1
|
Partial Substitution of Corn Grain in the Diet with Beet Pulp Reveals Increased Ruminal Acetate Proportion and Circulating Insulin Levels in Korean Cattle Steers. Animals (Basel) 2022; 12:ani12111419. [PMID: 35681883 PMCID: PMC9179527 DOI: 10.3390/ani12111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of the partial substitution of corn grain in the diet with beet pulp on growth performance, ruminal fermentation characteristics, microbial profiles, and blood lipogenic parameters in fattening steers. Twelve Korean cattle steers (body weight, 485 ± 19.32 kg; age, 18.0 ± 0.17 months) were equally divided into corn grain (CG) and beet pulp (BP) groups. Approximately 75% of dry matter of the requirement was offered as a concentrate portion, and the remaining 25% was offered as oat straw. Eighty percent of the concentrate portion was provided by a pelleted basal concentrate, and the remaining 20% with corn grain for the CG group, or 18% beet pulp plus 2.0% rumen-protected fat for the BP group, respectively, by top dressing. The experiment was conducted for 14 weeks, including a 2-week acclimation period. Growth rate was not affected by beet pulp feeding (p = 0.55). The molar proportions of ruminal acetate (p < 0.05) on wk 4, the relative abundances of ruminal cellulolytic bacteria, including Fibrobacter succinogenes (p = 0.01) and Ruminococcus albus (p = 0.04) on wk 12, and serum insulin concentrations (p < 0.05) on wk 12 were higher in the BP group than in the CG group, whereas the molar proportions of propionate (p < 0.05) on wks 8 and 12 and serum nonesterified fatty acids (p < 0.05) on wk 12 were lower in the BP group. Beet pulp could be used as a lipogenic energy source without affecting growth performance during the fattening period of cattle.
Collapse
|
2
|
Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium Fibrobacter succinogenes S85. Sci Rep 2019; 9:16542. [PMID: 31719545 PMCID: PMC6851124 DOI: 10.1038/s41598-019-52675-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Fibrobacter succinogenes S85, isolated from the rumen of herbivores, is capable of robust lignocellulose degradation. However, the mechanism by which it achieves this is not fully elucidated. In this study, we have undertaken the most comprehensive quantitative proteomic analysis, to date, of the changes in the cell envelope protein profile of F. succinogenes S85 in response to growth on cellulose. Our results indicate that the cell envelope proteome undergoes extensive rearrangements to accommodate the cellulolytic degradation machinery, as well as associated proteins involved in adhesion to cellulose and transport and metabolism of cellulolytic products. Molecular features of the lignocellulolytic enzymes suggest that the Type IX secretion system is involved in the translocation of these enzymes to the cell envelope. Finally, we demonstrate, for the first time, that cyclic-di-GMP may play a role in mediating catabolite repression, thereby facilitating the expression of proteins involved in the adhesion to lignocellulose and subsequent lignocellulose degradation and utilisation. Understanding the fundamental aspects of lignocellulose degradation in F. succinogenes will aid the development of advanced lignocellulosic biofuels.
Collapse
Affiliation(s)
- Mahendra P Raut
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Narciso Couto
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.,Centre for Applied Pharmacokinetic Research, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Esther Karunakaran
- The ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Catherine A Biggs
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Phillip C Wright
- School of Engineering, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85. Sci Rep 2017; 7:2277. [PMID: 28536480 PMCID: PMC5442110 DOI: 10.1038/s41598-017-02628-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pH 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.
Collapse
|
4
|
Raut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. PLoS One 2015; 10:e0141197. [PMID: 26492413 PMCID: PMC4619616 DOI: 10.1371/journal.pone.0141197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/06/2015] [Indexed: 12/02/2022] Open
Abstract
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane.
Collapse
Affiliation(s)
- Mahendra P. Raut
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Esther Karunakaran
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Joy Mukherjee
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Catherine A. Biggs
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
| | - Phillip C. Wright
- The ChELSI Institute, Dept of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Jiang W, Chen L, Hu N, Yuan S, Li B, Liu Z. A novel serine hydroxymethyltransferase from Arthrobacter nicotianae: characterization and improving catalytic efficiency by rational design. BMC Biotechnol 2014; 14:93. [PMID: 25394480 PMCID: PMC4260256 DOI: 10.1186/s12896-014-0093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Serine hydroxymethyltransferase (SHMT) is the key enzyme in L-serine enzymatic production, suggesting the importance of obtaining a SHMT with high activity. RESULTS Here, a novel SHMT gene, glyA, was obtained through degenerate oligonucleotide-primed PCR and encoded a novel SHMT with 54.3% similarity to the known SHMT from Escherichia coli. The obtained protein AnSHMT showed the optimal activity at 40 °C and pH 7.5, and was more stable in weakly alkali conditions (pH 6.5-8.5) than Hyphomicrobium methylovorum's SHMT (pH 6.0-7.5), In order to improve the catalytic efficiency of the wild type, the site-directed mutagenesis based on sequences alignment and bioinformatics prediction, was used and the catalytic efficiency of the mutant I249L was found to be 2.78-fold higher than that of the wild-type, with the replacement of isoleucine by leucine at the 249 position. CONCLUSIONS This research provides useful information about the interesting site, and the application of DOP-PCR in cloning a novel glyA gene.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Lin Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
| | - Shaohui Yuan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
6
|
Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria. Arch Microbiol 2014; 197:269-76. [PMID: 25354721 DOI: 10.1007/s00203-014-1049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Fibrobacter succinogenes is one of the most pivotal fibrolytic bacterial species in the rumen. In a previous study, we confirmed enhancement of fiber digestion in a co-culture of F. succinogenes S85 with non-fibrolytic ruminal strains R-25 and/or Selenomonas ruminantium S137. In the present study, mRNA expression level of selected functional genes in the genome of F. succinogenes S85 was monitored by real-time RT-PCR. Growth profile of F. succinogenes S85 was similar in both the monoculture and co-cultures with non-fibrolytics. However, expression of 16S rRNA gene of F. succinogenes S85 in the co-culture was higher (P < 0.01) than that of the monoculture. This finding suggests that metabolic activity of F. succinogenes S85 was enhanced by coexistence with strains R-25 and/or S. ruminantium S137. The mRNA expression of fumarate reductase and glycoside hydrolase genes was up-regulated (P < 0.01) when F. succinogenes S85 was co-cultured with non-fibrolytics. These results indicate the enhancement of succinate production and fiber hydrolysis by F. succinogenes S85 in co-cultures of S. ruminantium and R-25 strains.
Collapse
|
7
|
Abstract
Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function.
Collapse
Affiliation(s)
- Stuart E Denman
- The Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Brisbane, Queensland, 4067 Australia; ,
| | | |
Collapse
|
8
|
Yan S, Wu G. Secretory pathway of cellulase: a mini-review. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:177. [PMID: 24295495 PMCID: PMC4177124 DOI: 10.1186/1754-6834-6-177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/19/2013] [Indexed: 05/07/2023]
Abstract
Cellulase plays an important role in modern industry and holds great potential in biofuel production. Many different types of organisms produce cellulase, which go through secretory pathways to reach the extracellular space, where enzymatic reactions take place. Secretory pathways in various cells have been the focus of many research fields; however, there are few studies on secretory pathways of cellulases in the literature. It is therefore necessary and important to review the current knowledge on the secretory pathways of cellulases. In this mini-review, we address the subcellular locations of cellulases in different organisms, discuss the secretory pathways of cellulases in different organisms, and examine the secretory mechanisms of cellulases. These sections start with a description of general secreted proteins, advance to the situation of cellulases, and end with the knowledge of cellulases, as documented in UniProt Knowledgebase (UniProtKB). Finally, gaps in existing knowledge are highlighted, which may shed light on future studies for biofuel engineering.
Collapse
Affiliation(s)
- Shaomin Yan
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Guang Wu
- State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
- DreamSciTech, Apt 207, Zhencaili 26, Zhujiang Road, Hexi District, Tianjin, 300222, China
| |
Collapse
|
9
|
Characterization of a serine hydroxymethyltransferase for l-serine enzymatic production from Pseudomonas plecoglossicida. World J Microbiol Biotechnol 2013; 29:2067-76. [DOI: 10.1007/s11274-013-1370-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
10
|
Mezzomo R, Paulino P, Detmann E, Valadares Filho S, Paulino M, Monnerat J, Duarte M, Silva L, Moura L. Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livest Sci 2011. [DOI: 10.1016/j.livsci.2011.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 2011; 6:e18814. [PMID: 21526192 PMCID: PMC3079729 DOI: 10.1371/journal.pone.0018814] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/11/2011] [Indexed: 11/17/2022] Open
Abstract
Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.
Collapse
Affiliation(s)
- Garret Suen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Uwituze S, Parsons GL, Shelor MK, Depenbusch BE, Karges KK, Gibson ML, Reinhardt CD, Higgins JJ, Drouillard JS. Evaluation of dried distillers grains and roughage source in steam-flaked corn finishing diets. J Anim Sci 2009; 88:258-74. [PMID: 19820042 DOI: 10.2527/jas.2008-1342] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two studies were conducted to evaluate effects of dried distillers grains with solubles (DDGS) and alfalfa hay (AH) or corn silage (CS) on feedlot performance, carcass characteristics, ruminal fermentation, and diet digestibility in cattle fed steam-flaked corn (SFC) diets. In trial 1, crossbred heifers (n = 358; BW = 353 +/- 13 kg) were used in a finishing trial to evaluate interactions between corn-DDGS and roughage source (AH or CS) in terms of impact on feedlot performance and carcass characteristics. Experimental diets (DM basis) consisted of SFC and 11% CS without DDGS (SFC-CS), SFC and 11% CS with 25% DDGS (DDGS-CS), SFC and 6% AH without DDGS (SFC-AH), and SFC with 25% DDGS and 6% AH (DDGS-AH). Heifers were fed for ad libitum intake once daily for 97 d. Results indicated no interaction between DDGS and roughage source with respect to animal performance. Feeding DDGS did not affect ADG (P = 0.19), DMI (P = 0.14), or feed conversion (P = 0.67). Heifers fed CS had greater DMI than those fed AH (P = 0.05), but ADG (P = 0.56) and G:F (P = 0.63) were not different. There were no differences among treatments with respect to HCW, dressing percentage, subcutaneous fat thickness, quality grades, or yield grades (P > 0.20). Cattle fed CS tended (P = 0.10) to have greater marbling scores than those fed AH. There was an interaction (P = 0.02) between roughage and DDGS with respect to incidence of liver abscess. The greatest incidence was observed in cattle fed diets without DDGS when CS was fed, and the least was observed in cattle fed diets without DDGS when AH was used. In the second trial, ruminal fermentation characteristics and diet digestibility were examined in 12 cannulated Holstein steers fed similar diets to those fed in the finishing trial. Ruminal pH for all treatments was below 5.8 for 14 h after feeding. Acetate:propionate ratios were less (P = 0.02) in steers fed 25% DDGS but had greater (P = 0.02) ruminal lactate concentrations compared with cattle fed 0% DDGS. Feeding 25% DDGS decreased (P < 0.01) ruminal ammonia concentrations, and digestion of DM and OM was less (P < 0.01) compared with diets without DDGS. The decrease in digestibility was largely attributable to decreases in digestion of CP (P = 0.03) and NDF (P < 0.01). Feeding strategies aimed at increasing ruminal pH and ruminally available protein may improve digestion of DDGS in steam-flaked corn-based finishing diets.
Collapse
Affiliation(s)
- S Uwituze
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-1600, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
A Novel Endoglucanase (Cel9P) From a Marine Bacterium Paenibacillus sp. BME-14. Appl Biochem Biotechnol 2009; 160:1627-36. [DOI: 10.1007/s12010-009-8648-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 04/12/2009] [Indexed: 11/27/2022]
|
14
|
Toyoda A, Iio W, Mitsumori M, Minato H. Isolation and identification of cellulose-binding proteins from sheep rumen contents. Appl Environ Microbiol 2009; 75:1667-73. [PMID: 19151184 PMCID: PMC2655453 DOI: 10.1128/aem.01838-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/06/2009] [Indexed: 11/20/2022] Open
Abstract
To extend our understanding of the mechanisms of plant cell wall degradation in the rumen, cellulose-binding proteins (CBPs) from the contents of a sheep rumen were directly isolated and identified using a metaproteomics approach. The rumen CBPs were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and some CBPs revealed endoglucanase activities toward carboxymethyl cellulose. Using mass spectrometry analyses, four CBPs were identified and annotated as known proteins from the predominant rumen cellulolytic bacterium Fibrobacter succinogenes: tetratricopeptide repeat domain protein, OmpA family protein, fibro-slime domain protein, and cellulose-binding endoglucanase F (EGF). Another CBP was identified as the cellulosomal glycosyl hydrolase family 6 exoglucanase, Cel6A, of Piromyces equi. F. succinogenes cells expressing EGF were found to be major members of the bacterial community on the surface or at the inner surface of hay stems by immunohistochemical analyses using anti-EGF antibody. The finding that four of the five CBPs isolated and identified from sheep rumen contents were from F. succinogenes indicates that F. succinogenes is significantly involved in cellulose degradation in the rumen.
Collapse
Affiliation(s)
- Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| | | | | | | |
Collapse
|
15
|
Depenbusch BE, Drouillard JS, Loe ER, Higgins JJ, Corrigan ME, Quinn MJ. Efficacy of monensin and tylosin in finishing diets based on steam-flaked corn with and without corn wet distillers grains with solubles1. J Anim Sci 2008; 86:2270-6. [DOI: 10.2527/jas.2007-0017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Depenbusch BE, Loe ER, Quinn MJ, Corrigan ME, Gibson ML, Karges KK, Drouillard JS. Corn distillers grains with solubles derived from a traditional or partial fractionation process: Growth performance and carcass characteristics of finishing feedlot heifers1. J Anim Sci 2008; 86:2338-43. [DOI: 10.2527/jas.2007-0501] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7, identified by suppression subtractive hybridization. Appl Environ Microbiol 2007; 74:987-93. [PMID: 18156324 DOI: 10.1128/aem.02514-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibrobacter is a highly cellulolytic genus commonly found in the rumen of ruminant animals and cecum of monogastric animals. In this study, suppression subtractive hybridization was used to identify the genes present in Fibrobacter succinogenes S85 but absent from F. intestinalis DR7. A total of 1,082 subtractive clones were picked, plasmids were purified, and inserts were sequenced, and the clones lacking homology to F. intestinalis were confirmed by Southern hybridization. By comparison of the sequences of the clones to one another and to those of the F. succinogenes genome, 802 sequences or 955 putative genes, comprising approximately 409 kb of F. succinogenes genomic DNA, were identified that lack similarity to those of F. intestinalis chromosomal DNA. The functional groups of genes, including those involved in cell envelope structure and function, energy metabolism, and transport and binding, had the largest number of genes specific to F. succinogenes. Low-stringency Southern hybridization showed that at least 37 glycoside hydrolases are shared by both species. A cluster of genes responsible for heme, porphyrin, and cobalamin biosynthesis in F. succinogenes S85 was either missing from or not functional in F. intestinalis DR7, which explains the requirement of vitamin B12 for the growth of the F. intestinalis species. Two gene clusters encoding NADH-ubiquinone oxidoreductase subunits probably shared by Fibrobacter genera appear to have an important role in energy metabolism.
Collapse
|
18
|
Qi M, Jun HS, Forsberg CW. Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl Environ Microbiol 2007; 73:6098-105. [PMID: 17660301 PMCID: PMC2075001 DOI: 10.1128/aem.01037-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objectives of this study were to characterize Fibrobacter succinogenes glycoside hydrolases from different glycoside hydrolase families and to study their synergistic interactions. The gene encoding a major endoglucanase (endoglucanase 1) of F. succinogenes S85 was identified as cel9B from the genome sequence by reference to internal amino acid sequences of the purified native enzyme. Cel9B and two other glucanases from different families, Cel5H and Cel8B, were cloned and overexpressed, and the proteins were purified and characterized. These proteins in conjunction with two predominant cellulases, Cel10A, a chloride-stimulated cellobiosidase, and Cel51A, formerly known as endoglucanase 2 (or CelF), were assayed in various combinations to assess their synergistic interactions using ball-milled cellulose. The degree of synergism ranged from 0.6 to 3.7. The two predominant endoglucanases produced by F. succinogenes, Cel9B and Cel51A, were shown to have a synergistic effect of up to 1.67. Cel10A showed little synergy in combination with Cel9B and Cel51A. Mixtures containing all the enzymes gave a higher degree of synergism than those containing two or three enzymes, which reflected the complementarity in their modes of action as well as substrate specificities.
Collapse
Affiliation(s)
- Meng Qi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | |
Collapse
|
19
|
Jun HS, Qi M, Gong J, Egbosimba EE, Forsberg CW. Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J Bacteriol 2007; 189:6806-15. [PMID: 17644604 PMCID: PMC2045214 DOI: 10.1128/jb.00560-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membranes, respectively, of strain S85 and adhesion-defective mutant strains in conjunction with mass spectrometry analysis of tryptic peptides was used to identify proteins with roles in adhesion to and digestion of cellulose. Examination of the binding to cellulose of detergent-solubilized outer membrane proteins from S85 and mutant strains revealed six proteins in S85 that bound to crystalline cellulose that were absent from the mutants and five proteins in Ad1 that bound to acid-swollen cellulose that were absent from Ad4. Twenty-five proteins from the outer membrane fraction of cellulose-grown F. succinogenes were identified by 2-DE, and 16 of these were up-regulated by growth on cellulose compared to results with growth on glucose. A protein identified as a Cl-stimulated cellobiosidase was repressed in S85 cells growing on glucose and further repressed in the mutants, while a cellulose-binding protein identified as pilin was unchanged in S85 grown on glucose but was not produced by the mutants. The candidate differential cellulose binding proteins of S85 and the mutants and the proteins induced by growth of S85 on cellulose provide the basis for dissecting essential components of the cellulase system of F. succinogenes.
Collapse
Affiliation(s)
- Hyun-Sik Jun
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
20
|
Qi M, Nelson KE, Daugherty SC, Nelson WC, Hance IR, Morrison M, Forsberg CW. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 2005; 187:3739-51. [PMID: 15901698 PMCID: PMC1112041 DOI: 10.1128/jb.187.11.3739-3751.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppressive subtractive hybridization was conducted to identify unique genes coding for plant cell wall hydrolytic enzymes and other properties of the gastrointestinal bacterium Fibrobacter intestinalis DR7 not shared by Fibrobacter succinogenes S85. Subtractive clones from F. intestinalis were sequenced and assembled to form 712 nonredundant contigs with an average length of 525 bp. Of these, 55 sequences were unique to F. intestinalis. The remaining contigs contained 764 genes with BLASTX similarities to other proteins; of these, 80% had the highest similarities to proteins in F. succinogenes, including 30 that coded for carbohydrate active enzymes. The expression of 17 of these genes was verified by Northern dot blot analysis. Of genes not exhibiting BLASTX similarity to F. succinogenes, 30 encoded putative transposases, 6 encoded restriction modification genes, and 45% had highest similarities to proteins in other species of gastrointestinal bacteria, a finding suggestive of either horizontal gene transfer to F. intestinalis or gene loss from F. succinogenes. Analysis of contigs containing segments of two or more adjacent genes revealed that only 35% exhibited BLASTX similarity and were in the same orientation as those of F. succinogenes, indicating extensive chromosomal rearrangement. The expression of eight transposases, and three restriction-modification genes was confirmed by Northern dot blot analysis. These data clearly document the maintenance of carbohydrate active enzymes in F. intestinalis necessitated by the preponderance of polysaccharide substrates available in the ruminal environment. It also documents substantive changes in the genome from that of F. succinogenes, which may be related to the introduction of the array of transposase and restriction-modification genes.
Collapse
Affiliation(s)
- Meng Qi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS. Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 2003; 27:663-93. [PMID: 14638418 DOI: 10.1016/s0168-6445(03)00072-x] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The degradation of plant cell walls by ruminants is of major economic importance in the developed as well as developing world. Rumen fermentation is unique in that efficient plant cell wall degradation relies on the cooperation between microorganisms that produce fibrolytic enzymes and the host animal that provides an anaerobic fermentation chamber. Increasing the efficiency with which the rumen microbiota degrades fiber has been the subject of extensive research for at least the last 100 years. Fiber digestion in the rumen is not optimal, as is supported by the fact that fiber recovered from feces is fermentable. This view is confirmed by the knowledge that mechanical and chemical pretreatments improve fiber degradation, as well as more recent research, which has demonstrated increased fiber digestion by rumen microorganisms when plant lignin composition is modified by genetic manipulation. Rumen microbiologists have sought to improve fiber digestion by genetic and ecological manipulation of rumen fermentation. This has been difficult and a number of constraints have limited progress, including: (a) a lack of reliable transformation systems for major fibrolytic rumen bacteria, (b) a poor understanding of ecological factors that govern persistence of fibrolytic bacteria and fungi in the rumen, (c) a poor understanding of which glycolyl hydrolases need to be manipulated, and (d) a lack of knowledge of the functional genomic framework within which fiber degradation operates. In this review the major fibrolytic organisms are briefly discussed. A more extensive discussion of the enzymes involved in fiber degradation is included. We also discuss the use of plant genetic manipulation, application of free-living lignolytic fungi and the use of exogenous enzymes. Lastly, we will discuss how newer technologies such as genomic and metagenomic approaches can be used to improve our knowledge of the functional genomic framework of plant cell wall degradation in the rumen.
Collapse
Affiliation(s)
- Denis O Krause
- CSIRO Australia, Queensland Bioscience Precinct, St. Lucia, Qld 4067, Australia.
| | | | | | | | | | | | | |
Collapse
|
22
|
Jun HS, Ha JK, Malburg LM, Verrinder GAM, Forsberg CW. Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can J Microbiol 2003; 49:171-80. [PMID: 12795403 DOI: 10.1139/w03-024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xylanase genes xyn10D, xyn10E, and xyn10B, located sequentially on the Fibrobacter succinogenes S85 chromosome, were separately cloned and their properties characterized. Analysis of the sequences documented that xylanases Xyn10D, Xyn10E, and Xyn10B each consist of an N-terminal catalytic domain (glycosyl hydrolase family 10) and a C-terminal carbohydrate-binding module (CBM, family 6) connected by proline-rich linker sequences. The amino acid sequences exhibited similarities of between 53 and 60%. The xyn10D, xyn10E, and truncated xyn10deltaACBM were expressed in Escherichia coli and purified to homogeneity. The purified Xyn10D, Xyn10E, and Xyn10BdeltaCBM exhibited the same temperature optimum (40 degrees C) and pH optimum (6.5) and the highest specific activity against arabinoxylan, oat spelt xylan, and birchwood xylan, respectively. Xyn10D exhibited an affinity for cellulose and xylan with 47 and 33% binding, respectively, while the truncated Xyn10DdeltaCBM did not bind to the substrates. The main hydrolysis products of the three xylanases acting on oat spelt xylan and arabinoxylan were xylose and xylobiose. RT-PCR analysis showed that the three genes were co-transcribed as a single transcript. Western immunoblot analysis revealed that the three xylanases were expressed at a very low level by F. succinogenes grown on either glucose or cellulose as the source of carbohydrate.
Collapse
MESH Headings
- Amino Acid Sequence
- Anaerobiosis
- Cloning, Molecular
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/enzymology
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics
- Hydrogen-Ion Concentration
- Models, Genetic
- Molecular Sequence Data
- Multigene Family
- Recombinant Proteins/chemistry
- Sequence Alignment
- Substrate Specificity
- Temperature
- Transcription, Genetic
- Xylan Endo-1,3-beta-Xylosidase
- Xylosidases/genetics
Collapse
Affiliation(s)
- Hyun S Jun
- Department of Microbiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
23
|
Shaw A, Bott R, Vonrhein C, Bricogne G, Power S, Day AG. A novel combination of two classic catalytic schemes. J Mol Biol 2002; 320:303-9. [PMID: 12079387 DOI: 10.1016/s0022-2836(02)00387-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of an alkaline Bacillus cellulase catalytic core, from glucoside hydrolase family 5, reveals a novel combination of the catalytic machinery of two classic textbook enzymes. The enzyme has the expected two glutamate residues in close proximity to one another in the active-site that are typical of retaining cellulases. However, the proton donor, glutamate 139 is also unexpectedly a member of a serine-histidine-glutamate catalytic triad, forming a novel combination of catalytic machineries. Structure and sequence analysis of glucoside hydrolase family 5 reveal that the triad is highly conserved, but with variations at the equivalent of the serine position. We speculate that the purpose of this novel catalytic triad is to control the protonation of the acid/base glutamate, facilitating the first step of the catalytic reaction, protonation of the substrate, by the proton donor glutamate. If correct, this will be a novel use for a catalytic triad.
Collapse
Affiliation(s)
- A Shaw
- Genencor International Inc., 925 Page Mill Road, Palo Alto, CA 94304, USA.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Liu JH, Selinger LB, Hu YJ, Moloney MM, Cheng KJ, Beauchemin KA. An endoglucanase from the anaerobic fungus Orpinomyces joyonii: characterization of the gene and its product. Can J Microbiol 1997; 43:477-85. [PMID: 9165703 DOI: 10.1139/m97-067] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An endoglucanase gene (celA) was isolated from a genomic library of the ruminal fungus Orpinomyces joyonii. DNA sequence analysis of celA revealed an intronless gene encoding a typical signal sequence, an N-terminal catalytic domain, two repeated regions linked by a short Ser/Thr-rich linker and a domain of unknown function. The deduced amino acid sequence of the catalytic domain showed homology with the family 5 cellulases. While the catalytic domain of CelA was not homologous to the catalytic domain of the endoglucanase gene (EG3) from the ruminal bacterium Fibrobacter succinogenes, the repeated regions of CelA were very similar to the noncatalytic domain of EG3. This suggests that evolutionary shuffling of endoglucanase domains might occur among bacteria and fungi within the anaerobic ecosystem of the rumen. The celA gene was expressed in Escherichia coli, and the periplasmic endoglucanase was used for the characterization studies of the enzyme. CelA exhibited both endoglucanase and xylanase activities. Its pH optimum was 4 and the temperature optimum was 40 degrees C. Deletion analysis showed that the repeated sequences and C-terminal domain of CelA were not required for enzyme activity.
Collapse
Affiliation(s)
- J H Liu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Chuang YC, Chiou SF, Su JH, Wu ML, Chang MC. Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila MCC-2. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 3):803-812. [PMID: 9084164 DOI: 10.1099/00221287-143-3-803] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structural gene encoding the extracellular lipase of Aeromonas hydrophila MCC-2 was cloned and found to be expressed in Escherichia coli using its own promoter. When the cloned gene (lip) was expressed in E. coli minicells, an 80 kDa protein was identified. Subcellular fractionation of E. coli carrying the lip gene indicated that the Lip protein was mainly associated with the membrane fraction. Nucleotide sequence analysis revealed that the gene is 2253 bp long, coding for a 79-9 kDa protein with an estimated pl of 10.36. The deduced protein contains two putative signal peptide cleavage sites: one is a typical signal peptidase cleavage site and the other bears a strong resemblance to known lipoprotein leader sequences. Radioactivity from [3H]palmitate was incorporated into the Lip protein when expressed in E. coli. The deduced protein contains a sequence of VHFLGHSLGA which is very well conserved among lipases. It shows 67% and 65% overall identity to the amino acid sequences of lipase from A. hydrophila strains H3 and JMP636, respectively, but shows little homology to those of other lipases. The Lip protein was purified to homogeneity from both A. hydrophila and recombinant E. coli. In hydrolysis of p-nitrophenyl esters and triacylglycerols, using purified enzyme, the optimum chain lengths for the acyl moiety on the substrate were C10 to C12 for ester hydrolysis and C8 to C10 for triacylglycerol hydrolysis.
Collapse
Affiliation(s)
- Yin Ching Chuang
- Division of Infectious Diseases, Department of Internal Medicine, National Cheng Kung University Medical College and University Hospital, Tainan, Taiwan, Republic of China
| | - Shu Fen Chiou
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Jer Horng Su
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Mei Li Wu
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming Chung Chang
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
27
|
Kuhad RC, Singh A, Eriksson KE. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1997; 57:45-125. [PMID: 9204751 DOI: 10.1007/bfb0102072] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of natures most important biological processes is the degradation of lignocellulosic materials to carbon dioxide, water and humic substances. This implies possibilities to use biotechnology in the pulp and paper industry and consequently, the use of microorganisms and their enzymes to replace or supplement chemical methods is gaining interest. This chapter describes the structure of wood and the main wood components, cellulose, hemicelluloses and lignins. The enzyme and enzyme mechanisms used by fungi and bacteria to modify and degrade these components are described in detail. Techniques for how to assay for these enzyme activities are also described. The possibilities for biotechnology in the pulp and paper industry and other fiber utilizing industries based on these enzymes are discussed.
Collapse
Affiliation(s)
- R C Kuhad
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
28
|
Abstract
Microorganisms are efficient degraders of starch, chitin, and the polysaccharides in plant cell walls. Attempts to purify hydrolases led to the realization that a microorganism may produce a multiplicity of enzymes, referred to as a system, for the efficient utilization of a polysaccharide. In order to fully characterize a particular enzyme, it must be obtained free of the other components of a system. Quite often, this proves to be very difficult because of the complexity of a system. This realization led to the cloning of the genes encoding them as an approach to eliminating other components. More than 400 such genes have been cloned and sequenced, and the enzymes they encode have been grouped into more than 50 families of related amino acid sequences. The enzyme systems revealed in this manner are complex on two quite different levels. First, many of the individual enzymes are complex, as they are modular proteins comprising one or more catalytic domains linked to ancillary domains that often include one or more substrate-binding domains. Second, the systems are complex, comprising from a few to 20 or more enzymes, all of which hydrolyze a particular substrate. Systems for the hydrolysis of plant cell walls usually contain more components than systems for the hydrolysis of starch and chitin because the cell walls contain several polysaccharides. In general, the systems produced by different microorganisms for the hydrolysis of a particular polysaccharide comprise similar enzymes from the same families.
Collapse
Affiliation(s)
- R A Warren
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Iyo AH, Forsberg CW. Endoglucanase G from Fibrobacter succinogenes S85 belongs to a class of enzymes characterized by a basic C-terminal domain. Can J Microbiol 1996; 42:934-43. [PMID: 8864216 DOI: 10.1139/m96-120] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A 3.6-kb fragment of the Fibrobacter succinogenes S85 DNA was sequenced and found to contain two open reading frames (ORFs) on the same strand separated by 242 nucleotide bases. The translated protein from ORF1 had a predicted mass of 52.3 kDa. In a region of 320 amino acid overlap, it shares a 35% identity with the b-chain of the glutamate synthase of Escherichia coli. The ORF2 protein encodes a 519 residue protein designated CelG. It consists of an ORF of 1557 bp, encoding a polypeptide of 54.5 kDa. The N-terminal region, which contains the catalytic domain, is linked to a C-terminal basic domain, which has a predicted isoelectric point of 10.8. The catalytic domain in endoglucanase G (CelG) is homologous to the family 5 (A) cellulases. The enzyme has an apparent mass of 55 kDa, a pH optimum of 5.5, and temperature optimum of 25 degrees C. It had a specific activity of 16.5 mumols x min(-1) x mg-1 on barley b-glucan and produced a mixture of cellooligosaccharides from the hydrolysis of acid swollen cellulose and cellooligosaccharides. Antiserum raised against the purified form of CelG in E. coli failed to react with proteins from the native organism when grown on either glucose or crystalline cellulose, but reverse transcription and polymerase chain reaction techniques using RNA from the native organism demonstrated that the celG gene was expressed constitutively. Its distribution amongst subspecies of Fibrobacter was restricted to F. succinogenes S85.
Collapse
Affiliation(s)
- A H Iyo
- Department of Microbiology, University of Guelph, ON, Canada
| | | |
Collapse
|
30
|
Gong J, Egbosimba EE, Forsberg CW. Cellulose-binding proteins of Fibrobacter succinogenes and the possible role of a 180-kDa cellulose-binding glycoprotein in adhesion to cellulose. Can J Microbiol 1996. [DOI: 10.1139/m96-062] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibrobacter succinogenes possesses seven cellulose-binding proteins (CBPs) of 40, 45, 50, 120, 180, 220, and 240 kDa. The 120-, 180-, 220-, and 240-kDa proteins were present in the outer membrane (OM), while the 40-, 45-, 50-, and 120-kDa proteins were either periplasmic or peripheral membrane proteins. The 120-kDa CBP, which was identified as endoglucanase 2, was a major component in both the OM and periplasm. Zymogram analysis for glucanases showed that the major membrane-associated CBPs, with the exception of endoglucanase 2, lacked endoglucanase activity. Affinity-purified antibodies against the 180-kDa CBP cross-reacted strongly with numerous cell envelope proteins of higher and lower molecular mass, including the previously characterized chloride-stimulated cellobiosidase. Treatment of the 180-kDa CBP and cell envelope proteins with periodate resulted in almost complete loss of antibody binding, suggesting that they possessed a common epitope that was carbohydrate in nature. Immunogold labelling of whole cells using antibodies against the 180-kDa CBP demonstrated that either the 180-kDa CBP or related proteins with a cross-reactive epitope were located at the cell surface. These epitopes were distributed uniformly on cells not bound to cellulose but congregated on the cell surface at sites of adhesion of cells to cellulose. Antibodies to the 180-kDa protein caused 62% inhibition of binding of F. succinogenes to crystalline cellulose, which provides evidence that either the 180-kDa CBP and (or) other related cross-reactive surface proteins have a role in adhesion to cellulose.Key words: cellulose, adhesin, adhesion, binding, Fibrobacter, succinogenes, rumen.
Collapse
|
31
|
Malburg LM, Iyo AH, Forsberg CW. A novel family 9 endoglucanase gene (celD), whose product cleaves substrates mainly to glucose, and its adjacent upstream homolog (celE) from Fibrobacter succinogenes S85. Appl Environ Microbiol 1996; 62:898-906. [PMID: 8975618 PMCID: PMC167855 DOI: 10.1128/aem.62.3.898-906.1996] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two adjacent, highly homologous endoglucanase genes, celD and celE from Fibrobacter succinogenes S85, which were separated by an AT-rich 223-nucleotide intergenic region were characterized. The celD gene codes for endoglucanase D (EGD), a protein of 668 residues with a molecular mass of 71.7 kDa, while the celE gene encodes endoglucanase E, a protein of 467 amino acids with a molecular mass of 50.7 kDa. Both gene products belong to family 9 of glycosyl hydrolases. EGD displays an array of serine-rich periodic sequences (SRPS) near its C terminus which separate the catalytic domain from a basic terminal domain (BTD) rich in positively charged amino acids. Endoglucanase E has a BTD which is homologous to that of EGD, but it lacks the SRPS and 151 residues present at the N terminus of EGD. The SRPS structures may function as flexible linkers which facilitate interactions between the BTDs and acidic membrane proteins from F. succinogenes S85. The recombinant EGD showed pH and temperature optima of 5.5 and 35 degrees C, respectively. The enzyme cleaved barley-beta-glucan, carboxymethyl cellulose, and acid-swollen cellulose with specific activities of 19.1, 11.5 and 1.7 micromol x min-1 x mg of protein-1, respectively. There was a rapid drop in viscosity during hydrolyses of carboxymethyl cellulose, which is characteristic of an endoglucanase. Glucose was the main hydrolysis product of acid-swollen cellulose. Monospecific polyclonal antibodies against EGD detected the expression of a 68-kDa cellulose-inducible protein corresponding in size to the recombinant EGD in the culture fluid of F. succinogenes S85 and several larger proteins. The celE gene appeared to have little activity when expressed from the beta-galactosidase promoter in pBluescript in Escherichia coli; however, reverse transcriptase PCR analysis with internal primers for the gene revealed that a cellulose-inducible message was made in F. succinogenes, thereby documenting expression of the gene.
Collapse
Affiliation(s)
- L M Malburg
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
32
|
Ozcan N, Cunningham C, Harris WJ. Cloning of a cellulase gene from the rumen anaerobe Fibrobacter succinogenes SD35 and partial characterization of the gene product. Lett Appl Microbiol 1996; 22:85-9. [PMID: 8588893 DOI: 10.1111/j.1472-765x.1996.tb01114.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A gene encoding an enzyme which degrades cellulose (end-1) was isolated from a library of Fibrobacter succinogenes SD35 DNA fragments and expressed in pUC18. The product of end-1 showed significant activity against carboxymethylcellulose but relatively minor activity against lichenan, xylan and avicel. The nucleotide sequence indicated a product of 388 amino acids with a molecular mass of 50.2 kDa. This was in agreement with the molecular size estimated by gel electrophoresis. No significant DNA sequence similarity was identified with any published endoglucanase.
Collapse
Affiliation(s)
- N Ozcan
- Department of Molecular and Cell Biology, Marischal College, University of Aberdeen, Scotland, UK
| | | | | |
Collapse
|
33
|
Healy FG, Ray RM, Aldrich HC, Wilkie AC, Ingram LO, Shanmugam KT. Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl Microbiol Biotechnol 1995; 43:667-74. [PMID: 7546604 DOI: 10.1007/bf00164771] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gene libraries ("zoolibraries") were constructed in Escherichia coli using DNA isolated from the mixed liquor of thermophilic, anaerobic digesters, which were in continuous operation with lignocellulosic feedstocks for over 10 years. Clones expressing cellulase and xylosidase were readily recovered from these libraries. Four clones that hydrolyzed carboxymethylcellulose and methylumbelliferyl-beta-D-cellobiopyranoside were characterized. All four cellulases exhibited temperature optima (60-65 degrees C) and pH optima (pH 6-7) in accordance with conditions of the enrichment. The DNA sequence of the insert in one clone (plasmid pFGH1) was determined. This plasmid encoded an endoglucanase (celA) and part of a putative beta-glucosidase (celB), both of which were distinctly different from all previously reported homologues. CelA protein shared limited homology with members of the A3 subfamily of cellulases, being similar to endoglucanase C from Clostridium thermocellum (40% identity). The N-terminal part of CelB protein was most similar to beta-glucosidase from Pseudomonas fluorescens subsp. cellulosa (28% homology). The use of zoolibraries constructed from natural or laboratory enrichment cultures offers the potential to discover many new enzymes for biotechnological applications.
Collapse
Affiliation(s)
- F G Healy
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lin C, Stahl DA. Comparative analyses reveal a highly conserved endoglucanase in the cellulolytic genus Fibrobacter. J Bacteriol 1995; 177:2543-9. [PMID: 7730288 PMCID: PMC176915 DOI: 10.1128/jb.177.9.2543-2549.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An RNA probe complementary to the endoglucanase 3 gene (cel-3) of Fibrobacter succinogenes S85 hybridized to chromosomal DNAs from isolates representing the genetic diversity of the genus. The probe was subsequently used to identify putative cel-3-containing clones from genomic libraries of representative Fibrobacter isolates. Comparative sequence analyses of the cloned cel-3 genes confirmed that cel-3 is conserved among Fibrobacter isolates and that the ancestral cel-3 gene appears to have coevolved with the genus, since the same genealogy was inferred from sequence comparisons of 16S rRNAs and cel-3 genes. Hybridization comparisons using a xylanase gene probe suggested similar conservation of this gene. Together the data indicate that the cellulolytic apparatus is conserved among Fibrobacter isolates and that comparative analyses of homologous elements of the apparatus from different members, in relationship to the now established phylogeny of the genus, could serve to better define the enzymatic basis of fiber digestion in this genus.
Collapse
Affiliation(s)
- C Lin
- Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|
35
|
Molecular cloning, expression, and characterization of a new endoglucanase gene fromFibrobacter succinogenes S85. Curr Microbiol 1994. [DOI: 10.1007/bf01575979] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Paradis FW, Zhu H, Krell PJ, Phillips JP, Forsberg CW. The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. J Bacteriol 1993; 175:7666-72. [PMID: 8244936 PMCID: PMC206924 DOI: 10.1128/jb.175.23.7666-7672.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The xynC gene of Fibrobacter succinogenes S85 codes for a 66.4-kDa xylanase which consists of three distinct domains separated by two flexible regions rich in serine residues. Domains A and B of XynC code for catalytic domains with 56.5% identity and 9.6% similarity with each other, and both domains share homology with xylanases of Ruminococcus flavefaciens, Neocallimastix patriciarum, Clostridium acetobutylicum, Bacillus pumilus, Bacillus subtilis, and Bacillus circulans. More than 88% of the xylanase activity of Escherichia coli cells carrying the original 13-kb recombinant plasmid was released from intact cells by cold water washes. The major products of hydrolysis of xylan by both domains were xylose and xylobiose, indicating that the xynC gene product exhibits catalytic properties similar to those of the XynA xylanases from R. flavefaciens and N. patriciarum. So far, these features are not shared broadly with bacteria from other environments and may indicate specific selection for this domain structure in the highly competitive environment of the rumen.
Collapse
Affiliation(s)
- F W Paradis
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Gong J, Forsberg CW. Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanases and cellobiase. J Bacteriol 1993; 175:6810-21. [PMID: 8226622 PMCID: PMC206804 DOI: 10.1128/jb.175.21.6810-6821.1993] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The outer membrane (OM) of Fibrobacter succinogenes was isolated by a combination of salt, sucrose, and water washes from whole cells grown on either glucose or cellulose. The cytoplasmic membrane (CM) was isolated from OM-depleted cells after disruption with a French press. The OM and membrane vesicles isolated from the extracellular culture fluid of cellulose-grown cells had a higher density, much lower succinate dehydrogenase activity, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles different from those of the CM. The OM from both glucose- and cellulose-grown cells and the extracellular membrane vesicles from cellulose-grown cultures exhibited higher endoglucanase, xylanase, and acetylesterase activities than the CM and other cell fractions. Endoglucanase 2 was absent from the isolated OM fractions of glucose- and cellulose-grown cells and from the extracellular membrane vesicles of cellulose-grown cells but was present in the CM and intracellular glycogen granule fractions, while endoglucanase 3 was enriched in the OM. Cellobiosidase was located primarily in the periplasm as previously reported, while cellobiase was mainly present in the glycogen granule fraction of glucose-grown cells and in a nongranular glycogen and CM complex in cellulose-grown cells. The cellobiase was not eluted from glycogen granules by cellobiose, maltose, and maltotriose nor from either the granules or the cell membranes by nondenaturing detergents but was eluted from both glycogen granules and cell membranes by high concentrations of salts. The eluted cellobiase rebound almost quantitatively when diluted and mixed with purified glycogen granules but exhibited a low affinity for Avicel cellulose. Thus, we have documented a method for isolation of OM from F. succinogenes, identified the OM origin of the extracellular membrane vesicles, and located glycanases and cellobiase in membrane and glycogen fractions.
Collapse
Affiliation(s)
- J Gong
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
38
|
Presutti DG, Hughes TA, Stutzenberger FJ. Characterization of a Thermomonospora curvata endoglucanase expressed in Escherichia coli. J Biotechnol 1993. [DOI: 10.1016/0168-1656(93)90062-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Abstract
The unifying feature of all proteins that are transported out of the cytoplasm of gram-negative bacteria by the general secretory pathway (GSP) is the presence of a long stretch of predominantly hydrophobic amino acids, the signal sequence. The interaction between signal sequence-bearing proteins and the cytoplasmic membrane may be a spontaneous event driven by the electrochemical energy potential across the cytoplasmic membrane, leading to membrane integration. The translocation of large, hydrophilic polypeptide segments to the periplasmic side of this membrane almost always requires at least six different proteins encoded by the sec genes and is dependent on both ATP hydrolysis and the electrochemical energy potential. Signal peptidases process precursors with a single, amino-terminal signal sequence, allowing them to be released into the periplasm, where they may remain or whence they may be inserted into the outer membrane. Selected proteins may also be transported across this membrane for assembly into cell surface appendages or for release into the extracellular medium. Many bacteria secrete a variety of structurally different proteins by a common pathway, referred to here as the main terminal branch of the GSP. This recently discovered branch pathway comprises at least 14 gene products. Other, simpler terminal branches of the GSP are also used by gram-negative bacteria to secrete a more limited range of extracellular proteins.
Collapse
Affiliation(s)
- A P Pugsley
- Unité de Génétique Moléculaire, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
|
41
|
Buchanan CJ, Mitchell WJ. Two beta-glucosidase activities in Fibrobacter succinogenes S85. THE JOURNAL OF APPLIED BACTERIOLOGY 1992; 73:243-50. [PMID: 1399917 DOI: 10.1111/j.1365-2672.1992.tb02984.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Few bacteria are capable of degrading crystalline cellulose but there is considerable interest in the properties of enzyme systems with this capability. In the bovine and ovine rumen the principal cellulolytic bacterium is Fibrobacter (formerly Bacteroides) succinogenes. The cellulase system of this organism is composed of multiple enzyme components, including a constitutive and cell-associated beta-glucosidase active against cellobiose. The properties of the beta-glucosidase activity have been investigated with the chromogenic substrate p-nitrophenyl beta-D-glucoside (pNPG). Hydrolytic activity against pNPG was located primarily in the cytoplasm and the cytoplasmic membrane but showed a gradual migration to the periplasm during growth on either glucose or cellobiose. Activity against cellobiose was found in the periplasm in significant amounts in all growth phases. Of the beta-glucosides tested, only cellobiose and pNPG were hydrolysed by crude cell extracts. In the presence of cellobiose, however, the rate of hydrolysis of pNPG was stimulated up to 10-fold, and extracts hydrolysed methylumbelliferyl beta-D-glucoside, 5-bromo-4-chloro-3-indolyl beta-D-glucoside, arbutin and aesculin. Activities against pNPG in the presence and absence of cellobiose displayed similar instability in the presence of oxygen; both were stabilized by dithiothreitol and the temperature and pH optima were identical. A significant proportion of the membrane-associated beta-glucosidase was released by treatment with 0.3 mol/1 KCl, and fractionation by chromatography on CM-cellulose showed the presence of two activities against pNPG, only one of which was stimulated by cellobiose.
Collapse
Affiliation(s)
- C J Buchanan
- Department of Biological Sciences, Heriot-Watt University, Edinburgh, UK
| | | |
Collapse
|
42
|
Lee SF, Forsberg CW, Gibbins AM. Type II DNA restriction-modification system and an endonuclease from the ruminal bacterium Fibrobacter succinogenes S85. J Bacteriol 1992; 174:5275-83. [PMID: 1644754 PMCID: PMC206363 DOI: 10.1128/jb.174.16.5275-5283.1992] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibrobacter succinogenes is an important cellulolytic bacterium found in the rumen and cecum of herbivores. Numerous attempts to introduce foreign DNA into F. succinogenes S85 have failed, suggesting the presence of genetic barriers in this organism. Results from this study clearly demonstrate that F. succinogenes S85 possesses a type II restriction endonuclease, FsuI, which recognizes the sequence 5'-GG(A/T)CC-3'. Analysis of the restriction products on sequencing gels showed that FsuI cleaves between the two deoxyguanosine residues, yielding a 3-base 5' protruding end. These data demonstrate that FsuI is an isoschizomer of AvaII. A methyltransferase activity has been identified in the cell extract of F. succinogenes S85. This activity modified DNA in vitro and protected the DNA from the restriction by FsuI and AvaII. DNA modified in vivo by a cloned methylase gene, which codes for M.Eco47II, also protected the DNA from restriction by FsuI, suggesting that FsuI is inhibited by methylation at one or both deoxycytosine residues of the recognition sequence. The methyltransferase activity in F. succinogenes S85 is likely modifying the same deoxycytosine residues, but the exact site(s) is unknown. A highly active DNase (DNase A) was also isolated from the cell extract of this organism. DNase A is an endonuclease which showed high activity on all forms of DNA (single stranded, double-stranded, linear, and circular) but no activity on RNA. In vitro, the DNase A hydrolyzed F. succinogenes S85 DNA extensively, indicating the lack of protection against hydrolysis by this enzyme. In the presence of Mg2+, DNA was hydrolyzed to fragments of 8 to 10 nucleotides in length. The presence of DNase A and the type II restriction-modification system of F. succinogenes S85 may be the barriers preventing the introduction of foreign DNA into this bacterium.
Collapse
Affiliation(s)
- S F Lee
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
43
|
Vercoe PE, Gregg K. DNA sequence and transcription of an endoglucanase gene from Prevotella (Bacteroides) ruminicola AR20. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:284-92. [PMID: 1603069 DOI: 10.1007/bf00587590] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endoglucanase gene was sequenced from Prevotella ruminicola AR20, isolated as clone pJW4. The endoglucanase (BrEND) is encoded by an open reading frame (ORF1) of 501 codons, corresponding to a protein of calculated molecular weight 55.7 kDa. Analysis of proteins on SDS-PAGE revealed a protein corresponding to the calculated molecular weight of the processed BrEND. The protein showed substantial homology to members of the A4 sub-family cellulases. Primer extension studies revealed that transcription of celA is initiated at different sites in Escherichia coli and Prevotella ruminicola. E. coli sigma 70 recognition sequences were identified, which were located upstream from the transcription initiation site (TIS) functional in E. coli. A longer extension product was identified using RNA from P. ruminicola, indicating that the gene may normally be transcribed as part of a polycistronic message. The end of the primer extension product corresponded to a site beyond the 5' boundary of the cloned fragment, thus preventing identification of native promoter sequences. A second ORF of 110 codons (ORF2) was identified on the antisense strand, and primer extension indicated that transcription through ORF2 was initiated at an identical site in both E. coli and P. ruminicola. E. coli-like consensus sequences were located at positions -10 and -35 upstream from this site, suggesting that some promoter sequences in P. ruminicola are similar to E. coli consensus sequences, although others recognized by E. coli are non-functional in P. ruminicola.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P E Vercoe
- Institute of Biotechnology, University of New England, Armidale, Australia
| | | |
Collapse
|
44
|
Huang JZ, Schell MA. Role of the two-component leader sequence and mature amino acid sequences in extracellular export of endoglucanase EGL from Pseudomonas solanacearum. J Bacteriol 1992; 174:1314-23. [PMID: 1735723 PMCID: PMC206427 DOI: 10.1128/jb.174.4.1314-1323.1992] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The egl gene of Pseudomonas solanacearum encodes a 43-kDa extracellular endoglucanase (mEGL) involved in wilt disease caused by this phytopathogen. Egl is initially translated with a 45-residue, two-part leader sequence. The first 19 residues are apparently removed by signal peptidase II during export of Egl across the inner membrane (IM); the remaining residues of the leader sequence (modified with palmitate) are removed during export across the outer membrane (OM). Localization of Egl-PhoA fusion proteins showed that the first 26 residues of the Egl leader sequence are required and sufficient to direct lipid modification, processing, and export of Egl or PhoA across the IM but not the OM. Fusions of the complete 45-residue leader sequence or of the leader and increasing portions of mEgl sequences to PhoA did not cause its export across the OM. In-frame deletion of portions of mEGL-coding sequences blocked export of the truncated polypeptides across the OM without affecting export across the IM. These results indicate that the first part of the leader sequence functions independently to direct export of Egl across the IM while the second part and sequences and structures in mEGL are involved in export across the OM. Computer analysis of the mEgl amino acid sequence obtained from its nucleotide sequence identified a region of mEGL similar in amino acid sequence to regions in other prokaryotic endoglucanases.
Collapse
Affiliation(s)
- J Z Huang
- Department of Plant Pathology, University of Georgia, Athens 30602
| | | |
Collapse
|
45
|
Matte A, Forsberg CW. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl Environ Microbiol 1992; 58:157-68. [PMID: 1539970 PMCID: PMC195186 DOI: 10.1128/aem.58.1.157-168.1992] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two different endoxylanases (1,4-beta-D-xylan xylanohydrolases, EC 3.2.1.8), designated 1 and 2, have been purified by column chromatography to apparent homogeneity from the nonsedimentable extracellular culture fluid of the strictly anaerobic, ruminal bacterium Fibrobacter succinogenes S85 grown on crystalline cellulose. Endoxylanases 1 and 2 were shown to be basic proteins of 53.7 and 66.0 kDa, respectively, with different pH and temperature optima, as well as different substrate hydrolysis characteristics. The Km and Vmax values with water-soluble oat spelts xylan as substrate were 2.6 mg ml-1 and 33.6 mumol min-1 mg-1 for endoxylanase 1 and 1.3 mg ml-1 and 118 mumol min-1 mg-1 for endoxylanase 2. Endoxylanase 1, but not endoxylanase 2, released arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, but not from arabinan, arabinogalactan, or aryl-alpha-L-arabinofuranosides. With an extended hydrolysis time, endoxylanase 1 released 62.5 and 50% of the available arabinose from water-soluble oat spelts xylan and rye flour arabinoxylan, respectively. Endoxylanase 1 released arabinose directly from the xylan backbone, and this preceded hydrolysis of the xylan to xylooligosaccharides. Endoxylanase 2 showed significant activity against carboxymethyl cellulose but was unable to substantially hydrolyze acid-swollen cellulose. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on water-soluble xylan and xylooligosaccharides. Because of their unique hydrolytic properties, endoxylanases 1 and 2 appear to have strategic roles in plant cell wall digestion by F. succinogenes in vivo.
Collapse
Affiliation(s)
- A Matte
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
46
|
Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RA. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 1991; 55:303-15. [PMID: 1886523 PMCID: PMC372816 DOI: 10.1128/mr.55.2.303-315.1991] [Citation(s) in RCA: 421] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several types of domain occur in beta-1, 4-glycanases. The best characterized of these are the catalytic domains and the cellulose-binding domains. The domains may be joined by linker sequences rich in proline or hydroxyamino acids or both. Some of the enzymes contain repeated sequences up to 150 amino acids in length. The enzymes can be grouped into families on the basis of sequence similarities between the catalytic domains. There are sequence similarities between the cellulose-binding domains, of which two types have been identified, and also between some domains of unknown function. The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences.
Collapse
Affiliation(s)
- N R Gilkes
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
47
|
Cavicchioli R, East PD, Watson K. endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1. J Bacteriol 1991; 173:3265-8. [PMID: 1708767 PMCID: PMC207928 DOI: 10.1128/jb.173.10.3265-3268.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The complete nucleotide sequence of endAFS, an endoglucanase gene isolated from the ruminal anaerobe Fibrobacter succinogenes AR1, was determined. endAFS encodes two overlapping open reading frames (ORF1 and ORF2), and it was proposed that a -1 ribosomal frameshift was required to allow contiguous synthesis of a 453-amino-acid endoglucanase. A proline- and threonine-rich region at the C terminus of ORF1 and rare codons for arginine and threonine were coincident with the proposed frameshift site. ENDAFS is proposed to be a member of subgroup 1 of family E endoglucanases, of which endoglucanases from Thermomonospora fusca and Persea americana (avocado) are also members. Endoglucanases from Clostridium thermocellum and Pseudomonas fluorescens form subgroup 2.
Collapse
Affiliation(s)
- R Cavicchioli
- Department of Biochemistry, Microbiology and Nutrition, University of New England, Armidale, New South Wales, Australia
| | | | | |
Collapse
|
48
|
Cavicchioli R, Watson K. Molecular cloning, expression, and characterization of endoglucanase genes from Fibrobacter succinogenes AR1. Appl Environ Microbiol 1991; 57:359-65. [PMID: 2014986 PMCID: PMC182718 DOI: 10.1128/aem.57.2.359-365.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46,500, had an optimum temperature of 39 degrees C, and exhibited activity over a broad pH range, with a maximum at pH 5.0.
Collapse
Affiliation(s)
- R Cavicchioli
- Department of Biochemistry, Microbiology, and Nutrition, University of New England, New South Wales, Australia
| | | |
Collapse
|
49
|
McDermid KP, Forsberg CW, MacKenzie CR. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 1990; 56:3805-10. [PMID: 2082827 PMCID: PMC185071 DOI: 10.1128/aem.56.12.3805-3810.1990] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.
Collapse
Affiliation(s)
- K P McDermid
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
50
|
Teather RM, Erfle JD. DNA sequence of a Fibrobacter succinogenes mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase) gene. J Bacteriol 1990; 172:3837-41. [PMID: 2193918 PMCID: PMC213364 DOI: 10.1128/jb.172.7.3837-3841.1990] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DNA sequence of a mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase [EC 3.2.1.73]) gene from Fibrobacter succinogenes cloned in Escherichia coli was determined. The general features of this gene are very similar to the consensus features for other gram-negative bacterial genes. The gene product was processed for export in E. coli. There is a high level of sequence homology between the structure of this glucanase and the structure of a mixed-linkage beta-glucanase from Bacillus subtilis. The nonhomologous region of the amino acid sequence includes a serine-rich region containing five repeats of the sequence Pro-Xxx-Ser-Ser-Ser-Ser-(Ala or Val) which may be functionally related to the serine-rich region observed in Pseudomonas fluorescens cellulase and the serine- and/or threonine-rich regions observed in Cellulomonas fimi endoglucanase and exoglucanase, in Clostridium thermocellum endoglucanases A and B, and in Trichoderma reesei cellobiohydrolase I, cellobiohydrolase II, and endoglucanase I.
Collapse
Affiliation(s)
- R M Teather
- Animal Research Centre, Research Branch, Agriculture Canada, Ottawa, Ontario
| | | |
Collapse
|