1
|
Zeng Z, Hu Z, Zhao R, Rao J, Mestre MR, Liu Y, Liu S, Feng H, Chen Y, He H, Chen N, Zheng J, Peng D, Luo M, She Q, Pinilla-Redondo R, Han W. Base-modified nucleotides mediate immune signaling in bacteria. Science 2025; 388:eads6055. [PMID: 39977546 DOI: 10.1126/science.ads6055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Signaling from pathogen sensing to effector activation is a fundamental principle of cellular immunity. Whereas cyclic (oligo)nucleotides have emerged as key signaling molecules, the existence of other messengers remains largely unexplored. In this study, we reveal a bacterial antiphage system that mediates immune signaling through nucleobase modification. Immunity is triggered by phage nucleotide kinases, which, combined with the system-encoded adenosine deaminase, produce deoxyinosine triphosphates (dITPs) as immune messengers. The dITP signal activates a downstream effector to mediate depletion of cellular nicotinamide adenine dinucleotide (oxidized form), resulting in population-level defense through the death of infected cells. To counteract immune signaling, phages deploy specialized enzymes that deplete cellular deoxyadenosine monophosphate, the precursor of dITP messengers. Our findings uncover a nucleobase modification-based antiphage signaling pathway, establishing noncanonical nucleotides as a new type of immune messengers in bacteria.
Collapse
Affiliation(s)
- Zhifeng Zeng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeyu Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruiliang Zhao
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jikai Rao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mario Rodríguez Mestre
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yanqiu Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shunhang Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Feng
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Yu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Nuo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinshui Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Luo
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, Qingdao, China
| | - Rafael Pinilla-Redondo
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenyuan Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Mehta AP, Wang Y, Reed SA, Supekova L, Javahishvili T, Chaput JC, Schultz PG. Bacterial Genome Containing Chimeric DNA–RNA Sequences. J Am Chem Soc 2018; 140:11464-11473. [DOI: 10.1021/jacs.8b07046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Angad P. Mehta
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yiyang Wang
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sean A. Reed
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lubica Supekova
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tsotne Javahishvili
- Bay Area Innovation Center, Corteva Agriscience, 4010 Point Eden Way, Hayward, California 94545, United States
| | | | - Peter G. Schultz
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Tran NQ, Lee SJ, Richardson CC, Tabor S. A novel nucleotide kinase encoded by gene 1.7 of bacteriophage T7. Mol Microbiol 2010; 77:492-504. [PMID: 20497505 DOI: 10.1111/j.1365-2958.2010.07221.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene 1.7 of bacteriophage T7 confers sensitivity of both phage T7 and its host Escherichia coli to dideoxythymidine (ddT). We have purified the product of gene 1.7, gp1.7. It exists in two forms of molecular weight 22,181 and 17,782. Only the C-terminal half of the protein is required to confer ddT sensitivity. We show that gp1.7 catalyses the phosphorylation of dGMP and dTMP to dGDP and dTDP, respectively, by using either GTP, dGTP or dTTP as the phosphate donor. Either form of gp1.7 exhibit identical kinase activity as compared with wild-type gp1.7 that contains a mixture of both forms. The K(m) of 70 microM and Kcat of 4.3 s(-1) for dTMP are similar to those found for E. coli thymidylate kinase. However, unlike the host enzyme, gp1.7 efficiently catalyses the conversion of the chain-terminating dideoxythymidylate (ddTMP) to ddTDP. This finding explains the sensitivity of phage T7 but not E. coli to exogenous ddT. Gp1.7 is unusual in that it has no sequence homology to any known nucleotide kinase, it has no identifiable nucleotide-binding motif and its activity is independent of added metal ions. When coupled with nucleoside diphosphate kinase, gp1.7 exponentially converts dTMP to dTTP.
Collapse
Affiliation(s)
- Ngoc Q Tran
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
4
|
Chaperon DN. Construction and complementation of in-frame deletions of the essential Escherichia coli thymidylate kinase gene. Appl Environ Microbiol 2006; 72:1288-94. [PMID: 16461678 PMCID: PMC1392977 DOI: 10.1128/aem.72.2.1288-1294.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.
Collapse
Affiliation(s)
- David-Nicolas Chaperon
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, CH-1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Kim J, Shen R, Olcott MC, Rajagopal I, Mathews CK. Adenylate kinase of Escherichia coli, a component of the phage T4 dNTP synthetase complex. J Biol Chem 2005; 280:28221-9. [PMID: 15941717 DOI: 10.1074/jbc.m502201200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate kinase, which catalyzes the reversible ATP-dependent phosphorylation of AMP to ADP and dAMP to dADP, can also catalyze the conversion of nucleoside diphosphates to the corresponding triphosphates. Lu and Inouye (Lu, Q., and Inouye, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 5720-5725) showed that an Escherichia coli ndk mutant, lacking nucleoside diphosphate kinase, can use adenylate kinase as an alternative source of nucleoside triphosphates. Bacteriophage T4 can reproduce in an Escherichia coli ndk mutant, implying that adenylate kinase can meet a demand for deoxyribonucleoside triphosphates that increases by up to 10-fold as a result of T4 infection. In terms of kinetic linkage and specific protein-protein associations, NDP kinase is an integral component of T4 dNTP synthetase, a multienzyme complex containing phage-coded enzymes, which facilitates the synthesis of dNTPs and their flow into DNA. Here we asked whether, by similar criteria, adenylate kinase of the host cell is also a specific component of the complex. Experiments involving protein affinity chromatography, immunoprecipitation, optical biosensor measurements, and glutathione S-transferase pulldowns demonstrated direct interactions between adenylate kinase and several phage-coded enzymes, as well as E. coli nucleoside diphosphate kinase. These results identify adenylate kinase as a specific component of the complex. The rate of DNA synthesis after infection of an ndk mutant was found to be about 40% of the rate seen in wild-type infection, implying that complementation of the missing NDP kinase function by adenylate kinase is fairly efficient, but that adenylate kinase becomes rate-limiting for DNA synthesis when it is the sole source of dNTPs.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| | | | | | | | | |
Collapse
|
6
|
Kim J, Wheeler LJ, Shen R, Mathews CK. Protein-DNA interactions in the T4 dNTP synthetase complex dependent on gene 32 single-stranded DNA-binding protein. Mol Microbiol 2004; 55:1502-14. [PMID: 15720556 DOI: 10.1111/j.1365-2958.2004.04486.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our laboratory has reported data suggesting a role for T4 phage gene 32 single-stranded DNA-binding protein in organizing a complex of deoxyribonucleotide-synthesizing enzymes at the replication fork. In this article we examined the effects of gene 32 ablation on the association of these enzymes with DNA-protein complexes. These experiments showed several deoxyribonucleotide-synthesizing enzymes to be present in DNA-protein complexes, with some of these associations being dependent on gene 32 protein. To further understand the role of gp32, we created amber mutations at codons 24 and 204 of gene 32, which encodes a 301-residue protein. We used the newly created mutants along with several experimental approaches--DNA-cellulose chromatography, immunoprecipitation, optical biosensor analysis and glutathione-S-transferase pulldowns--to identify relevant protein-protein and protein-DNA interactions. These experiments identified several proteins whose interactions with DNA depend on the presence of intact gp32, notably thymidylate synthase, dihydrofolate (DHF) reductase, ribonucleotide reductase (RNR) and Escherichia coli nucleoside diphosphate (NDP) kinase, and they also demonstrated direct associations between gp32 and RNR and NDP kinase, but not dCMP hydroxymethylase, deoxyribonucleoside monophosphate kinase, or DHF reductase. Taken together, the results support the hypothesis that the gene 32 protein helps to recruit enzymes of deoxyribonucleoside triphosphates synthesis to DNA replication sites.
Collapse
Affiliation(s)
- Juhyun Kim
- Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences Building, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | | | |
Collapse
|
7
|
Teplyakov A, Sebastiao P, Obmolova G, Perrakis A, Brush GS, Bessman MJ, Wilson KS. Crystal structure of bacteriophage T4 deoxynucleotide kinase with its substrates dGMP and ATP. EMBO J 1996; 15:3487-97. [PMID: 8670851 PMCID: PMC451945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NMP kinases catalyse the phosphorylation of the canonical nucleotides to the corresponding diphosphates using ATP as a phosphate donor. Bacteriophage T4 deoxynucleotide kinase (DNK) is the only member of this family of enzymes that recognizes three structurally dissimilar nucleotides: dGMP, dTMP and 5-hydroxymethyl-dCMP while excluding dCMP and dAMP. The crystal structure of DNK with its substrate dGMP has been determined at 2.0 A resolution by single isomorphous replacement. The structure of the ternary complex with dGMP and ATP has been determined at 2.2 A resolution. The polypeptide chain of DNK is folded into two domains of equal size, one of which resembles the mononucleotide binding motif with the glycine-rich P-loop. The second domain, consisting of five alpha-helices, forms the NMP binding pocket. A hinge connection between the domains allows for large movements upon substrate binding which are not restricted by dimerization of the enzyme. The mechanism of active centre formation via domain closure is described. Comparison with other P-loop-containing proteins indicates an induced-fit mode of NTP binding. Protein-substrate interactions observed at the NMP and NTP sites provide the basis for understanding the principles of nucleotide discrimination.
Collapse
Affiliation(s)
- A Teplyakov
- European Molecular Biology Laboratory, DESY, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Wheeler LJ, Ray NB, Ungermann C, Hendricks SP, Bernard MA, Hanson ES, Mathews CK. T4 phage gene 32 protein as a candidate organizing factor for the deoxyribonucleoside triphosphate synthetase complex. J Biol Chem 1996; 271:11156-62. [PMID: 8626661 DOI: 10.1074/jbc.271.19.11156] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
After T4 bacteriophage infection of Escherichia coli, the enzymes of deoxyribonucleoside triphosphate biosynthesis form a multienzyme complex that we call T4 deoxyribonucleoside triphosphate (dNTP) synthetase. At least eight phage-coded enzymes and two enzymes of host origin are found in this 1.5-mDa complex. The complex may shuttle dNTPs to DNA replication sites, because replication draws from small pools, which are probably highly localized. Several specific protein-protein contacts within the complex are described in this paper. We have studied protein-protein interactions in the complex by immobilizing individual enzymes and identifying radiolabeled T4 proteins that are retained by columns of these respective affinity ligands. Elsewhere we have described interactions involving three T4 enzymes found in the complex. In this paper we describe similar analysis of five more proteins: dihydrofolate reductase, dCTPase-dUTPase, deoxyribonucleoside monophosphokinase, ribonucleotide reductase, and E. coli nucleoside diphosphokinase,. All eight proteins analyzed to date retain single-strand DNA-binding protein (gp32), the product of T4 gene 32. At least one T4 protein, thymidylate synthase, binds directly to gp32, as shown by affinity chromatographic analysis of the two purified proteins. Among its several roles, gp32 stabilizes single-strand template DNA ahead of a replicating DNA polymerase. Our data suggest a model in which dNTP synthetase complexes, probably more than one per growing DNA chain, are drawn to replication forks via their affinity for gp32 and hence are localized so as to produce dNTPs at their sites of utilization, immediately ahead of growing DNA 3' termini.
Collapse
Affiliation(s)
- L J Wheeler
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-7305, USA
| | | | | | | | | | | | | |
Collapse
|