1
|
Liu Z, Chen P, Wang X, Cai G, Niu L, Teng M, Li X. Crystal structure of DnaT84-153-dT10 ssDNA complex reveals a novel single-stranded DNA binding mode. Nucleic Acids Res 2014; 42:9470-83. [PMID: 25053836 PMCID: PMC4132743 DOI: 10.1093/nar/gku633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DnaT is a primosomal protein that is required for the stalled replication fork restart in Escherichia coli. As an adapter, DnaT mediates the PriA-PriB-ssDNA ternary complex and the DnaB/C complex. However, the fundamental function of DnaT during PriA-dependent primosome assembly is still a black box. Here, we report the 2.83 Å DnaT84–153-dT10 ssDNA complex structure, which reveals a novel three-helix bundle single-stranded DNA binding mode. Based on binding assays and negative-staining electron microscopy results, we found that DnaT can bind to phiX 174 ssDNA to form nucleoprotein filaments for the first time, which indicates that DnaT might function as a scaffold protein during the PriA-dependent primosome assembly. In combination with biochemical analysis, we propose a cooperative mechanism for the binding of DnaT to ssDNA and a possible model for the assembly of PriA-PriB-ssDNA-DnaT complex that sheds light on the function of DnaT during the primosome assembly and stalled replication fork restart. This report presents the first structure of the DnaT C-terminal complex with ssDNA and a novel model that explains the interactions between the three-helix bundle and ssDNA.
Collapse
Affiliation(s)
- Zheng Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| | - Peng Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
2
|
Structural insight into the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT. BIOMED RESEARCH INTERNATIONAL 2014; 2014:195162. [PMID: 25136561 PMCID: PMC4129139 DOI: 10.1155/2014/195162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023]
Abstract
Replication restart primosome is a complex dynamic system that is essential for bacterial survival. This system uses various proteins to reinitiate chromosomal DNA replication to maintain genetic integrity after DNA damage. The replication restart primosome in Escherichia coli is composed of PriA helicase, PriB, PriC, DnaT, DnaC, DnaB helicase, and DnaG primase. The assembly of the protein complexes within the forked DNA responsible for reloading the replicative DnaB helicase anywhere on the chromosome for genome duplication requires the coordination of transient biomolecular interactions. Over the last decade, investigations on the structure and mechanism of these nucleoproteins have provided considerable insight into primosome assembly. In this review, we summarize and discuss our current knowledge and recent advances on the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT.
Collapse
|
3
|
Huang YH, Huang CY. The N-terminal domain of DnaT, a primosomal DNA replication protein, is crucial for PriB binding and self-trimerization. Biochem Biophys Res Commun 2013; 442:147-52. [PMID: 24280305 DOI: 10.1016/j.bbrc.2013.11.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 10/26/2022]
Abstract
DnaT and PriB are replication restart primosomal proteins required for re-initiating chromosomal DNA replication in bacteria. Although the interaction of DnaT with PriB has been proposed, which region of DnaT is involved in PriB binding and self-trimerization remains unknown. In this study, we identified the N-terminal domain in DnaT (aa 1-83) that is important in PriB binding and self-trimerization but not in single-stranded DNA (ssDNA) binding. DnaT and the deletion mutant DnaT42-179 protein can bind to PriB according to native polyacrylamide gel electrophoresis, Western blot analysis, and pull-down assay, whereas DnaT84-179 cannot bind to PriB. In contrast to DnaT, DnaT26-179, and DnaT42-179 proteins, which form distinct complexes with ssDNA of different lengths, DnaT84-179 forms only a single complex with ssDNA. Analysis of DnaT84-179 protein by gel filtration chromatography showed a stable monomer in solution rather than a trimer, such as DnaT, DnaT26-179, and DnaT42-179 proteins. These results constitute a pioneering study of the domain definition of DnaT. Further research can directly focus on determining how DnaT binds to the PriA-PriB-DNA tricomplex in replication restart by the hand-off mechanism.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | | |
Collapse
|
4
|
Huang YH, Lin MJ, Huang CY. DnaT is a single-stranded DNA binding protein. Genes Cells 2013; 18:1007-19. [PMID: 24118681 DOI: 10.1111/gtc.12095] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/11/2013] [Indexed: 01/26/2023]
Abstract
DnaT is one of the replication restart primosomal proteins required for reinitiating chromosomal DNA replication in bacteria. In this study, we identified and characterized the single-stranded DNA (ssDNA)-binding properties of DnaT using electrophoretic mobility shift analysis (EMSA), bioinformatic tools and two deletion mutant proteins, namely, DnaT26-179 and DnaT42-179. ConSurf analysis indicated that the N-terminal region of DnaT is highly variable. The analysis of purified DnaT and the deletion mutant protein DnaT42-179 by gel filtration chromatography showed a stable trimer in solution, indicating that the N-terminal region, amino acid 1-41, is not crucial for the oligomerization of DnaT. Contrary to PriB, which forms a single complex with a series of ssDNA homopolymers, DnaT, DnaT26-179 and DnaT42-179 form distinct complexes with ssDNA of different lengths and the size of binding site of 26 ± 2 nucleotides (nt). Using bioinformatic programs (ps)(2) and the analysis of the positively charged/hydrophobic residue distribution, as well as the biophysical results in this study, we propose a binding model for the DnaT trimer-ssDNA complex, in which 25-nt-long ssDNA is tethered on the surface groove located in the highly conserved C-terminal domain of DnaT. These results constitute the first study regarding ssDNA-binding activity of DnaT. Consequently, a hand-off mechanism for primosome assembly was modified.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Rd, Taichung, Taiwan
| | | | | |
Collapse
|
5
|
The rcbA gene product reduces spontaneous and induced chromosome breaks in Escherichia coli. J Bacteriol 2012; 194:2152-64. [PMID: 22343303 DOI: 10.1128/jb.06390-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elevated levels of DnaA cause excessive initiation, which leads to an increased level of double-strand breaks that are proposed to arise when newly formed replication forks collide from behind with stalled or collapsed forks. These double-strand breaks are toxic in mutants that are unable to repair them. Using a multicopy suppressor assay to identify genes that suppress this toxicity, we isolated a plasmid carrying a gene whose function had been unknown. This gene, carried by the cryptic rac prophage, has been named rcbA for its ability to reduce the frequency of chromosome breaks. Our study shows that the colony formation of strains bearing mutations in rep, recG, and rcbA, like recA and recB mutants, is inhibited by an oversupply of DnaA and that a multicopy plasmid carrying rcbA neutralizes this inhibition. These and other results suggest that rcbA helps to maintain the integrity of the bacterial chromosome by lowering the steady-state level of double-strand breaks.
Collapse
|
6
|
Williams JA, Luke J, Langtry S, Anderson S, Hodgson CP, Carnes AE. Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol Bioeng 2009; 103:1129-43. [PMID: 19408315 PMCID: PMC2735187 DOI: 10.1002/bit.22347] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA vaccines have tremendous potential for rapid deployment in pandemic applications, wherein a new antigen is "plugged" into a validated vector, and rapidly produced in a validated, fermentation-purification process. For this application, it is essential that the vector and fermentation process function with a variety of different antigen genes. However, many antigen genes are unpredictably "toxic" or otherwise low yielding in standard fermentation processes. We report cell bank and fermentation process unit operation innovations that reduce plasmid-mediated metabolic burden, enabling successful production of previously known toxic influenza hemagglutinin antigen genes. These processes, combined with vector backbone modifications, doubled fermentation productivity compared to existing high copy vectors, such as pVAX1 and gWiz, resulting in high plasmid yields (up to 2,220 mg/L, 5% of total dry cell weight) even with previously identified toxic or poor producing inserts.
Collapse
Affiliation(s)
| | - Jeremy Luke
- Nature Technology Corporation, Lincoln, NE, USA
| | | | | | | | | |
Collapse
|
7
|
Hayes F. A family of stability determinants in pathogenic bacteria. J Bacteriol 1998; 180:6415-8. [PMID: 9829958 PMCID: PMC107735 DOI: 10.1128/jb.180.23.6415-6418.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1998] [Accepted: 09/23/1998] [Indexed: 11/20/2022] Open
Abstract
A novel segregational stability system was identified on plasmid R485, which originates from Morganella morganii. The system is composed of two overlapping genes, stbD and stbE, which potentially encode proteins of 83 and 93 amino acids, respectively. Homologs of the stbDE genes were identified on the enterotoxigenic plasmid P307 from Escherichia coli and on the chromosomes of Vibrio cholerae and Haemophilus influenzae biogroup aegyptius. The former two homologs also promote plasmid stability in E. coli. Furthermore, the stbDE genes share homology with components of the relBEF operon and with the dnaT gene of E. coli. The organization of the stbDE cassette is reminiscent of toxin-antitoxin stability cassettes.
Collapse
Affiliation(s)
- F Hayes
- Microbiology Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England, UK.
| |
Collapse
|
8
|
Masai H, Arai KI. DnaA-dependent assembly of the ABC primosome at the A site, a single-stranded DNA hairpin containing a dnaA box. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:384-95. [PMID: 7607206 DOI: 10.1111/j.1432-1033.1995.tb20573.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ABC primosome is assembled from DnaA, DnaB and DnaC proteins at a stem-and-loop structure containing a dnaA box within its stem (A site), and catalyses primer RNA synthesis for DNA chain elongation. The DnaA protein can bind to the A site and the A-site-DnaA-protein complex can be isolated by gel-filtration chromatography in the absence of nucleotides. Mutations within the dnaA box completely abolish the binding of DnaA protein. Point mutations within the stem region outside the dnaA box also severely reduce the affinity of DnaA protein for the A site. These results indicate that not only the dnaA box but also other nucleotides and/or secondary structure features of the stem are important for proper recognition of the A site by DnaA protein. The preprimosome, which is able to synthesize RNA primers upon addition of primase, can be isolated by gel-filtration chromatography in the presence of ATP or adenosine 5'-[gamma-thio]triphosphate, a non-hydrolyzable analogue of ATP. The preprimosome can translocate along Escherichia coli single-stranded-DNA-binding protein-coated single-stranded DNA, utilizing the energy released by hydrolysis of ATP, as indicated by its helicase activity. dATP, as well as dCTP, can support the helicase activity of the preprimosome to some extent, while they are inert in helicase assays with DnaB protein in the absence of E. coli single-stranded DNA-binding protein. In keeping with this result, the isolated preprimosome, which appears to contain DnaA and DnaB proteins, is capable of hydrolyzing dATP as well as ATP and GTP. In a reconstituted replication assay, addition of excess dATP restores replication activities which have been inhibited by addition of adenosine 5'-[gamma-thio]triphosphate. The ability of dATP to support helicase and replicative activities of the ABC primosome indicates that the formation of the complex somehow modulates the structures of its component(s) so that they can utilize otherwise inert nucleotides. On the basis of these results, a scheme for the assembly of the ABC primosome at the A site is presented.
Collapse
Affiliation(s)
- H Masai
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | |
Collapse
|
9
|
|
10
|
Kubota Y, Arai K, Masai H. Roles of the G site and phi X174-type primosome assembly site in priming of leading-strand synthesis: initiation by a mobile primosome and replication-fork arrest by RepA protein bound to oriR. Gene X 1993; 126:9-16. [PMID: 8386129 DOI: 10.1016/0378-1119(93)90584-p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacterial replicons often contain single-strand initiation sequences (ssi) such as a G site (a sequence recognized by a dnaG-encoded primase for the synthesis of primer RNA) and a primosome assembly site (pas) near the DNA replication origin (ori). The R1 plasmid contains a G site downstream from oriR, which serves for the priming of the leading-strand synthesis of this plasmid. On the other hand, the F, R6K and Rts1 plasmids carry pas at similar locations relative to the respective ori. In order to assess the functional significance of these pas, R1 plasmid derivatives carrying an n'-pas (phi X174-type pas) in place of the G site were constructed and their replication properties were examined in vitro. Deletion of the G site in the R1 plasmid resulted in a nearly 80% reduction of total DNA synthesis in vitro, which was recovered to the wild-type (wt) level by inserting the G4 complementary ori. Furthermore, insertion of an n'-pas on the leading-strand template restored the in vitro replicative activity to a level 70% of wt. This recovery was dependent on the assembly of the phi X174-type primosome, which efficiently primed leading-strand synthesis and moved toward the oriR. However, the R1 plasmid derivative containing the n'-pas replicated unidirectionally in vitro, probably due to the anti-helicase activity of the RepA protein bound to oriR, which was shown by helicase assays using partial heteroduplexes as substrates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Y Kubota
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | | | |
Collapse
|
11
|
Nomura N, Masai H, Inuzuka M, Miyazaki C, Ohtsubo E, Itoh T, Sasamoto S, Matsui M, Ishizaki R, Arai K. Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. Gene 1991; 108:15-22. [PMID: 1761225 DOI: 10.1016/0378-1119(91)90482-q] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Based on the ability to complement the poor growth of an M13 phage derivative lacking the complementary strand origin, eleven single-strand initiation sequences (ssi) for DNA replication are identified in the F, R6K, R100 and ColE2 plasmids. Six of them were from F, two from near the gamma and alpha origins (ori) of R6K, two from the vicinity of the basic replicon of R100 and one from near the ori of ColE2. They can be classified into two groups based on the morphology of the plaques and the length of nucleotide (nt) sequences required for ssi activity; one group that gives rise to larger and clearer plaques and can be reduced to nearly 100 nt (seven out of eleven), and another that generates smaller and less clear plaques and requires more than 200 nt for full activity (four out of eleven). Sequence homology is detected among some members from both groups. The possible biological roles of the ssi are discussed.
Collapse
Affiliation(s)
- N Nomura
- Laboratory of Molecular Biology, Nippon Medical School, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mechanism of DNA A protein-dependent pBR322 DNA replication. DNA A protein-mediated trans-strand loading of the DNA B protein at the origin of pBR322 DNA. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55148-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Lee EH, Kornberg A. Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n' protein. Proc Natl Acad Sci U S A 1991; 88:3029-32. [PMID: 1826559 PMCID: PMC51377 DOI: 10.1073/pnas.88.8.3029] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The priA gene of Escherichia coli encodes the protein that initiates assembly of the promosome, the entity essential for the replication of phage phi X174 and ColE1-like plasmids in vitro. We have prepared a null priA mutant to assess its role in vivo in replication of phages, plasmids, and the host chromosome. Extracts of this mutant are inert in the initial conversion of the phi X174 viral strand to the duplex form, confirming the absence of the PriA activity. In vivo, the priA mutant fails to produce phi X174 phage and, remarkably, is unable to maintain plasmids that depend on the E. coli chromosome origin as well as those of ColE1. Deficiencies in cell growth and cell division are also manifest.
Collapse
Affiliation(s)
- E H Lee
- Department of Biochemistry, Stanford University School of Medicine, CA 94305-5307
| | | |
Collapse
|
14
|
The ABC-primosome. A novel priming system employing dnaA, dnaB, dnaC, and primase on a hairpin containing a dnaA box sequence. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77233-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|