1
|
Villa TG, Abril AG, Sánchez-Pérez A. Mastering the control of the Rho transcription factor for biotechnological applications. Appl Microbiol Biotechnol 2021; 105:4053-4071. [PMID: 33963893 DOI: 10.1007/s00253-021-11326-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022]
Abstract
The present review represents an update on the fundamental role played by the Rho factor, which facilitates the process of Rho-dependent transcription termination in the prokaryotic world; it also provides a summary of relevant mutations in the Rho factor and the insights they provide into the functions carried out by this protein. Furthermore, a section is dedicated to the putative future use of Rho (the 'taming' of Rho) to facilitate biotechnological processes and adapt them to different technological contexts. Novel bacterial strains can be designed, containing mutations in the rho gene, that are better suited for different biotechnological applications. This process can obtain novel microbial strains that are adapted to lower temperatures of fermentation, shorter production times, exhibit better nutrient utilization, or display other traits that are beneficial in productive Biotechnology. Additional important issues reviewed here include epistasis, the design of TATA boxes, the role of small RNAs, and the manipulation of clathrin-mediated endocytosis, by some pathogenic bacteria, to invade eukaryotic cells. KEY POINTS: • It is postulated that controlling the action of the prokaryotic Rho factor could generate major biotechnological improvements, such as an increase in bacterial productivity or a reduction of the microbial-specific growth rate. • The review also evaluates the putative impact of epistatic mechanisms on Biotechnology, both as possible responsible for unexpected failures in gene cloning and more important for the genesis of new strains for biotechnological applications • The use of clathrin-coated vesicles by intracellular bacterial microorganisms is included too and proposed as a putative delivery mechanism, for drugs and vaccines.
Collapse
Affiliation(s)
- Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Ana G Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, La Coruña, 15706, Santiago de Compostela, Spain.
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
2
|
Genomic Profiling Reveals Distinct Routes To Complement Resistance in Klebsiella pneumoniae. Infect Immun 2020; 88:IAI.00043-20. [PMID: 32513855 PMCID: PMC7375759 DOI: 10.1128/iai.00043-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. More than 90 genes contributed to resistance in one or more strains, but only three, rfaH, lpp, and arnD, were common to all four strains. Deletion of the antiterminator rfaH, which controls the expression of capsule and O side chains, resulted in dramatic complement resistance reductions in all strains. The murein lipoprotein gene lpp promoted capsule retention through a mechanism dependent on its C-terminal lysine residue; its deletion led to modest reductions in complement resistance. Binding experiments with the complement components C3b and C5b-9 showed that the underlying mechanism of evasion varied in the four strains: B5055 and NTUH-K2044 appeared to bypass recognition by complement entirely, while ATCC 43816 and RH201207 were able to resist killing despite being associated with substantial levels of C5b-9. All rfaH and lpp mutants bound C3b and C5b-9 in large quantities. Our findings show that, even among this small selection of isolates, K. pneumoniae adopts differing mechanisms and utilizes distinct gene sets to avoid complement attack.
Collapse
|
3
|
Abstract
RfaH activates horizontally acquired operons that encode lipopolysaccharide core components, pili, toxins, and capsules. Unlike its paralog NusG, which potentiates Rho-mediated silencing, RfaH strongly inhibits Rho. RfaH is recruited to its target operons via a network of contacts with an elongating RNA polymerase (RNAP) and a specific DNA element called ops to modify RNAP into a pause- and NusG-resistant state. rfaH null mutations confer hypersensitivity to antibiotics and detergents, altered susceptibility to bacteriophages, and defects in virulence. Here, we carried out a selection for suppressors that restore the ability of a ΔrfaH mutant Escherichia coli strain to grow in the presence of sodium dodecyl sulfate. We isolated rho, rpoC, and hns suppressor mutants with changes in regions previously shown to be important for their function. In addition, we identified mutants with changes in an unstructured region that connects the primary RNA-binding and helicase domains of Rho. The connector mutants display strong defects in vivo, consistent with their ability to compensate for the loss of RfaH, and act synergistically with bicyclomycin (BCM), which has been recently shown to inhibit Rho transformation into a translocation-competent state. We hypothesize that the flexible connector permits the reorientation of Rho domains and serves as a target for factors that control the motor function of Rho allosterically. Our results, together with the existing data, support a model in which the connector segment plays a hitherto overlooked role in the regulation of Rho-dependent termination.IMPORTANCE The transcription termination factor Rho silences foreign DNA, reduces antisense transcription, mediates surveillance of mRNA quality, and maintains genome integrity by resolving transcription-replication collisions and deleterious R loops. Upon binding to RNA, Rho undergoes a rate-limiting transition from an open "lock washer" state to a closed ring capable of processive translocation on, and eventually the release of, the nascent transcript. Recent studies revealed that Rho ligands, including its cofactor NusG and inhibitor bicyclomycin, control the ring dynamics allosterically. In this work, we used a genetic selection for suppressors of RfaH, a potent inhibitor of Rho, to isolate a new class of mutations in a flexible region that connects the primary RNA-binding and ATPase/translocase domains of Rho. We propose that the connector is essential for the modulation of Rho activity by different RNA sequences and accessory proteins.
Collapse
|
4
|
NandyMazumdar M, Artsimovitch I. Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins - Shifting shapes and paradigms. Bioessays 2015; 37:324-34. [PMID: 25640595 DOI: 10.1002/bies.201400177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Numerous accessory factors modulate RNA polymerase response to regulatory signals and cellular cues and establish communications with co-transcriptional RNA processing. Transcription regulators are astonishingly diverse, with similar mechanisms arising via convergent evolution. NusG/Spt5 elongation factors comprise the only universally conserved and ancient family of regulators. They bind to the conserved clamp helices domain of RNA polymerase, which also interacts with non-homologous initiation factors in all domains of life, and reach across the DNA channel to form processivity clamps that enable uninterrupted RNA chain synthesis. In addition to this ubiquitous function, NusG homologs exert diverse, and sometimes opposite, effects on gene expression by competing with each other and other regulators for binding to the clamp helices and by recruiting auxiliary factors that facilitate termination, antitermination, splicing, translation, etc. This surprisingly diverse range of activities and the underlying unprecedented structural changes make studies of these "transformer" proteins both challenging and rewarding.
Collapse
Affiliation(s)
- Monali NandyMazumdar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
5
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
6
|
Belogurov GA, Sevostyanova A, Svetlov V, Artsimovitch I. Functional regions of the N-terminal domain of the antiterminator RfaH. Mol Microbiol 2010; 76:286-301. [PMID: 20132437 PMCID: PMC2871177 DOI: 10.1111/j.1365-2958.2010.07056.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RfaH is a bacterial elongation factor that increases expression of distal genes in several long, horizontally acquired operons. RfaH is recruited to the transcription complex during RNA chain elongation through specific interactions with a DNA element called ops. Following recruitment, RfaH remains bound to RNA polymerase (RNAP) and acts as an antiterminator by reducing RNAP pausing and termination at some factor-independent and Rho-dependent signals. RfaH consists of two domains connected by a flexible linker. The N-terminal RfaH domain (RfaHN) recognizes the ops element, binds to the RNAP and reduces pausing and termination in vitro. Functional analysis of single substitutions in this domain reported here suggests that three separate RfaHN regions mediate these functions. We propose that a polar patch on one side of RfaHN interacts with the non-template DNA strand during recruitment, whereas a hydrophobic surface on the opposite side of RfaHN remains bound to the β′ subunit clamp helices domain throughout transcription of the entire operon. The third region is apparently dispensable for RfaH binding to the transcription complex but is required for the antitermination modification of RNAP.
Collapse
Affiliation(s)
- Georgiy A Belogurov
- Department of Microbiology and The RNA Group, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
7
|
Belogurov GA, Mooney RA, Svetlov V, Landick R, Artsimovitch I. Functional specialization of transcription elongation factors. EMBO J 2008; 28:112-22. [PMID: 19096362 DOI: 10.1038/emboj.2008.268] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022] Open
Abstract
Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes.
Collapse
Affiliation(s)
- Georgiy A Belogurov
- Department of Microbiology and The RNA Group, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
8
|
Hoare A, Bittner M, Carter J, Alvarez S, Zaldívar M, Bravo D, Valvano MA, Contreras I. The outer core lipopolysaccharide of Salmonella enterica serovar Typhi is required for bacterial entry into epithelial cells. Infect Immun 2006; 74:1555-64. [PMID: 16495526 PMCID: PMC1418631 DOI: 10.1128/iai.74.3.1555-1564.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhi causes typhoid fever in humans. Central to the pathogenicity of serovar Typhi is its capacity to invade intestinal epithelial cells. The role of lipopolysaccharide (LPS) in the invasion process of serovar Typhi is unclear. In this work, we constructed a series of mutants with defined deletions in genes for the synthesis and polymerization of the O antigen (wbaP, wzy, and wzz) and the assembly of the outer core (waaK, waaJ, waaI, waaB, and waaG). The abilities of each mutant to associate with and enter HEp-2 cells and the importance of the O antigen in serum resistance of serovar Typhi were investigated. We demonstrate here that the presence and proper chain length distribution of the O-antigen polysaccharide are essential for serum resistance but not for invasion of epithelial cells. In contrast, the outer core oligosaccharide structure is required for serovar Typhi internalization in HEp-2 cells. We also show that the outer core terminal glucose residue (Glc II) is necessary for efficient entry of serovar Typhi into epithelial cells. The Glc I residue, when it becomes terminal due to a polar insertion in the waaB gene affecting the assembly of the remaining outer core residues, can partially substitute for Glc II to mediate bacterial entry into epithelial cells. Therefore, we conclude that a terminal glucose in the LPS core is a critical residue for bacterial recognition and internalization by epithelial cells.
Collapse
Affiliation(s)
- Anilei Hoare
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, P.O. Box 174, Correo 22, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Vicari D, Artsimovitch I. Virulence regulators RfaH and YaeQ do not operate in the same pathway. Mol Genet Genomics 2004; 272:489-96. [PMID: 15503145 DOI: 10.1007/s00438-004-1065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
The expression of virulence factors such as hemolysin and lipopolysaccharides in Proteobacteria is regulated by the transcription elongation factor RfaH. RfaH reduces pausing and termination at intergenic sites, and thus allows RNA polymerase to conclude transcription of the distal genes in long virulence operons. The yaeQ gene of Salmonella enterica sv. Typhimurium has been identified as a high-copy-number suppressor of the hemolytic defect in an rfaH deletion strain, leading to speculation regarding a direct role of YaeQ in the transcriptional control of bacterial virulence. In order to evaluate this hypothesis, yaeQ genes from Escherichia coli and S. enterica sv. Typhimurium were cloned and expressed. Their products, purified YaeQ proteins, displayed no antitermination effects in in-vitro transcription assays over a wide range of concentrations, neither by themselves nor in competition with RfaH. When overexpressed in vivo, plasmid-borne E. coli and S. enterica sv. Typhimurium yaeQ genes also failed to restore hemolytic activity in an rfaH deletion strain under conditions in which episomal E. coli rfaH and its orthologs exhibited full complementation of the genomic rfaH deletion. Taken together, our findings do not support the hypothesis of YaeQ involvement in RfaH-dependent regulation of virulence, even in stoichiometric excess in vitro or upon overexpression in vivo.
Collapse
Affiliation(s)
- D Vicari
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
10
|
Bittner M, Saldı As S, Estévez C, Zaldı Var M, Marolda CL, Valvano MA, Contreras I. O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3789-3799. [PMID: 12480883 DOI: 10.1099/00221287-148-12-3789] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The authors previously reported increased expression of the Salmonella enterica serovar Typhi (S. typhi) rfaH gene when the bacterial cells reach stationary phase. In this study, using a lacZ fusion to the rfaH promoter region, they demonstrate that growth-dependent regulation of rfaH expression occurs at the level of transcription initiation. It was also observed that production of the lipopolysaccharide (LPS) O-antigen by S. typhi Ty2 correlated with the differential expression of rfaH during bacterial growth. This was probably due to the increased cellular levels of RfaH, since expression of the distal gene in the O-antigen gene cluster of S. typhi Ty2, wbaP, was also increased during stationary growth, as demonstrated by RT-PCR analysis. Examination of the sequences upstream of the rfaH coding region revealed homologies to potential binding sites for the RcsB/RcsA dimer of the RcsC/YopJ/RcsB phosphorelay regulatory system and for the RpoN alternative sigma factor. The expression of the rfaH gene in rpoN and rcsB mutants of S. typhi Ty2 was measured. The results indicate that inactivation of rpoN, but not of rcsB, suppresses the growth-phase-dependent induction of rfaH expression. Furthermore, production of beta-galactosidase mediated by the rfaH-lacZ fusion increased approximately fourfold when bacteria were grown in a nitrogen-limited medium. Nitrogen limitation was also shown to increase the expression of the O-antigen by the wild-type S. typhi Ty2, as demonstrated by a similar electrophoretic profile to that observed during the stationary phase of growth in rich media. It is therefore concluded that the relationship between LPS production and nitrogen limitation parallels the pattern of rfaH regulation under the control of RpoN and is consistent with the idea that RpoN modulates LPS formation via its effect on rfaH gene expression during bacterial growth.
Collapse
Affiliation(s)
- Mauricio Bittner
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Soledad Saldı As
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Claudia Estévez
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Mercedes Zaldı Var
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| | - Cristina L Marolda
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada N6A 5C12
| | - Inés Contreras
- Departamento de Bioquı́mica y Biologı́a Molecular, Facultad de Ciencias Quı́micas y Farmacéuticas, Universidad de Chile, PO Box 174, Correo 22, Santiago, Chile1
| |
Collapse
|
11
|
Artsimovitch I, Landick R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 2002; 109:193-203. [PMID: 12007406 DOI: 10.1016/s0092-8674(02)00724-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcriptional regulatory protein RfaH controls expression of several operons that encode extracytoplasmic components in bacteria. Regulation by RfaH occurs during transcript elongation and depends on a 5'-proximal, transcribed nucleic acid sequence called ops that induces transcriptional pausing in vitro and in vivo. We report that RfaH recognizes RNA polymerase transcribing RfaH-regulated operons by interacting with the ops sequence in the exposed nontemplate DNA strand of ops-paused transcription complexes. Although RfaH delays escape from the ops pause, once escape occurs, RfaH enhances elongation by suppressing pausing and rho-dependent termination without apparent involvement of other accessory proteins. This activity predicts a cumulative antitermination model for RfaH's regulation of ops-containing operons in vivo.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli Proteins
- Evolution, Molecular
- Gene Expression Regulation, Bacterial/genetics
- Genes, Regulator/genetics
- Peptide Chain Elongation, Translational/genetics
- Peptide Elongation Factors/genetics
- Peptide Elongation Factors/metabolism
- Phylogeny
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- Templates, Genetic
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
12
|
Rojas G, Saldías S, Bittner M, Zaldívar M, Contreras I. The rfaH gene, which affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially expressed during the bacterial growth phase. FEMS Microbiol Lett 2001; 204:123-8. [PMID: 11682190 DOI: 10.1111/j.1574-6968.2001.tb10874.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We have cloned and sequenced the rfaH gene from Salmonella enterica serovar Typhi strain Ty2. The gene showed a high degree of similarity to the rfaH genes from Escherichia coli K-12 and S. enterica serovar Typhimurium. A rfaH mutant was constructed by site-directed mutagenesis. This mutant produced a rough lipopolysaccharide (LPS), with an incomplete core region. The defect in LPS expression that results from the rfaH mutation was corrected by a plasmid carrying the intact gene. The plasmid-borne rfaH gene also restored normal LPS synthesis in a rfaH mutant of E. coli. Reverse transcription-polymerase chain reaction analyses were performed to determine the effects of various environmental conditions on the expression of rfaH. The transcription of rfaH showed a growth-phase-dependent regulation, with maximal expression at the late exponential phase. Other environmental conditions, such as temperature or medium osmolarity, did not affect transcription of rfaH.
Collapse
Affiliation(s)
- G Rojas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, P.O. Box 174, Correo 22, Santiago, Chile
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- R A Weisberg
- Section on Microbial Genetics, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA.
| | | |
Collapse
|
14
|
Crago AM, Koronakis V. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol 1998; 30:47-56. [PMID: 9786184 DOI: 10.1046/j.1365-2958.1998.01036.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Salmonella species translocate virulence effector proteins from the bacterial cytoplasm into mammalian host cells by means of a type III secretion apparatus, encoded by the pathogenicity island-1 (SPI-1). Little is known about the assembly and structure of this secretion apparatus, but the InvG protein is essential and could be an outer membrane secretion channel for the effector proteins. We observed that in recombinant Escherichia coli, the yield of InvG was enhanced by co-expression of InvH, and showed that mutation of invH decreased the level of InvG in wild-type Salmonella typhimurium. In E. coli, InvG alone was able to form an SDS-resistant multimer, but InvG localization to the outer membrane was dependent upon InvH, a lipoprotein itself located in the outer membrane, and no other SPI-1 specific protein. InvG targeted to the outer membrane by InvH became accessible to extracellular protease. InvG and InvH did not, however, appear to form a stable complex. Electron microscopy of InvG membrane protein purified from E. coli revealed that it forms an oligomeric ring-like structure with inner and outer diameters, 7 nm and 15 nm respectively.
Collapse
Affiliation(s)
- A M Crago
- Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
15
|
Marolda CL, Valvano MA. Promoter region of the Escherichia coli O7-specific lipopolysaccharide gene cluster: structural and functional characterization of an upstream untranslated mRNA sequence. J Bacteriol 1998; 180:3070-9. [PMID: 9620955 PMCID: PMC107806 DOI: 10.1128/jb.180.12.3070-3079.1998] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We report the identification of the promoter region of the Escherichia coli O7-specific lipopolysaccharide (LPS) gene cluster (wbEcO7). Typical -10 and -35 sequences were found to be located in the intervening region between galF and rlmB, the first gene of the wbEcO7 cluster. Data from RNase protection experiments revealed the existence of an untranslated leader mRNA segment of 173 bp, including the JUMPStart and two ops sequences. We characterized the structure of this leader mRNA by using the program Mfold and a combination of nested and internal deletions transcriptionally fused to a promoterless lac operon. Our results indicated that the leader mRNA may fold into a series of complex stem-loop structures, one of which includes the JUMPStart element. We have also found that one of the ops sequences resides on the predicted stem and the other resides on the loop region, and we confirmed that these sequences are essential for the RfaH-mediated regulation of the O polysaccharide cluster. A very similar stem-loop structure could be predicted in the promoter region of the LPS core operon encoding the waaQGPSBIJYZK genes. We observed another predicted stem-loop, located immediately downstream from the wbEcO7 transcription initiation site, which appeared to be involved in premature termination of transcription. This putative stem-loop is common to many other O polysaccharide gene clusters but is not present in core oligosaccharide genes. wbEcO7-lac transcriptional fusions in single copy numbers were also used to determine the effects of various environmental cues in the transcriptional regulation of O polysaccharide synthesis. No effects were detected with temperature, osmolarity, Mg2+ concentration, and drugs inducing changes in DNA supercoiling. We therefore conclude that the wbEcO7 promoter activity may be constitutive and that regulation takes place at the level of elongation of the mRNA in a RfaH-mediated manner.
Collapse
Affiliation(s)
- C L Marolda
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | |
Collapse
|
16
|
|
17
|
Miloso M, Limauro D, Alifano P, Rivellini F, Lavitola A, Gulletta E, Bruni CB. Characterization of the rho genes of Neisseria gonorrhoeae and Salmonella typhimurium. J Bacteriol 1993; 175:8030-7. [PMID: 8253691 PMCID: PMC206985 DOI: 10.1128/jb.175.24.8030-8037.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have cloned and sequenced the genomic regions encompassing the rho genes of Neisseria gonorrhoeae and Salmonella typhimurium. Rho factor of S. typhimurium has only three amino acid differences with respect to the Escherichia coli homolog. Northern (RNA) blots and primer extension experiments were used to characterize the N. gonorrhoeae rho transcript and to identify the transcription initiation and termination elements of this cistron. The function of the Rho factor of N. gonorrhoeae was investigated by complementation assays of rho mutants of E. coli and S. typhimurium and by in vivo transcription assays in polar mutants of S. typhimurium.
Collapse
Affiliation(s)
- M Miloso
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
From a historical perspective, the study of both the biochemistry and the genetics of lipopolysaccharide (LPS) synthesis began with the enteric bacteria. These organisms have again come to the forefront as the blocks of genes involved in LPS synthesis have been sequenced and analyzed. A number of new and unanticipated genes were found in these clusters, indicating a complexity of the biochemical pathways which was not predicted from the older studies. One of the most dramatic areas of LPS research has been the elucidation of the lipid A biosynthetic pathway. Four of the genes in this pathway have now been identified and sequenced, and three of them are located in a complex operon which also contains genes involved in DNA and phospholipid synthesis. The rfa gene cluster, which contains many of the genes for LPS core synthesis, includes at least 17 genes. One of the remarkable findings in this cluster is a group of several genes which appear to be involved in the synthesis of alternate rough core species which are modified so that they cannot be acceptors for O-specific polysaccharides. The rfb gene clusters which encode O-antigen synthesis have been sequenced from a number of serotypes and exhibit the genetic polymorphism anticipated on the basis of the chemical complexity of the O antigens. These clusters appear to have originated by the exchange of blocks of genes among ancestral organisms. Among the large number of LPS genes which have now been sequenced from these rfa and rfb clusters, there are none which encode proteins that appear to be secreted across the cytoplasmic membrane and surprisingly few which encode integral membrane proteins or proteins with extensive hydrophobic domains. These data, together with sequence comparison and complementation experiments across strain and species lines, suggest that the LPS biosynthetic enzymes may be organized into clusters on the inner surface of the cytoplasmic membrane which are organized around a few key membrane proteins.
Collapse
Affiliation(s)
- C A Schnaitman
- Department of Microbiology, Arizona State University, Tempe 85287-2701
| | | |
Collapse
|
19
|
Abstract
From a historical perspective, the study of both the biochemistry and the genetics of lipopolysaccharide (LPS) synthesis began with the enteric bacteria. These organisms have again come to the forefront as the blocks of genes involved in LPS synthesis have been sequenced and analyzed. A number of new and unanticipated genes were found in these clusters, indicating a complexity of the biochemical pathways which was not predicted from the older studies. One of the most dramatic areas of LPS research has been the elucidation of the lipid A biosynthetic pathway. Four of the genes in this pathway have now been identified and sequenced, and three of them are located in a complex operon which also contains genes involved in DNA and phospholipid synthesis. The rfa gene cluster, which contains many of the genes for LPS core synthesis, includes at least 17 genes. One of the remarkable findings in this cluster is a group of several genes which appear to be involved in the synthesis of alternate rough core species which are modified so that they cannot be acceptors for O-specific polysaccharides. The rfb gene clusters which encode O-antigen synthesis have been sequenced from a number of serotypes and exhibit the genetic polymorphism anticipated on the basis of the chemical complexity of the O antigens. These clusters appear to have originated by the exchange of blocks of genes among ancestral organisms. Among the large number of LPS genes which have now been sequenced from these rfa and rfb clusters, there are none which encode proteins that appear to be secreted across the cytoplasmic membrane and surprisingly few which encode integral membrane proteins or proteins with extensive hydrophobic domains. These data, together with sequence comparison and complementation experiments across strain and species lines, suggest that the LPS biosynthetic enzymes may be organized into clusters on the inner surface of the cytoplasmic membrane which are organized around a few key membrane proteins.
Collapse
|
20
|
Wandersman C, Létoffé S. Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol 1993; 7:141-50. [PMID: 8437516 DOI: 10.1111/j.1365-2958.1993.tb01105.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The presence of the alpha-haemolysin secretion genes sensitizes Escherichia coli to vancomycin, a glycopeptide antibiotic that is normally excluded from the Gram-negative envelope (owing to its large size) (M(r) 1400). The selection of vancomycin mutants in strains carrying such genes was found to be a very powerful method for selecting non-haemolytic mutants. In this way, mutations in the known secretion genes, hlyB, hlyD and tolC, were obtained. However additional mutations mapped in genes rfaH and galU which are required for lipopolysaccharide (LPS) biosynthesis. Mutations in rfaH and galU strongly reduced alpha-haemolysin secretion as well as the secretion of Erwinia chrysanthemi proteases in E. coli without affecting their synthesis. These mutations markedly lowered the content of TolC protein, required for haemolysin secretion and also of the PrtF protein necessary for protease secretion. These results raise the possibility that LPS is involved in the correct incorporation of the TolC and PrtF proteins into the cell envelope.
Collapse
Affiliation(s)
- C Wandersman
- Unité de Génétique Moléculaire, CNRS UA 1149, Institut Pasteur, Paris, France
| | | |
Collapse
|
21
|
Whitfield C, Valvano MA. Biosynthesis and expression of cell-surface polysaccharides in gram-negative bacteria. Adv Microb Physiol 1993; 35:135-246. [PMID: 8310880 DOI: 10.1016/s0065-2911(08)60099-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C Whitfield
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
22
|
Das A. How the phage lambda N gene product suppresses transcription termination: communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J Bacteriol 1992; 174:6711-6. [PMID: 1400223 PMCID: PMC207346 DOI: 10.1128/jb.174.21.6711-6716.1992] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- A Das
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030
| |
Collapse
|
23
|
Roncero C, Casadaban MJ. Genetic analysis of the genes involved in synthesis of the lipopolysaccharide core in Escherichia coli K-12: three operons in the rfa locus. J Bacteriol 1992; 174:3250-60. [PMID: 1577693 PMCID: PMC205993 DOI: 10.1128/jb.174.10.3250-3260.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The region of the Escherichia coli K-12 chromosome encoding the enzymes responsible for the synthesis of responsible for the synthesis of the lipopolysaccharide (LPS) core has been cloned in vivo by using a mini-Mu vector. This region, formerly known as the rfa locus, comprises 18 kb of DNA between the markers tdh and rpmBG. Results of in vitro mutagenesis of this region with MudII1734 indicate the presence of at least 17 open reading frames or genes, a number considerably higher than expected on the basis of genetic and biochemical studies. Specific insertions in different genes have been recombined into the chromosome, and the mutations have been phenotypically characterized. Complementation analysis indicates that these genes are arranged in three different operons transcribed in opposite directions. A detailed physical map of this region has been constructed on the basis of complementation analysis, fusion protein data, and phenotypic characterizations. Additionally, the role of some genes in the synthesis of LPS has been defined by complementation analysis with known Salmonella typhimurium LPS mutants. The genetic organization of this locus seems to be identical in E. coli K-12 and S. typhimurium.
Collapse
Affiliation(s)
- C Roncero
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
24
|
Bailey MJ, Koronakis V, Schmoll T, Hughes C. Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol 1992; 6:1003-12. [PMID: 1584020 DOI: 10.1111/j.1365-2958.1992.tb02166.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis and secretion of the 110kDa haemolysin toxin of Escherichia coli and other pathogenic Gram-negative bacteria are governed by the four genes of the hly operon. We have identified, by transposon mutagenesis, an E. coli cellular locus, hlyT, required for the synthesis and secretion of haemolysin encoded in trans by intact hly operons carrying the hly upstream regulatory region. Mutation of the hlyT locus specifically reduced the level of hlyA structural gene transcript 20-100-fold and thus markedly lowered both intracellular and extracellular levels of the HlyA protein. Genetic and structural analysis of the hlyT locus mapped it at co-ordinate 3680 kbp (minute 87) on the chromosome adjacent to the fadBA operon, and identified it specifically as the rfaH (sfrB) locus which is required for transcription of the genes encoding synthesis of the sex pilus and also the lipopolysaccharide core for attachment of the O-antigen of E. coli and Salmonella. Expression of the hly operon in the E. coli hlyT mutant was restored in trans by both the hlyT and rfaH genes, suggesting that the rfaH gene is an important activator of regulon structures that are central to the fertility and virulence of these pathogenic bacteria. DNA sequencing of the hlyT locus identifies the HlyT/RfaH transcriptional activator as a protein of 162 amino acids (Mr 18325) which shows no identity to characterized transcription factors.
Collapse
Affiliation(s)
- M J Bailey
- Department of Pathology, University of Cambridge, UK
| | | | | | | |
Collapse
|
25
|
Brazas R, Davie E, Farewell A, Rothfield LI. Transcriptional organization of the rfaGBIJ locus of Salmonella typhimurium. J Bacteriol 1991; 173:6168-73. [PMID: 1917851 PMCID: PMC208367 DOI: 10.1128/jb.173.19.6168-6173.1991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcriptional organization of the rfaGBIJ gene cluster of Salmonella typhimurium was studied by using lacZ and cat transcriptional probes. The results indicated that the leftward end of the gene cluster (rfaG-rfaB-rfaI) is an operon that is transcribed from one or more promoters that lie upstream of rfaG. The results further indicated that the product of the rfaH (sfrB) gene acts as a positive regulator of transcription of the entire rfaGBIJ cluster. At least one site required for the RfaH-mediated transcriptional regulation lies within or very close to the upstream promoter.
Collapse
Affiliation(s)
- R Brazas
- Department of Microbiology, University of Connecticut Health Center, Farmington 06032
| | | | | | | |
Collapse
|