial activator protein that binds to transcriptional enhancers. Science 1989; 243:629-35. [PMID: 2563595 DOI: 10.1126/science.2563595] [Citation(s) in RCA: 368] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nitrogen regulatory (NtrC) protein of enteric bacteria, which binds to sites that have the properties of transcriptional enhancers, is known to activate transcription by a form of RNA polymerase that contains the NtrA protein (sigma 54) as sigma factor (referred to as sigma 54-holoenzyme). In the presence of adenosine triphosphate, the NtrC protein catalyzes isomerization of closed recognition complexes between sigma 54-holoenzyme and the glnA promoter to open complexes in which DNA in the region of the transcription start site is locally denatured. NtrC is not required subsequently for maintenance of open complexes or initiation of transcription.
Collapse
Affiliation(s)
- D L Popham
- Department of Microbiology and Immunology, University of California, Berkley 94720
| | | | | | | |
Collapse
|
38
|
Ninfa AJ, Mullin DA, Ramakrishnan G, Newton A. Escherichia coli sigma 54 RNA polymerase recognizes Caulobacter crescentus flbG and flaN flagellar gene promoters in vitro. J Bacteriol 1989; 171:383-91. [PMID: 2644197 PMCID: PMC209600 DOI: 10.1128/jb.171.1.383-391.1989] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A set of the periodically regulated flagellar (fla) genes of Caulobacter crescentus contain conserved promoter sequence elements at -24 and -12 that are very similar to the sequence of the nitrogen assimilation (Ntr) and nitrogen fixation (Nif) promoters of enteric bacteria and Rhizobium spp. Transcription from Ntr and Nif promoters requires RNA polymerase containing sigma 54 instead of the usual sigma 70 and, in the case of the Ntr promoters, is activated by the transcription factors NRI and NRII. We have now demonstrated that the C. crescentus flbG and flaN promoters, which contain the Ntr/Nif type of consensus sequence, are utilized by purified Escherichia coli sigma 54 RNA polymerase (E sigma 54) in the presence of NRI and NRII but not by the purified sigma 70 RNA polymerase (E sigma 70) of E. coli. Oligonucleotide-generated flbG promoter deletions that removed the highly conserved GG dinucleotide at -24 or the GC dinucleotide at -12 or altered the spacing between the -24 and -12 sequence elements prevented utilization of the flbG promoter by the E. coli E sigma 54. Transversions of T to G at positions -26 and -15 also inactivated flbG promoter function in the E. coli cell-free transcription system, while a transition of G to A at position -16 in the nonconserved spacer region had no effect. The C. crescentus flaO and flbF promoters, which do not contain the Ntr/Nif-type promoter consensus sequence, were not utilized by either purified E sigma 54 or E sigma 70 from E. coli. Our results help to define the features of the Ntr/Nif-type consensus sequence required for promoter utilization by purified E. coli E sigma 54 and support the idea that C. crescentus may contain a specialized polymerase with similar promoter specificity required for expression of a set of fla genes.
Collapse
Affiliation(s)
- A J Ninfa
- Department of Molecular Biology, Princeton University, New Jersey 08540
| | | | | | | |
Collapse
|
39
|
Magasanik B. Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem Sci 1988; 13:475-9. [PMID: 2908087 DOI: 10.1016/0968-0004(88)90234-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Morett E, Buck M. NifA-dependent in vivo protection demonstrates that the upstream activator sequence of nif promoters is a protein binding site. Proc Natl Acad Sci U S A 1988; 85:9401-5. [PMID: 2849102 PMCID: PMC282760 DOI: 10.1073/pnas.85.24.9401] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Primer-extension analysis of the Klebsiella pneumoniae nifH promoter was used to determine changes in the accessibility of the promoter DNA to methylation after exposure of growing cells to dimethyl sulfate. Four guanine residues present in the nifH upstream activator sequence (UAS), the proposed NifA binding site, were protected from methylation and two guanine residues were hypermethylated when the transcriptional activator protein NifA was present in the cells. The interaction detected at the nifH UAS was independent of the alternative sigma factor NtrA required for transcription of the nifH and other nif promoters. Mutations within the nifH UAS that diminish NifA-dependent transcriptional activation reduced the interaction at the UAS. It seems likely that the pattern of methylation protection observed in the nifH UAS is the result of NifA binding.
Collapse
Affiliation(s)
- E Morett
- Agricultural & Food Research Council, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
41
|
Dixon RA, Henderson NC, Austin S. DNA supercoiling and aerobic regulation of transcription from the Klebsiella pneumoniae nifLA promoter. Nucleic Acids Res 1988; 16:9933-46. [PMID: 3057450 PMCID: PMC338828 DOI: 10.1093/nar/16.21.9933] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Expression from the K. pneumoniae nifLA promoter is oxygen sensitive and is also inhibited by the DNA gyrase inhibitor coumermycin A1 under anaerobic growth conditions. The activity of this promoter was found to be highly sensitive to changes in DNA topology in vitro. Transcription was completely dependent on negative supercoiling at physiological salt concentrations although transcription from linear or fully relaxed closed circular templates was detectable at KCl concentrations lower than 50 mM. These observations suggest that aerobic regulation of nif transcription may be mediated through the level of DNA supercoiling.
Collapse
Affiliation(s)
- R A Dixon
- AFRC Institute of Plant Science Research, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
42
|
Arnold W, Rump A, Klipp W, Priefer UB, Pühler A. Nucleotide sequence of a 24,206-base-pair DNA fragment carrying the entire nitrogen fixation gene cluster of Klebsiella pneumoniae. J Mol Biol 1988; 203:715-38. [PMID: 3062178 DOI: 10.1016/0022-2836(88)90205-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The complete nucleotide sequence (24,206 base-pairs) of the Klebsiella pneumoniae gene region for nitrogen fixation (nif) is presented. Coding regions corresponding to the 19 known nif genes (including nifW and nifZ) could be identified. An additional open reading frame of 216 base-pairs, called nifT, was detected between nifK and nifY. Search for transcriptional signal structures revealed some unusual features: (1) several possible NifA-binding motifs are present in the intergenic regions between nifJ and nifH as well as between nifX and nifU; (2) a perfect NifA-binding motif, preceding the nifENX promoter, is located within an inverted repeat structure; (3) structures resembling the consensus nif promoter are found within the coding regions of nifW and nifZ and, together with a NifA-binding motif, in nifN. Typical rho-independent termination structures were detected only downstream from the nifHDKTY and the nifBQ operons. Analysis of the deduced amino acid sequences revealed the presence of two Cys-X2-Cys-X2-Cys-X3-Cys-Pro clusters in the pyruvate-flavodoxin oxidoreductase NifJ. This arrangement of cysteine residues is normally present only in ferredoxins. A high degree of homology between the two gene products (NifE and NifN) involved in iron-molybdenum cofactor biosynthesis and the two nitrogenase component I structural proteins (NifD and NifK) was found. All four proteins are characterized by the conserved motif His-Gly-X2-Gly-Cys, which may play a role in binding the iron-molybdenum cofactor.
Collapse
Affiliation(s)
- W Arnold
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
43
|
Minchin SD, Austin S, Dixon RA. The role of activator binding sites in transcriptional control of the divergently transcribed nifF and nifLA promoters from Klebsiella pneumoniae. Mol Microbiol 1988; 2:433-42. [PMID: 3139967 DOI: 10.1111/j.1365-2958.1988.tb00049.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulatory region spanning the divergently transcribed nifF and nifLA promoters contains a NIFA-specific upstream activator sequence (UAS) located around +59, and two NTRC binding sites centred at -142 and -163 with respect to the nifLA transcription start site. We have constructed mutations in each of these binding sites and examined their role in transcriptional activation of the divergently transcribed promoters. Analysis of a mutation at +60 confirms that the UAS is required for efficient NIFA-mediated activation of nifF transcription. This sequence is also required for maximal activation of the nifLA promoter. Mutations at -169 and -148, within the two NTRC binding sites, reduce activation of the nifLA promoter by NTRC in vivo and lower the affinity of the activator for these sites in vitro. Phosphorylation of NTRC by NTRB is required for efficient binding of NTRC to these sites.
Collapse
Affiliation(s)
- S D Minchin
- AFRC-IPSR Nitrogen Fixation Laboratory, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
44
|
Keener J, Kustu S. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc Natl Acad Sci U S A 1988; 85:4976-80. [PMID: 2839825 PMCID: PMC281670 DOI: 10.1073/pnas.85.14.4976] [Citation(s) in RCA: 271] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The NTRC protein (ntrC product) of enteric bacteria activates transcription of nitrogen-regulated genes by a holoenzyme form of RNA polymerase that contains the ntrA product (sigma 54) as sigma factor. Although unmodified NTRC will bind to DNA, it must be phosphorylated to activate transcription. Both phosphorylation and dephosphorylation of NTRC occur in the presence of the NTRB protein (ntrB product). We here demonstrate rigorously that it is the NTRB protein that is a protein kinase by showing that NTRB can phosphorylate itself, whereas NTRC cannot. Phosphorylated NTRC (NTRC-P) is capable of autodephosphorylation with a first-order rate constant of 0.14-0.19 min-1 (t 1/2 of 5.0-3.6 min) at 37 degrees C. In addition, there is regulated dephosphorylation of NTRC-P. By contrast to the autophosphatase activity, regulated dephosphorylation requires three components in addition to NTRC-P: the PII regulatory protein, NTRB, and ATP. NTRC is phosphorylated within its amino-terminal domain, which is conserved in one partner of a number of two-component regulatory systems in a wide variety of eubacteria. A purified amino-terminal fragment of NTRC (approximately equal to 12.5 kDa) is sufficient for recognition by NTRB and is autodephosphorylated at the same rate as the native protein.
Collapse
Affiliation(s)
- J Keener
- Department of Microbiology and Immunology, University of California, Berkeley 94720
| | | |
Collapse
|
45
|
Contreras A, Drummond M. The effect on the function of the transcriptional activator NtrC from Klebsiella pneumoniae of mutations in the DNA-recognition helix. Nucleic Acids Res 1988; 16:4025-39. [PMID: 3287338 PMCID: PMC336572 DOI: 10.1093/nar/16.9.4025] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have constructed mutations in what we predict to be the DNA-recognition helix of Klebsiella pneumoniae NtrC, which regulates transcription from promoters under global nitrogen control. Mutations which disrupt the helix lead to complete loss of function. All point mutants tested were able to activate transcription from the sigma 54-dependent glnA promoter, but only those retaining some ability to recognise NtrC binding sites, as evidenced by their ability to repress the ntrB promoter and the upstream glnA promoter, were able to activate the nifL promoter. One mutant, which contained an amino acid substitution in the turn of the DNA-binding motif as well as in the recognition helix, suppressed mutations in the NtrC binding sites upstream from the nifL promoter, but only if both sites bore equivalent transitions. This confirms that the DNA-binding motif for this class of transcriptional activator has been correctly identified and suggests that binding of NtrC can be cooperative.
Collapse
Affiliation(s)
- A Contreras
- AFRC Institute of Plant Science Research, University of Sussex, Brighton, UK
| | | |
Collapse
|
46
|
Bennett LT, Cannon F, Dean DR. Nucleotide sequence and mutagenesis of the nifA gene from Azotobacter vinelandii. Mol Microbiol 1988; 2:315-21. [PMID: 2840552 DOI: 10.1111/j.1365-2958.1988.tb00034.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleotide sequence of the nifA gene from Azotobacter vinelandii was determined. This gene encodes an Mr = 58,100 polypeptide that shares significant sequence identity when compared to nifA-encoded products from other organisms. Interspecies comparisons of nifA-encoded products reveal that they all have a consensus ATP binding site and a consensus DNA binding site in highly conserved regions of the respective polypeptides. The nifA gene immediately precedes the nifB-nifQ gene region but is unlinked to the major nif gene cluster from A. vinelandii. A potential regulatory gene precedes and is apparently cotranscribed with nifA. Mutant strains that have a deletion or a deletion plus an insertion within nifA are incapable of diazotrophic growth and they fail to accumulate nitrogenase structural gene products.
Collapse
Affiliation(s)
- L T Bennett
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | | | |
Collapse
|
47
|
Buck M, Cannon W, Woodcock J. Mutational analysis of upstream sequences required for transcriptional activation of the Klebsiella pneumoniae nifH promoter. Nucleic Acids Res 1987; 15:9945-56. [PMID: 3320958 PMCID: PMC306542 DOI: 10.1093/nar/15.23.9945] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Upstream sequences of the Klebsiella pneumoniae nifH promoter were mutagenised and activation of the mutated promoters by the nif-specific transcriptional activator protein NifA examined in vivo. Of the sixteen mutations analysed, only those within the nifH upstream activator sequence (UAS), characterised by a TGT-N10-ACA motif, influenced nifH promoter activity. Mutations altering the two-fold rotational symmetry of the UAS or the spacing between the TGT and ACA motifs reduced promoter activity, consistent with the UAS functioning as a NifA binding site. The bases flanking the TGT-ACA motif of the UAS also appear to influence activation by NifA. Substituting the nifH UAS with a binding site for the transcriptional activator NtrC resulted in improved NtrC-dependent activation of the nifH promoter demonstrating that the activator specificity of the nifH promoter is dependent upon the presence of the appropriate upstream sequences to which the activator binds.
Collapse
Affiliation(s)
- M Buck
- AFRC IPSR, University of Sussex, Brighton, UK
| | | | | |
Collapse
|