1
|
Fitzgerald DM, Rosenberg SM. Biology before the SOS Response-DNA Damage Mechanisms at Chromosome Fragile Sites. Cells 2021; 10:2275. [PMID: 34571923 PMCID: PMC8465572 DOI: 10.3390/cells10092275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
The Escherichia coli SOS response to DNA damage, discovered and conceptualized by Evelyn Witkin and Miroslav Radman, is the prototypic DNA-damage stress response that upregulates proteins of DNA protection and repair, a radical idea when formulated in the late 1960s and early 1970s. SOS-like responses are now described across the tree of life, and similar mechanisms of DNA-damage tolerance and repair underlie the genome instability that drives human cancer and aging. The DNA damage that precedes damage responses constitutes upstream threats to genome integrity and arises mostly from endogenous biology. Radman's vision and work on SOS, mismatch repair, and their regulation of genome and species evolution, were extrapolated directly from bacteria to humans, at a conceptual level, by Radman, then many others. We follow his lead in exploring bacterial molecular genomic mechanisms to illuminate universal biology, including in human disease, and focus here on some events upstream of SOS: the origins of DNA damage, specifically at chromosome fragile sites, and the engineered proteins that allow us to identify mechanisms. Two fragility mechanisms dominate: one at replication barriers and another associated with the decatenation of sister chromosomes following replication. DNA structures in E. coli, additionally, suggest new interpretations of pathways in cancer evolution, and that Holliday junctions may be universal molecular markers of chromosome fragility.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, Molecular Virology and Microbiology, and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Mei Q, Fitzgerald DM, Liu J, Xia J, Pribis JP, Zhai Y, Nehring RB, Paiano J, Li H, Nussenzweig A, Hastings PJ, Rosenberg SM. Two mechanisms of chromosome fragility at replication-termination sites in bacteria. SCIENCE ADVANCES 2021; 7:eabe2846. [PMID: 34144978 PMCID: PMC8213236 DOI: 10.1126/sciadv.abe2846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 05/06/2021] [Indexed: 05/12/2023]
Abstract
Chromosomal fragile sites are implicated in promoting genome instability, which drives cancers and neurological diseases. Yet, the causes and mechanisms of chromosome fragility remain speculative. Here, we identify three spontaneous fragile sites in the Escherichia coli genome and define their DNA damage and repair intermediates at high resolution. We find that all three sites, all in the region of replication termination, display recurrent four-way DNA or Holliday junctions (HJs) and recurrent DNA breaks. Homology-directed double-strand break repair generates the recurrent HJs at all of these sites; however, distinct mechanisms of DNA breakage are implicated: replication fork collapse at natural replication barriers and, unexpectedly, frequent shearing of unsegregated sister chromosomes at cell division. We propose that mechanisms such as both of these may occur ubiquitously, including in humans, and may constitute some of the earliest events that underlie somatic cell mosaicism, cancers, and other diseases of genome instability.
Collapse
Affiliation(s)
- Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yin Zhai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Heyuan Li
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, TX 77030, USA
| |
Collapse
|
3
|
Chromosomal Recombination Targets in Chlamydia Interspecies Lateral Gene Transfer. J Bacteriol 2019; 201:JB.00365-19. [PMID: 31501285 DOI: 10.1128/jb.00365-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Lateral gene transfer (LGT) among Chlamydia trachomatis strains is common, in both isolates generated in the laboratory and those examined directly from patients. In contrast, there are very few examples of recent acquisition of DNA by any Chlamydia spp. from any other species. Interspecies LGT in this system was analyzed using crosses of tetracycline (Tc)-resistant C. trachomatis L2/434 and chloramphenicol (Cam)-resistant C. muridarum VR-123. Parental C. muridarum strains were created using a plasmid-based Himar transposition system, which led to integration of the Camr marker randomly across the chromosome. Fragments encompassing 79% of the C. muridarum chromosome were introduced into a C. trachomatis background, with the total coverage contained on 142 independent recombinant clones. Genome sequence analysis of progeny strains identified candidate recombination hot spots, a property not consistent with in vitro C. trachomatis × C. trachomatis (intraspecies) crosses. In both interspecies and intraspecies crosses, there were examples of duplications, mosaic recombination endpoints, and recombined sequences that were not linked to the selection marker. Quantitative analysis of the distribution and constitution of inserted sequences indicated that there are different constraints on interspecies LGT than on intraspecies crosses. These constraints may help explain why there is so little evidence of interspecies genetic exchange in this system, which is in contrast to very widespread intraspecies exchange in C. trachomatis IMPORTANCE Genome sequence analysis has demonstrated that there is widespread lateral gene transfer among strains within the species C. trachomatis and with other closely related Chlamydia species in laboratory experiments. This is in contrast to the complete absence of foreign DNA in the genomes of sequenced clinical C. trachomatis strains. There is no understanding of any mechanisms of genetic transfer in this important group of pathogens. In this report, we demonstrate that interspecies genetic exchange can occur but that the nature of the fragments exchanged is different than those observed in intraspecies crosses. We also generated a large hybrid strain library that can be exploited to examine important aspects of chlamydial disease.
Collapse
|
4
|
Niccum BA, Lee H, MohammedIsmail W, Tang H, Foster PL. The Symmetrical Wave Pattern of Base-Pair Substitution Rates across the Escherichia coli Chromosome Has Multiple Causes. mBio 2019; 10:e01226-19. [PMID: 31266871 PMCID: PMC6606806 DOI: 10.1128/mbio.01226-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023] Open
Abstract
Mutation accumulation experiments followed by whole-genome sequencing have revealed that, for several bacterial species, the rate of base-pair substitutions (BPSs) is not constant across the chromosome but varies in a wave-like pattern that is symmetrical about the origin of replication. The experiments reported here demonstrated that, in Escherichia coli, several interacting factors determine the wave. The origin is a major driver of BPS rates. When it is relocated, the BPS rates in a 1,000-kb region surrounding the new origin reproduce the pattern that surrounds the normal origin. However, the pattern across distant regions of the chromosome is unaltered and thus must be determined by other factors. Increasing the deoxynucleoside triphosphate (dNTP) concentration shifts the wave pattern away from the origin, supporting the hypothesis that fluctuations in dNTP pools coincident with replication firing contribute to the variations in the mutation rate. The nucleoid binding proteins (HU and Fis) and the terminus organizing protein (MatP) are also major factors. These proteins alter the three-dimensional structure of the DNA, and results suggest that mutation rates increase when highly structured DNA is replicated. Biases in error correction by proofreading and mismatch repair, both of which may be responsive to dNTP concentrations and DNA structure, also are major determinants of the wave pattern. These factors should apply to most bacterial and, possibly, eukaryotic genomes and suggest that different areas of the genome evolve at different rates.IMPORTANCE It has been found in several species of bacteria that the rate at which single base pairs are mutated is not constant across the genome but varies in a wave-like pattern that is symmetrical about the origin of replication. Using Escherichia coli as our model system, we show that this pattern is the result of several interconnected factors. First, the timing and progression of replication are important in determining the wave pattern. Second, the three-dimensional structure of the DNA is also a factor, and the results suggest that mutation rates increase when highly structured DNA is replicated. Finally, biases in error correction, which may be responsive both to the progression of DNA synthesis and to DNA structure, are major determinants of the wave pattern. These factors should apply to most bacterial and, possibly, eukaryotic genomes and suggest that different areas of the genome evolve at different rates.
Collapse
Affiliation(s)
- Brittany A Niccum
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Heewook Lee
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Wazim MohammedIsmail
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Haixu Tang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA
| | - Patricia L Foster
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLoS Genet 2018; 14:e1007668. [PMID: 30222737 PMCID: PMC6160223 DOI: 10.1371/journal.pgen.1007668] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/27/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Type 1A topoisomerases (topos) are the only ubiquitous topos. E. coli has two type 1A topos, topo I (topA) and topo III (topB). Topo I relaxes negative supercoiling in part to inhibit R-loop formation. To grow, topA mutants acquire compensatory mutations, base substitutions in gyrA or gyrB (gyrase) or amplifications of a DNA region including parC and parE (topo IV). topB mutants grow normally and topo III binds tightly to single-stranded DNA. What functions topo I and III share in vivo and how cells lacking these important enzymes can survive is unclear. Previously, a gyrB(Ts) compensatory mutation was used to construct topA topB null mutants. These mutants form very long filaments and accumulate diffuse DNA, phenotypes that appears to be related to replication from R-loops. Here, next generation sequencing and qPCR for marker frequency analysis were used to further define the functions of type 1A topos. The results reveal the presence of a RNase HI-sensitive origin of replication in the terminus (Ter) region of the chromosome that is more active in topA topB cells than in topA and rnhA (RNase HI) null cells. The S9.6 antibodies specific to DNA:RNA hybrids were used in dot-blot experiments to show the accumulation of R-loops in rnhA, topA and topA topB null cells. Moreover topA topB gyrB(Ts) strains, but not a topA gyrB(Ts) strain, were found to carry a parC parE amplification. When a topA gyrB(Ts) mutant carried a plasmid producing topo IV, topB null transductants did not have parC parE amplifications. Altogether, the data indicate that in E. coli type 1A topos are required to inhibit R-loop formation/accumulation mostly to prevent unregulated replication in Ter, and that they are essential to prevent excess negative supercoiling and its detrimental effects on cell growth and survival. DNA topoisomerases are nicking closing enzymes with strand passage activity that solves the topological problems inherent to the double-helical structure of DNA. Topos of the type 1A family are the only ubiquitous topos. They are classified in two subfamilies, topo I and topo III respectively found in bacteria only and in organisms from the three domains of life. The prototype enzymes of these two subfamilies are topo I and topo III from Escherichia coli. Recent data suggest that duplications leading to topo I and III subfamilies occurred in the Last Common Universal Ancestor of the three domains of life. In this context, our finding reported here that both E. coli topo I and III control R-loop formation/accumulation, mostly to inhibit unregulated replication, may suggest that R-loops have been a problem early in the evolution of life. Furthermore, our data show that E. coli cells can survive in the absence of type 1A topos, owing to the surproduction of topo IV that can relax excess negative supercoiling and prevent R-loop formation. Thus, our results strongly suggest that a major function of type 1A topos is to control R-loop formation to preserve the integrity of the genome.
Collapse
|
6
|
Sidorenko J, Ukkivi K, Kivisaar M. NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida. DNA Repair (Amst) 2015; 25:15-26. [DOI: 10.1016/j.dnarep.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
|
7
|
Abstract
The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA.
Collapse
Affiliation(s)
- Aisha H Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
8
|
Val ME, Kennedy SP, Soler-Bistué AJ, Barbe V, Bouchier C, Ducos-Galand M, Skovgaard O, Mazel D. Fuse or die: how to survive the loss of Dam inVibrio cholerae. Mol Microbiol 2014; 91:665-78. [DOI: 10.1111/mmi.12483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Marie-Eve Val
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| | | | - Alfonso J. Soler-Bistué
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| | | | | | - Magaly Ducos-Galand
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| | - Ole Skovgaard
- Department of Science, Systems and Models; Roskilde University; DK-4000 Roskilde Denmark
| | - Didier Mazel
- Department of Genomes and Genetics; Institut Pasteur; F-75015 Paris France
- CNRS; UMR3525 F-75015 Paris France
| |
Collapse
|
9
|
Shee C, Gibson JL, Rosenberg SM. Two mechanisms produce mutation hotspots at DNA breaks in Escherichia coli. Cell Rep 2012; 2:714-21. [PMID: 23041320 PMCID: PMC3607216 DOI: 10.1016/j.celrep.2012.08.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/06/2012] [Accepted: 08/30/2012] [Indexed: 11/30/2022] Open
Abstract
Mutation hotspots and showers occur across phylogeny and profoundly influence genome evolution, yet the mechanisms that produce hotspots remain obscure. We report that DNA double-strand breaks (DSBs) provoke mutation hotspots via stress-induced mutation in Escherichia coli. With tet reporters placed 2 kb to 2 Mb (half the genome) away from an I-SceI site, RpoS/DinB-dependent mutations occur maximally within the first 2 kb and decrease logarithmically to ∼60 kb. A weak mutation tail extends to 1 Mb. Hotspotting occurs independently of I-site/tet-reporter-pair position in the genome, upstream and downstream in the replication path. RecD, which allows RecBCD DSB-exonuclease activity, is required for strong local but not long-distance hotspotting, indicating that double-strand resection and gap-filling synthesis underlie local hotspotting, and newly illuminating DSB resection in vivo. Hotspotting near DSBs opens the possibility that specific genomic regions could be targeted for mutagenesis, and could also promote concerted evolution (coincident mutations) within genes/gene clusters, an important issue in the evolution of protein functions.
Collapse
Affiliation(s)
- Chandan Shee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
10
|
Abstract
Gene loss by deletion is a common evolutionary process in bacteria, as exemplified by bacteria with small genomes that have evolved from bacteria with larger genomes by reductive processes. The driving force(s) for genome reduction remains unclear, and here we examined the hypothesis that gene loss is selected because carriage of superfluous genes confers a fitness cost to the bacterium. In the bacterium Salmonella enterica, we measured deletion rates at 11 chromosomal positions and the fitness effects of several spontaneous deletions. Deletion rates varied over 200-fold between different regions with the replication terminus region showing the highest rates. Approximately 25% of the examined deletions caused an increase in fitness under one or several growth conditions, and after serial passage of wild-type bacteria in rich medium for 1,000 generations we observed fixation of deletions that substantially increased bacterial fitness when reconstructed in a non-evolved bacterium. These results suggest that selection could be a significant driver of gene loss and reductive genome evolution.
Collapse
|
11
|
Abstract
Genome duplication requires not only unwinding of the template but also the displacement of proteins bound to the template, a function performed by replicative helicases located at the fork. However, accessory helicases are also needed since the replicative helicase stalls occasionally at nucleoprotein complexes. In Escherichia coli, the primary and accessory helicases DnaB and Rep translocate along the lagging and leading strand templates, respectively, interact physically and also display cooperativity in the unwinding of model forked DNA substrates. We demonstrate here that this cooperativity is displayed only by Rep and not by other tested helicases. ssDNA must be exposed on the leading strand template to elicit this cooperativity, indicating that forks blocked at protein-DNA complexes contain ssDNA ahead of the leading strand polymerase. However, stable Rep-DnaB complexes can form on linear as well as branched DNA, indicating that Rep has the capacity to interact with ssDNA on either the leading or the lagging strand template at forks. Inhibition of Rep binding to the lagging strand template by competition with SSB might therefore be critical in targeting accessory helicases to the leading strand template, indicating an important role for replisome architecture in promoting accessory helicase function at blocked replisomes.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
12
|
Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, Rudolph CJ, Moon PB, van Knippenberg IC, Cadman CJ, Dillingham MS, Lloyd RG, McGlynn P. Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 2009; 36:654-66. [PMID: 19941825 PMCID: PMC2807033 DOI: 10.1016/j.molcel.2009.11.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/20/2009] [Accepted: 11/09/2009] [Indexed: 10/28/2022]
Abstract
Nucleoprotein complexes present challenges to genome stability by acting as potent blocks to replication. One attractive model of how such conflicts are resolved is direct targeting of blocked forks by helicases with the ability to displace the blocking protein-DNA complex. We show that Rep and UvrD each promote movement of E. coli replisomes blocked by nucleoprotein complexes in vitro, that such an activity is required to clear protein blocks (primarily transcription complexes) in vivo, and that a polarity of translocation opposite that of the replicative helicase is critical for this activity. However, these two helicases are not equivalent. Rep but not UvrD interacts physically and functionally with the replicative helicase. In contrast, UvrD likely provides a general means of protein-DNA complex turnover during replication, repair, and recombination. Rep and UvrD therefore provide two contrasting solutions as to how organisms may promote replication of protein-bound DNA.
Collapse
Affiliation(s)
- Colin P Guy
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 2009; 37:3475-92. [PMID: 19406929 PMCID: PMC2699526 DOI: 10.1093/nar/gkp244] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The progress of replication forks is often threatened in vivo, both by DNA damage and by proteins bound to the template. Blocked forks must somehow be restarted, and the original blockage cleared, in order to complete genome duplication, implying that blocked fork processing may be critical for genome stability. One possible pathway that might allow processing and restart of blocked forks, replication fork reversal, involves the unwinding of blocked forks to form four-stranded structures resembling Holliday junctions. This concept has gained increasing popularity recently based on the ability of such processing to explain many genetic observations, the detection of unwound fork structures in vivo and the identification of enzymes that have the capacity to catalyse fork regression in vitro. Here, we discuss the contexts in which fork regression might occur, the factors that may promote such a reaction and the possible roles of replication fork unwinding in normal DNA metabolism.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
14
|
Duggin IG, Wake RG, Bell SD, Hill TM. The replication fork trap and termination of chromosome replication. Mol Microbiol 2008; 70:1323-33. [PMID: 19019156 DOI: 10.1111/j.1365-2958.2008.06500.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteria that have a circular chromosome with a bidirectional DNA replication origin are thought to utilize a 'replication fork trap' to control termination of replication. The fork trap is an arrangement of replication pause sites that ensures that the two replication forks fuse within the terminus region of the chromosome, approximately opposite the origin on the circular map. However, the biological significance of the replication fork trap has been mysterious, as its inactivation has no obvious consequence. Here we review the research that led to the replication fork trap theory, and we aim to integrate several recent findings that contribute towards an understanding of the physiological roles of the replication fork trap. Likely roles include the prevention of over-replication, and the optimization of post-replicative mechanisms of chromosome segregation, such as that involving FtsK in Escherichia coli.
Collapse
Affiliation(s)
- Iain G Duggin
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
15
|
Prozorov AA. Regularities of the location of genes having different functions and of some other nucleotide sequences in the bacterial chromosome. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707040017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Labib K, Hodgson B. Replication fork barriers: pausing for a break or stalling for time? EMBO Rep 2007; 8:346-53. [PMID: 17401409 PMCID: PMC1852754 DOI: 10.1038/sj.embor.7400940] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 01/30/2007] [Indexed: 11/09/2022] Open
Abstract
Defects in chromosome replication can lead to translocations that are thought to result from recombination events at stalled DNA replication forks. The progression of forks is controlled by an essential DNA helicase, which unwinds the parental duplex and can stall on encountering tight protein-DNA complexes. Such pause sites are hotspots for recombination and it has been proposed that stalled replisomes disassemble, leading to fork collapse. However, in both prokaryotes and eukaryotes it now seems that paused forks are surprisingly stable, so that DNA synthesis can resume without recombination if the barrier protein is removed. Recombination at stalled forks might require other events that occur after pausing, or might be dependent on features of the surrounding DNA sequence. These findings have important implications for our understanding of the regulation of genome stability in eukaryotic cells, in which pausing of forks is mediated by specific proteins that are associated with the replicative helicase.
Collapse
Affiliation(s)
- Karim Labib
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | | |
Collapse
|
17
|
Hendrickson H, Lawrence JG. Mutational bias suggests that replication termination occurs near the dif site, not at Ter sites. Mol Microbiol 2007; 64:42-56. [PMID: 17376071 DOI: 10.1111/j.1365-2958.2007.05596.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In bacteria, Ter sites bound to Tus/Rtp proteins halt replication forks moving only in one direction, providing a convenient mechanism to terminate them once the chromosome had been replicated. Considering the importance of replication termination and its position as a checkpoint in cell division, the accumulated knowledge on these systems has not dispelled fundamental questions regarding its role in cell biology: why are there so many copies of Ter, why are they distributed over such a large portion of the chromosome, why is the tus gene not conserved among bacteria, and why do tus mutants lack measurable phenotypes? Here we examine bacterial genomes using bioinformatics techniques to identify the region(s) where DNA polymerase III-mediated replication has historically been terminated. We find that in both Escherichia coli and Bacillus subtilis, changes in mutational bias patterns indicate that replication termination most likely occurs at or near the dif site. More importantly, there is no evidence from mutational bias signatures that replication forks originating at oriC have terminated at Ter sites. We propose that Ter sites participate in halting replication forks originating from DNA repair events, and not those originating at the chromosomal origin of replication.
Collapse
Affiliation(s)
- Heather Hendrickson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
18
|
Guy L, Karamata D, Moreillon P, Roten CAH. Genometrics as an essential tool for the assembly of whole genome sequences: the example of the chromosome of Bifidobacterium longum NCC2705. BMC Microbiol 2005; 5:60. [PMID: 16223444 PMCID: PMC1285363 DOI: 10.1186/1471-2180-5-60] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 10/13/2005] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Analysis of the first reported complete genome sequence of Bifidobacterium longum NCC2705, an actinobacterium colonizing the gastrointestinal tract, uncovered its proteomic relatedness to Streptomyces coelicolor and Mycobacterium tuberculosis. However, a rapid scrutiny by genometric methods revealed a genome organization totally different from all so far sequenced high-GC Gram-positive chromosomes. RESULTS Generally, the cumulative GC- and ORF orientation skew curves of prokaryotic genomes consist of two linear segments of opposite slope: the minimum and the maximum of the curves correspond to the origin and the terminus of chromosome replication, respectively. However, analyses of the B. longum NCC2705 chromosome yielded six, instead of two, linear segments, while its dnaA locus, usually associated with the origin of replication, was not located at the minimum of the curves. Furthermore, the coorientation of gene transcription with replication was very low. Comparison with closely related actinobacteria strongly suggested that the chromosome of B. longum was misassembled, and the identification of two pairs of relatively long homologous DNA sequences offers the possibility for an alternative genome assembly proposed here below. By genometric criteria, this configuration displays all of the characters common to bacteria, in particular to related high-GC Gram-positives. In addition, it is compatible with the partially sequenced genome of DJO10A B. longum strain. Recently, a corrected sequence of B. longum NCC2705, with a configuration similar to the one proposed here below, has been deposited in GenBank, confirming our predictions. CONCLUSION Genometric analyses, in conjunction with standard bioinformatic tools and knowledge of bacterial chromosome architecture, represent fast and straightforward methods for the evaluation of chromosome assembly.
Collapse
Affiliation(s)
- Lionel Guy
- Département de Microbiologie Fondamentale, Faculté de Biologie et Médecine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dimitri Karamata
- Département de Microbiologie Fondamentale, Faculté de Biologie et Médecine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Philippe Moreillon
- Département de Microbiologie Fondamentale, Faculté de Biologie et Médecine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Claude-Alain H Roten
- Département de Microbiologie Fondamentale, Faculté de Biologie et Médecine, Université de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Corre J, Louarn JM. Extent of the activity domain and possible roles of FtsK in the Escherichia coli chromosome terminus. Mol Microbiol 2005; 56:1539-48. [PMID: 15916604 DOI: 10.1111/j.1365-2958.2005.04633.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli FtsK protein couples cell division and chromosome segregation. It is a component of the septum essential for cell division. It also acts during chromosome dimer resolution by XerCD-specific recombination at the dif site, with two distinct activities: DNA translocation oriented by skewed sequence elements and direct activation of Xer recombination. Dimer resolution requires that the skewed elements polarize in opposite directions 30-50 kb on either side of dif. This constitutes the DIF domain, approximately coincident with the region where replication terminates. The observation that the ftsK1 mutation increases recombination near dif was exploited to determine whether the chromosome region on which FtsK acts is limited to the DIF domain. A monitoring of recombination activity at multiple loci in a 350 kb region to the left of dif revealed (i) zones of differing activities unconnected to dimer resolution and (ii) a constant 10-fold increase of recombination in the 250 kb region adjacent to dif in the ftsK1 mutant. The latter effect allows definition of an FTSK domain whose total size is at least fourfold that of the DIF domain. Additional analyses revealed that FtsK activity responds to polarization in the whole FTSK domain and that displacement of the region where replication terminates preserves differences between recombination zones. Our interpretation is that translocation by FtsK occurs mostly on DNA belonging to a specifically organized domain of the chromosome, when physical links between either dimeric or still intercatenated chromosomes force this DNA to run across the septum at division.
Collapse
Affiliation(s)
- Jacqueline Corre
- Laboratoire de Microbiologie et de Génétique moléculaires du CNRS, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
| | | |
Collapse
|
20
|
Ozgenc AI, Szekeres ES, Lawrence CW. In vivo evidence for a recA-independent recombination process in Escherichia coli that permits completion of replication of DNA containing UV damage in both strands. J Bacteriol 2005; 187:1974-84. [PMID: 15743945 PMCID: PMC1064058 DOI: 10.1128/jb.187.6.1974-1984.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated recombination mechanisms promoting the completion of replication in the face of unrepaired DNA damage by transforming an isogenic set of uvrA6 excision-defective Escherichia coli strains with pUC-based plasmids in which each strand carried, at staggered positions, a single thymine-thymine pyrimidine (6-4) pyrimidinone lesion. The distance between the lesions was 28 or 8 bp in one orientation relative to the unidirectional ColE1 origin of replication or, in the other orientation, 30 or 10 bp. C-C mismatches placed opposite each of the T-T photoproducts permit unambiguous detection of the three events that can lead to the completion of replication: sister-strand recombination, translesion replication (TR) on the leading strand, and TR on the lagging strand. We find that E. coli possesses a largely constitutive, recA-independent sister-strand recombination mechanism that allows 9% or more of these severely compromised plasmids to be fully replicated. In one orientation, such recombination depends partly on recG and priA but not on ruvA, ruvB, ruvC, or mutS and is largely independent of recF. In the other orientation, recombination is dependent on none of the genes. The strains used did not contain the cryptic phage encoding recET, which encodes enzymes that promote interplasmid recombination. The nature of the recA-independent recombination mechanism is not known but could perhaps result from a template-strand-switching, or copy choice, process.
Collapse
Affiliation(s)
- Ali I Ozgenc
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
21
|
Lesterlin C, Barre FX, Cornet F. Genetic recombination and the cell cycle: what we have learned from chromosome dimers. Mol Microbiol 2005; 54:1151-60. [PMID: 15554958 DOI: 10.1111/j.1365-2958.2004.04356.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic recombination is central to DNA metabolism. It promotes sequence diversity and maintains genome integrity in all organisms. However, it can have perverse effects and profoundly influence the cell cycle. In bacteria harbouring circular chromosomes, recombination frequently has an unwanted outcome, the formation of chromosome dimers. Dimers form by homologous recombination between sister chromosomes and are eventually resolved by the action of two site-specific recombinases, XerC and XerD, at their target site, dif, located in the replication terminus of the chromosome. Studies of the Xer system and of the modalities of dimer formation and resolution have yielded important knowledge on how both homologous and site-specific recombination are controlled and integrated in the cell cycle. Here, we briefly review these advances and highlight the important questions they raise.
Collapse
Affiliation(s)
- Christian Lesterlin
- Laboratoire de Microbiologie et de Génétique Moléculaire, 118, route de Narbonne, F-31062 Toulouse Cedex, France.
| | | | | |
Collapse
|
22
|
Abstract
The chromosome structure of lactic acid bacteria has been investigated only recently. The development of pulsed-field gel electrophoresis (PFGE) combined with other DNA-based techniques enables whole-genome analysis of any bacterium, and has allowed rapid progress to be made in the knowledge of the lactic acid bacteria genome. Lactic acid bacteria possess one of the smallest eubacterial chromosomes. Depending on the species, the genome sizes range from 1.1 to 2.6 Mb. Combined physical and genetic maps of several species are already available or close to being achieved. Knowledge of the genomic structure of these organisms will serve as a basis for future genetic studies. Macrorestriction fingerprinting by PFGE is already one of the major tools for strain differentiation, identification of individual strains, and the detection of strain lineages. The genome data resulting from these studies will be of general application strain improvement.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
23
|
Achaz G, Coissac E, Netter P, Rocha EPC. Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics 2003; 164:1279-89. [PMID: 12930739 PMCID: PMC1462642 DOI: 10.1093/genetics/164.4.1279] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The stability of the structure of bacterial genomes is challenged by recombination events. Since major rearrangements (i.e., inversions) are thought to frequently operate by homologous recombination between inverted repeats, we analyzed the presence and distribution of such repeats in bacterial genomes and their relation to the conservation of chromosomal structure. First, we show that there is a strong under-representation of inverted repeats, relative to direct repeats, in most chromosomes, especially among the ones regarded as most stable. Second, we show that the avoidance of repeats is frequently associated with the stability of the genomes. Closely related genomes reported to differ in terms of stability are also found to differ in the number of inverted repeats. Third, when using replication strand bias as a proxy for genome stability, we find a significant negative correlation between this strand bias and the abundance of inverted repeats. Fourth, when measuring the recombining potential of inverted repeats and their eventual impact on different features of the chromosomal structure, we observe a tendency of repeats to be located in the chromosome in such a way that rearrangements produce a smaller strand switch and smaller asymmetries than expected by chance. Finally, we discuss the limitations of our analysis and the influence of factors such as the nature of repeats, e.g., transposases, or the differences in the recombination machinery among bacteria. These results shed light on the challenges imposed on the genome structure by the presence of inverted repeats.
Collapse
Affiliation(s)
- Guillaume Achaz
- Structure et Dynamique des Génomes, Institut Jacques Monod, 75251 Paris, France
| | | | | | | |
Collapse
|
24
|
Miranda A, Kuzminov A. Chromosomal lesion suppression and removal in Escherichia coli via linear DNA degradation. Genetics 2003; 163:1255-71. [PMID: 12702673 PMCID: PMC1462524 DOI: 10.1093/genetics/163.4.1255] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RecBCD is a DNA helicase/exonuclease implicated in degradation of foreign linear DNA and in RecA-dependent recombinational repair of chromosomal lesions in E. coli. The low viability of recA recBC mutants vs. recA mutants indicates the existence of RecA-independent roles for RecBCD. To distinguish among possible RecA-independent roles of the RecBCD enzyme in replication, repair, and DNA degradation, we introduced wild-type and mutant combinations of the recBCD chromosomal region on a low-copy-number plasmid into a DeltarecA DeltarecBCD mutant and determined the viability of resulting strains. Our results argue against ideas that RecBCD is a structural element in the replication factory or is involved in RecA-independent repair of chromosomal lesions. We found that RecBCD-catalyzed DNA degradation is the only activity important for the recA-independent viability, suggesting that degradation of linear tails of sigma-replicating chromosomes could be one of the RecBCD's roles. However, since the weaker DNA degradation capacity due a combination of the RecBC helicase and ssDNA-specific exonucleases restores viability of the DeltarecA DeltarecBCD mutant to a significant extent, we favor suppression of chromosomal lesions via linear DNA degradation at reversed replication forks as the major RecA-independent role of the RecBCD enzyme.
Collapse
Affiliation(s)
- Anabel Miranda
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
25
|
Carnoy C, Floquet S, Marceau M, Sebbane F, Haentjens-Herwegh S, Devalckenaere A, Simonet M. The superantigen gene ypm is located in an unstable chromosomal locus of Yersinia pseudotuberculosis. J Bacteriol 2002; 184:4489-99. [PMID: 12142419 PMCID: PMC135243 DOI: 10.1128/jb.184.16.4489-4499.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pseudotuberculosis produces YPM (Y. pseudotuberculosis-derived mitogen), a superantigenic toxin that exacerbates the virulence of the bacterium in vivo. To date, three alleles of the superantigen gene (ypmA, ypmB, and ypmC) have been described. These genes are not found in all Y. pseudotuberculosis strains and have a low GC content, suggesting their location on mobile genetic elements. To elucidate this question, the genetic environment of the superantigen-encoding genes was characterized and 11 open reading frames (ORFs) were defined. Sequence analysis revealed that the ypm genes were not associated with plasmids, phages, transposons, or pathogenicity islands and that the superantigen genes were always located in the chromosome between ORF3 and ORF4. Nonsuperantigenic strains exhibited the same genetic organization of the locus but lacked the ypm gene between ORF3 and ORF4. A new insertion sequence, designated IS1398, which displays features of the Tn3 family, was characterized downstream of the ypmA and ypmC genes. A 13.3-kb region containing the ypm genes was not found in the genome of Y. pestis (CO92 and KIM 5 strains). We experimentally induced deletion of the ypm gene from a superantigen-expressing Y. pseudotuberculosis: using the association of aph(3')-IIIa and sacB genes, we demonstrated that when these reporter genes were present in the ypm locus, deletion of these genes was about 250 times more frequent than when they were located in another region of the Y. pseudotuberculosis chromosome. These results indicate that unlike other superantigenic toxin genes, the Yersinia ypm genes are not associated with mobile genetic elements but are inserted in an unstable locus of the genome.
Collapse
Affiliation(s)
- Christophe Carnoy
- Equipe Mixte Inserm E9919-Université JE 2225-Institut Pasteur de Lille, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Chromosomal duplication faces many blocks to replication fork progression that could destabilize the genome and prove fatal if not overcome. Overcoming such blocks requires interplay between DNA replication, recombination and repair. The RecG protein of Escherichia coli promotes rescue of damaged forks by catalysing their unwinding and conversion to Holliday junctions. Subsequent processing of this structure allows repair or bypass of the fork block, enabling replication to resume without recourse to potentially mutagenic translesion synthesis or recombination. Such direct rescue of stalled forks might help safeguard genome integrity in all organisms.
Collapse
Affiliation(s)
- Peter McGlynn
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK NG7 2UH.
| | | |
Collapse
|
27
|
Corre J, Louarn JM. Evidence from terminal recombination gradients that FtsK uses replichore polarity to control chromosome terminus positioning at division in Escherichia coli. J Bacteriol 2002; 184:3801-7. [PMID: 12081949 PMCID: PMC135174 DOI: 10.1128/jb.184.14.3801-3807.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosome dimers in Escherichia coli are resolved at the dif locus by two recombinases, XerC and XerD, and the septum-anchored FtsK protein. Chromosome dimer resolution (CDR) is subject to strong spatiotemporal control: it takes place at the time of cell division, and it requires the dif resolution site to be located at the junction between the two polarized chromosome arms or replichores. Failure of CDR results in trapping of DNA by the septum and RecABCD recombination (terminal recombination). We had proposed that dif sites of a dimer are first moved to the septum by mechanisms based on local polarity and that normally CDR then occurs as the septum closes. To determine whether FtsK plays a role in the mobilization process, as well as in the recombination reaction, we characterized terminal recombination in an ftsK mutant. The frequency of recombination at various points in the terminus region of the chromosome was measured and compared with the recombination frequency on a xerC mutant chromosome with respect to intensity, the region affected, and response to polarity distortion. The use of a prophage excision assay, which allows variation of the site of recombination and interference with local polarity, allowed us to find that cooperating FtsK-dependent and -independent processes localize dif at the septum and that DNA mobilization by FtsK is oriented by the polarity probably due to skewed sequence motifs of the mobilized material.
Collapse
Affiliation(s)
- Jacqueline Corre
- Laboratoire de Microbiologie et de Génétique Moléculaires, CNRS, 31062 Toulouse Cedex, France
| | | |
Collapse
|
28
|
Abstract
The classical Meselson-Stahl density shift experiment was used to determine the length of the eclipse period in Escherichia coli, the minimum time period during which no new initiation is allowed from a newly replicated origin of chromosome replication, oriC. Populations of bacteria growing exponentially in heavy ((15)NH(4)+ and (13)C(6)-glucose) medium were shifted to light ((14)NH(4)+ and (12)C(6)-glucose) medium. The HH-, HL- and LL-DNA were separated by CsCl density gradient centrifugation, and their relative amounts were determined using radioactive gene-specific probes. The eclipse period, estimated from the kinetics of conversion of HH-DNA to HL- and LL-DNA, turned out to be 0.60 generation times for the wild-type strain. This was invariable for widely varying doubling times (35, 68 and 112 min) and was independent of the chromosome locus at which the eclipse period was measured. For strains with seqA, dam and damseqA mutants, the length of the eclipse period was 0.16, 0.40 and 0.32 generation times respectively. Thus, initiations from oriC were repressed for a considerable proportion of the generation time even when the sequestration function seemed to be severely compromised. The causal relationship between the length of the eclipse period and the synchrony of initiations from oriC is discussed.
Collapse
Affiliation(s)
- Jan Olsson
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
29
|
Kuzminov A. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8461-8. [PMID: 11459990 PMCID: PMC37458 DOI: 10.1073/pnas.151260698] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Proceedings of the National Academy of Sciences Colloquium on the roles of homologous recombination in DNA replication are summarized. Current findings in experimental systems ranging from bacteriophages to mammalian cell lines substantiate the idea that homologous recombination is a system supporting DNA replication when either the template DNA is damaged or the replication machinery malfunctions. There are several lines of supporting evidence: (i) DNA replication aggravates preexisting DNA damage, which then blocks subsequent replication; (ii) replication forks abandoned by malfunctioning replisomes become prone to breakage; (iii) mutants with malfunctioning replisomes or with elevated levels of DNA damage depend on homologous recombination; and (iv) homologous recombination primes DNA replication in vivo and can restore replication fork structures in vitro. The mechanisms of recombinational repair in bacteriophage T4, Escherichia coli, and Saccharomyces cerevisiae are compared. In vitro properties of the eukaryotic recombinases suggest a bigger role for single-strand annealing in the eukaryotic recombinational repair.
Collapse
Affiliation(s)
- A Kuzminov
- Department of Microbiology, University of Illinois, Urbana-Champaign, B103, Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
30
|
van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M. Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 2001; 14:547-60. [PMID: 11432813 PMCID: PMC88989 DOI: 10.1128/cmr.14.3.547-560.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiological research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made.
Collapse
Affiliation(s)
- A van Belkum
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
31
|
Capiaux H, Cornet F, Corre J, Guijo MI, Pérals K, Rebollo JE, Louarn JM. Polarization of the Escherichia coli chromosome. A view from the terminus. Biochimie 2001; 83:161-70. [PMID: 11278065 DOI: 10.1016/s0300-9084(00)01202-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The E. coli chromosome replication arms are polarized by motifs such as RRNAGGGS oligomers, found preferentially on leading strands. Their skew increases regularly from the origin to dif (the site in the center of the terminus where chromosome dimer resolution occurs), to reach a value of 90% near dif. Convergent information indicates that polarization in opposite directions from the dif region controls tightly the activity of dif, probably by orienting mobilization of the terminus at cell division. Another example of polarization is the presence, in the region peripheral to the terminus, of small non-divisible zones whose inversion interferes with spatial separation of sister nucleoids. The two phenomena may contribute to the organization of the Ter macrodomain.
Collapse
Affiliation(s)
- H Capiaux
- Laboratoire de Microbiologie et de Génétique moléculaires du CNRS, 118, route de Narbonne, 31320 Toulouse cedex, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR. Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 2001; 276:2790-6. [PMID: 11056156 DOI: 10.1074/jbc.m006736200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The advance of a DNA replication fork requires an unwinding of the parental double helix. This in turn creates a positive superhelical stress, a (+)-DeltaLk, that must be relaxed by topoisomerases for replication to proceed. Surprisingly, partially replicated plasmids with a (+)-DeltaLk were not supercoiled nor were the replicated arms interwound in precatenanes. The electrophoretic mobility of these molecules indicated that they have no net writhe. Instead, the (+)-DeltaLk is absorbed by a regression of the replication fork. As the parental DNA strands re-anneal, the resultant displaced daughter strands base pair to each other to form a four-way junction at the replication fork, which is locally identical to a Holliday junction in recombination. We showed by restriction endonuclease digestion that the junction can form at either the terminus or the origin of replication and we visualized the structure with scanning force microscopy. We discuss possible physiological implications of the junction for stalled replication in vivo.
Collapse
Affiliation(s)
- L Postow
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
33
|
Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc Natl Acad Sci U S A 2001. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.011506098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet disruption of these systems does not cause an obvious defect in growth or viability. We have found that the replication termination system of Bacillus subtilis contributes to accurate chromosome partitioning. Partitioning of the terminus region requires that chromosome dimers, that have formed as a result of RecA-mediated homologous recombination, be resolved to monomers by the site-specific recombinase encoded by ripX. In addition, the chromosome must be cleared from the region of formation of the division septum. This process is facilitated by the spoIIIE gene product which is required for movement of a chromosome out of the way of the division septum during sporulation. We found that deletion of rtp, which encodes the replication termination protein, in combination with mutations in ripX or spoIIIE, led to an increase in production of anucleate cells. This increase in production of anucleate cells depended on recA, indicating that there is probably an increase in chromosome dimer formation in the absence of the replication termination system. Our results also indicate that SpoIIIE probably enhances the function of the RipX recombinase system. We also determined the subcellular location of the replication termination protein and found that it is a good marker for the position of the chromosome terminus.
Collapse
|
34
|
Lemon KP, Kurtser I, Grossman AD. Effects of replication termination mutants on chromosome partitioning in
Bacillus subtilis. Proc Natl Acad Sci U S A 2001; 98:212-7. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.98.1.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet
disruption of these systems does not cause an obvious defect in growth
or viability. We have found that the replication termination system of
Bacillus subtilis
contributes to accurate chromosome
partitioning. Partitioning of the terminus region requires that
chromosome dimers, that have formed as a result of RecA-mediated
homologous recombination, be resolved to monomers by the site-specific
recombinase encoded by
ripX
. In addition, the chromosome
must be cleared from the region of formation of the division septum.
This process is facilitated by the
spoIIIE
gene product
which is required for movement of a chromosome out of the way of the
division septum during sporulation. We found that deletion of
rtp
, which encodes the replication termination protein,
in combination with mutations in
ripX
or
spoIIIE
, led to an increase in production of anucleate
cells. This increase in production of anucleate cells depended on
recA
, indicating that there is probably an increase in
chromosome dimer formation in the absence of the replication
termination system. Our results also indicate that SpoIIIE probably
enhances the function of the RipX recombinase system. We also
determined the subcellular location of the replication termination
protein and found that it is a good marker for the position of the
chromosome terminus.
Collapse
Affiliation(s)
- K P Lemon
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
35
|
Abstract
Conservation of gene order in prokaryotes has become important in predicting protein function because, over the evolutionary timescale, genomes are shuffled so that local gene-order conservation reflects the functional constraints within the protein. Here, we compare closely related genomes to identify the rate with which gene order is disrupted and to infer the genes involved in the genome rearrangement.
Collapse
Affiliation(s)
- M Suyama
- EMBL, Meyerhofstr. 1, D-69012 Heidelberg, Germany
| | | |
Collapse
|
36
|
Peters JE, Craig NL. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol Cell 2000; 6:573-82. [PMID: 11030337 DOI: 10.1016/s1097-2765(00)00056-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report that the bacterial transposon Tn7 can preferentially transpose into regions where chromosomal DNA replication terminates. DNA double-strand breaks are associated with the termination of chromosomal replication; therefore, we directly tested the effect of DNA breaks on Tn7 transposition. When DNA double-strand breaks are induced at specific sites in the chromosome, Tn7 transposition is stimulated and insertions are directed proximal to the induced break. The targeting preference for the terminus of replication and DNA double-strand breaks is dependent on the Tn7-encoded protein TnsE. The results presented in this study could also explain the previous observation that Tn7 is attracted to events associated with conjugal DNA replication during plasmid DNA transfer.
Collapse
Affiliation(s)
- J E Peters
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
37
|
Myllykallio H, Lopez P, López-García P, Heilig R, Saurin W, Zivanovic Y, Philippe H, Forterre P. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 2000; 288:2212-5. [PMID: 10864870 DOI: 10.1126/science.288.5474.2212] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite a rapid increase in the amount of available archaeal sequence information, little is known about the duplication of genetic material in the third domain of life. We identified a single origin of bidirectional replication in Pyrococcus abyssi by means of in silico analyses of cumulative oligomer skew and the identification of an early replicating chromosomal segment. The replication origin in three Pyrococcus species was found to be highly conserved, and several eukaryotic-like DNA replication genes were clustered around it. As in Bacteria, the chromosomal region containing the replication terminus was a hot spot of genome shuffling. Thus, although bacterial and archaeal replication proteins differ profoundly, they are used to replicate chromosomes in a similar manner in both prokaryotic domains.
Collapse
Affiliation(s)
- H Myllykallio
- Institut de Génétique et Microbiologie, Laboratoire de Biologie Cellulaire, Université de Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pérals K, Cornet F, Merlet Y, Delon I, Louarn JM. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol Microbiol 2000; 36:33-43. [PMID: 10760161 DOI: 10.1046/j.1365-2958.2000.01847.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, chromosome dimers are generated by recombination between circular sister chromosomes. Dimers are lethal unless resolved by a system that involves the XerC, XerD and FtsK proteins acting at a site (dif) in the terminus region. Resolution fails if dif is moved from its normal position. To analyse this positional requirement, dif was transplaced to a variety of positions, and deletions and inversions of portions of the dif region were constructed. Resolution occurs only when dif is located at the convergence of multiple, oppositely polarized DNA sequence elements, inferred to lie in the terminus region. These polar elements may position dif at the cell septum and be general features of chromosome organization with a role in nucleoid dynamics.
Collapse
Affiliation(s)
- K Pérals
- Laboratoire de Microbiologie et de Génétique moléculaires, Centre National de la Recherche Scientifique, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
Studies in several organisms show that recombination and replication interact closely. Recombinational repair usually requires associated replication at some stage; moreover, additional replication can induce recombination through either homologous or illegitimate events. In prokaryotes, stimulation of recombination by replication is more dramatic when rolling circle replication is employed. In contrast, theta-type replication induces only a modest increase in recombination frequency. In this article, we show that induction of theta-type replication from a supernumerary origin in the symbiotic plasmid (pSym) of Rhizobium etli leads to a 1000-fold increase in deletion formation on this plasmid. These deletions span 120 kb (the symbiotic region) and have as endpoints the reiterated nitrogenase operons. We have named this phenomenon RER, for recombination enhancement by replication. RER is not affected by the position of the replication origin in the pSym, the direction of advance of the replication fork, or the distance from the origin to the recombining repeats. On the other hand, RER is dependent on an active recA allele, indicating that it is due to homologous recombination. RER displays a strong regionality restricted to the symbiotic region. The similarities and differences of RER with the recombination process observed at the terminus of replication of the Escherichia coli chromosome are discussed.
Collapse
Affiliation(s)
- E Valencia-Morales
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| | | |
Collapse
|
40
|
Dary A, Martin P, Wenner T, Decaris B, Leblond P. DNA rearrangements at the extremities of the Streptomyces ambofaciens linear chromosome: evidence for developmental control. Biochimie 2000; 82:29-34. [PMID: 10717384 DOI: 10.1016/s0300-9084(00)00348-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In Streptomyces, a genomic instability results from frequent recombination events which occur at the ends of the linear chromosomal DNA. These events are believed to be responsible for the variability observed in these regions among Streptomyces species and strains. In order to identify functions able to control this type of genome plasticity, mutators as well as mutants produced at different stages of development have been characterized in S. ambofaciens. Their characterization suggests the existence of a relationship between genomic instability and colony development.
Collapse
Affiliation(s)
- A Dary
- Laboratoire de Génétique et Microbiologie, Faculté des Sciences de l'Université Henri-Poincaré, Nancy 1, France
| | | | | | | | | |
Collapse
|
41
|
Abstract
Genome-wide measures of DNA strand composition have been used to find archaeal DNA replication origins. Archaea seem to replicate using a single origin (as do eubacteria) even though archaeal replication factors are more like those of eukaryotes.
Collapse
Affiliation(s)
- Amit Vas
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794-5222, USA. E-mail:
| | - Janet Leatherwood
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794-5222, USA. E-mail:
| |
Collapse
|
42
|
Corre J, Patte J, Louarn JM. Prophage lambda induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution. An orientation-dependent cis-effect lending support to bipolarization of the terminus. Genetics 2000; 154:39-48. [PMID: 10628967 PMCID: PMC1460910 DOI: 10.1093/genetics/154.1.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A prophage lambda inserted by homologous recombination near dif, the chromosome dimer resolution site of Escherichia coli, is excised at a frequency that depends on its orientation with respect to dif. In wild-type cells, terminal hyper- (TH) recombination is prophage specific and undetectable by a test involving deletion of chromosomal segments between repeats identical to those used for prophage insertion. TH recombination is, however, detected in both excision and deletion assays when Deltadif, xerC, or ftsK mutations inhibit dimer resolution: lack of specialized resolution apparently results in recombinogenic lesions near dif. We also observed that the presence near dif of the prophage, in the orientation causing TH recombination, inhibits dif resolution activity. By its recombinogenic effect, this inhibition explains the enhanced prophage excision in wild-type cells. The primary effect of the prophage is probably an alteration of the dimer resolution regional control, which requires that dif is flanked by suitably oriented (polarized) stretches of DNA. Our model postulates that the prophage inserted near dif in the deleterious orientation disturbs chromosome polarization on the side of the site where it is integrated, because lambda DNA, like the chromosome, is polarized by sequence elements. Candidate sequences are oligomers that display skewed distributions on each oriC-dif chromosome arm and on lambda DNA.
Collapse
Affiliation(s)
- J Corre
- Laboratoire de Microbiologie et de G¿en¿etique Mol¿eculaires, Centre National de la Recherche Scientifique, 31062 Toulouse Cedex, France
| | | | | |
Collapse
|
43
|
Kuzminov A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 1999; 63:751-813, table of contents. [PMID: 10585965 PMCID: PMC98976 DOI: 10.1128/mmbr.63.4.751-813.1999] [Citation(s) in RCA: 727] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage lambda recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation.
Collapse
Affiliation(s)
- A Kuzminov
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| |
Collapse
|
44
|
Hojgaard A, Szerlong H, Tabor C, Kuempel P. Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV. Mol Microbiol 1999; 33:1027-36. [PMID: 10476036 DOI: 10.1046/j.1365-2958.1999.01545.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.
Collapse
Affiliation(s)
- A Hojgaard
- Department of Pathology, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
45
|
Saveson CJ, Lovett ST. Tandem repeat recombination induced by replication fork defects in Escherichia coli requires a novel factor, RadC. Genetics 1999; 152:5-13. [PMID: 10224240 PMCID: PMC1460591 DOI: 10.1093/genetics/152.1.5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DnaB is the helicase associated with the DNA polymerase III replication fork in Escherichia coli. Previously we observed that the dnaB107(ts) mutation, at its permissive temperature, greatly stimulated deletion events at chromosomal tandem repeats. This stimulation required recA, which suggests a recombinational mechanism. In this article we examine the genetic dependence of recombination stimulated by the dnaB107 mutation. Gap repair genes recF, recO, and recR were not required. Mutations in recB, required for double-strand break repair, and in ruvC, the Holliday junction resolvase gene, were synthetically lethal with dnaB107, causing enhanced temperature sensitivity. The hyperdeletion phenotype of dnaB107 was semidominant, and in dnaB107/dnaB+ heterozygotes recB was partially required for enhanced deletion, whereas ruvC was not. We believe that dnaB107 causes the stalling of replication forks, which may become broken and require repair. Misalignment of repeated sequences during RecBCD-mediated repair may account for most, but not all, of deletion stimulated by dnaB107. To our surprise, the radC gene, like recA, was required for virtually all recombination stimulated by dnaB107. The biochemical function of RadC is unknown, but is reported to be required for growth-medium-dependent repair of DNA strand breaks. Our results suggest that RadC functions specifically in recombinational repair that is associated with the replication fork.
Collapse
Affiliation(s)
- C J Saveson
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
46
|
Appasani K, Thaler DS, Goldberg EB. Bacteriophage T4 gp2 interferes with cell viability and with bacteriophage lambda Red recombination. J Bacteriol 1999; 181:1352-5. [PMID: 9973367 PMCID: PMC93518 DOI: 10.1128/jb.181.4.1352-1355.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The T4 head protein, gp2, promotes head-tail joining during phage morphogenesis and is also incorporated into the phage head. It protects the injected DNA from degradation by exonuclease V during the subsequent infection. In this study, we show that recombinant gp2, a very basic protein, rapidly kills the cells in which it is expressed. To further illustrate the protectiveness of gp2 for DNA termini, we compare the effect of gp2 expression on Red-mediated and Int-mediated recombination. Red-mediated recombination is nonspecific and requires the transient formation of double-stranded DNA termini. Int-mediated recombination, on the other hand, is site specific and does not require chromosomal termini. Red-mediated recombination is inhibited to a much greater extent than is Int-mediated recombination. We conclude from the results of these physiological and genetic experiments that T4 gp2 expression, like Mu Gam expression, kills bacteria by binding to double-stranded DNA termini, the most likely mode for its protection of entering phage DNA from exonuclease V.
Collapse
Affiliation(s)
- K Appasani
- Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, Massachusetts 02111-1800, USA
| | | | | |
Collapse
|
47
|
Steiner WW, Kuempel PL. Sister chromatid exchange frequencies in Escherichia coli analyzed by recombination at the dif resolvase site. J Bacteriol 1998; 180:6269-75. [PMID: 9829936 PMCID: PMC107712 DOI: 10.1128/jb.180.23.6269-6275.1998] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sister chromatid exchange (SCE) in Escherichia coli results in the formation of circular dimer chromosomes, which are converted back to monomers by a compensating exchange at the dif resolvase site. Recombination at dif is site specific and can be monitored by utilizing a density label assay that we recently described. To characterize factors affecting SCE frequency, we analyzed dimer resolution at the dif site in a variety of genetic backgrounds and conditions. Recombination at dif was increased by known hyperrecombinogenic mutations such as polA, dut, and uvrD. It was also increased by a fur mutation, which increased oxidative DNA damage. Recombination at dif was eliminated by a recA mutation, reflecting the role of RecA in SCE and virtually all homologous recombination in E. coli. Interestingly, recombination at dif was reduced to approximately half of the wild-type levels by single mutations in either recB or recF, and it was virtually eliminated when both mutations were present. This result demonstrates the importance of both RecBCD and RecF to chromosomal recombination events in wild-type cells.
Collapse
Affiliation(s)
- W W Steiner
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
48
|
Abstract
Replication arrest leads to the occurrence of DNA double-stranded breaks (DSB). We studied the mechanism of DSB formation by direct measure of the amount of in vivo linear DNA in Escherichia coli cells that lack the RecBCD recombination complex and by genetic means. The RuvABC proteins, which catalyze migration and cleavage of Holliday junctions, are responsible for the occurrence of DSBs at arrested replication forks. In cells proficient for RecBC, RuvAB is uncoupled from RuvC and DSBs may be prevented. This may be explained if a Holliday junction forms upon replication fork arrest, by annealing of the two nascent strands. RecBCD may act on the double-stranded tail prior to the cleavage of the RuvAB-bound junction by RuvC to rescue the blocked replication fork without breakage.
Collapse
Affiliation(s)
- M Seigneur
- Génétique Microbienne, Institute National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | |
Collapse
|
49
|
Steiner WW, Kuempel PL. Cell division is required for resolution of dimer chromosomes at the dif locus of Escherichia coli. Mol Microbiol 1998; 27:257-68. [PMID: 9484882 DOI: 10.1046/j.1365-2958.1998.00651.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dif locus is a RecA-independent resolvase site in the terminus region of the chromosome of Escherichia coli. The locus reduces dimer chromosomes, which result from sister chromatid exchange, to monomers. A density label assay demonstrates that recombination occurs at dif, and that it requires XerC and XerD. The frequency of this recombination is approximately 14% per site per generation, which is doubled in polA12 mutants. We have determined that recombination occurs late in the cell cycle, and that resolution is blocked if cell division is inhibited with cephalexin or by a ftsZts mutation. Fluorescence microscopy has demonstrated that abnormal nucleoids are present in cells incubated in cephalexin, and this is increased in polA12 mutants.
Collapse
Affiliation(s)
- W W Steiner
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309, USA.
| | | |
Collapse
|
50
|
Corre J, Cornet F, Patte J, Louarn JM. Unraveling a region-specific hyper-recombination phenomenon: genetic control and modalities of terminal recombination in Escherichia coli. Genetics 1997; 147:979-89. [PMID: 9383046 PMCID: PMC1208272 DOI: 10.1093/genetics/147.3.979] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The propensity of the terminus of the Escherichia coli chromosome for recombination has been further explored, using a test based on the selectable loss of a lambda prophage inserted between repeated sequences from Tn10. Terminal recombination appears region-specific and unrelated to replication termination in a strain harboring a major chromosomal rearrangement. It requires RecBC(D) activity and must therefore occur between sister chromosomes, to conserve genomic integrity in spite of DNA degradation by RecBCD. Terminal recombination is maximal in the dif region and its intensity on either side of this recombination site depends on the orientation of the repeated sequences, probably because of the single chi site present in each repeat. Additional observations support the model that the crossover is initiated by single-strand invasion between sister chromosomes followed by RecBCD action as a consequence of DNA breakage due to the initial invasion event. Crossover location within repeats inserted at dif position supports the possibility that sister chromosomes are tightly paired in the centre of the terminal recombination zone. These data reinforce the model that postreplicative reconstruction of nucleoid organization creates a localized synapsis between the termini of sister chromosomes.
Collapse
Affiliation(s)
- J Corre
- Laboratoire de Microbiologie et de Génétique moléculaires, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | |
Collapse
|