1
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Zhang Q, Kobras CM, Gebhard S, Mascher T, Wolf D. Regulation of heterologous subtilin production in Bacillus subtilis W168. Microb Cell Fact 2022; 21:57. [PMID: 35392905 PMCID: PMC8991943 DOI: 10.1186/s12934-022-01782-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Subtilin is a peptide antibiotic (lantibiotic) natively produced by Bacillus subtilis ATCC6633. It is encoded in a gene cluster spaBTCSIFEGRK (spa-locus) consisting of four transcriptional units: spaS (subtilin pre-peptide), spaBTC (modification and export), spaIFEG (immunity) and spaRK (regulation). Despite the pioneer understanding on subtilin biosynthesis, a robust platform to facilitate subtilin research and improve subtilin production is still a poorly explored spot. Results In this work, the intact spa-locus was successfully integrated into the chromosome of Bacillus subtilis W168, which is the by far best-characterized Gram-positive model organism with powerful genetics and many advantages in industrial use. Through systematic analysis of spa-promoter activities in B. subtilis W168 wild type and mutant strains, our work demonstrates that subtilin is basally expressed in B. subtilis W168, and the transition state regulator AbrB strongly represses subtilin biosynthesis in a growth phase-dependent manner. The deletion of AbrB remarkably enhanced subtilin gene expression, resulting in comparable yield of bioactive subtilin production as for B. subtilis ATCC6633. However, while in B. subtilis ATCC6633 AbrB regulates subtilin gene expression via SigH, which in turn activates spaRK, AbrB of B. subtilis W168 controls subtilin gene expression in SigH-independent manner, except for the regulation of spaBTC. Furthermore, the work shows that subtilin biosynthesis in B. subtilis W168 is regulated by the two-component regulatory system SpaRK and strictly relies on subtilin itself as inducer to fulfill the autoregulatory circuit. In addition, by incorporating the subtilin-producing system (spa-locus) and subtilin-reporting system (PpsdA-lux) together, we developed “online” reporter strains to efficiently monitor the dynamics of subtilin biosynthesis. Conclusions Within this study, the model organism B. subtilis W168 was successfully established as a novel platform for subtilin biosynthesis and the underlying regulatory mechanism was comprehensively characterized. This work will not only facilitate genetic (engineering) studies on subtilin, but also pave the way for its industrial production. More broadly, this work will shed new light on the heterologous production of other lantibiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01782-9.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Carolin M Kobras
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,School of Biosciences, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Susanne Gebhard
- Department Biology I, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.,Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK
| | - Thorsten Mascher
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany
| | - Diana Wolf
- Institute of Microbiology, Technische Universität Dresden, 01217, Dresden, Germany.
| |
Collapse
|
3
|
van Tilburg AY, van Heel AJ, Stülke J, de Kok NAW, Rueff AS, Kuipers OP. Mini Bacillus PG10 as a Convenient and Effective Production Host for Lantibiotics. ACS Synth Biol 2020; 9:1833-1842. [PMID: 32551553 PMCID: PMC7372594 DOI: 10.1021/acssynbio.0c00194] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Efficient bacterial cell factories are important for the screening and characterization of potent antimicrobial peptides such as lantibiotics. Although lantibiotic production systems have been established in Lactococcus lactis and Escherichia coli, the industrial workhorse Bacillus subtilis has been left relatively unexplored as a lantibiotic production host. Therefore, we tested different B. subtilis strains for their ability to produce lantibiotic peptides by using the subtilin modification and transport enzymes derived from the natural subtilin producer B. subtilis ATCC 6633. Our study shows that although B. subtilis ATCC 6633 and 168 are able to produce various processed lantibiotic peptides, an evident advantage of using either the 8-fold protease-deficient strain WB800 or the genome-minimized B. subtilis 168 strain PG10 is the lack of extracellular serine protease activity. Consequently, leader processing of lantibiotic precursor peptides is circumvented and thus potential toxicity toward the production host is prevented. Furthermore, PG10 provides a clean secondary metabolic background and therefore appears to be the most promising B. subtilis lantibiotic production host. We demonstrate the production of various lantibiotic precursor peptides by PG10 and show different options for their in vitro activation. Our study thus provides a convenient B. subtilis-based lantibiotic production system, which facilitates the search for novel antimicrobial peptides.
Collapse
Affiliation(s)
- Amanda Y. van Tilburg
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Auke J. van Heel
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Jörg Stülke
- Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Niels A. W. de Kok
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Anne-Stéphanie Rueff
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, 9747AG, The Netherlands
| |
Collapse
|
4
|
Li Y, Li Z, Yamanaka K, Xu Y, Zhang W, Vlamakis H, Kolter R, Moore BS, Qian PY. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis. Sci Rep 2015; 5:9383. [PMID: 25807046 PMCID: PMC4894447 DOI: 10.1038/srep09383] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022] Open
Abstract
Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning “plug-and-play” approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.
Collapse
Affiliation(s)
- Yongxin Li
- 1] KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong [2] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
| | - Zhongrui Li
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Kazuya Yamanaka
- 1] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States [2] JNC Corporation, Yokohama Research Center, 5-1 Okawa, Kanazawa-ku, Yokohama, Kanagawa 2368605, Japan
| | - Ying Xu
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Weipeng Zhang
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hera Vlamakis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Bradley S Moore
- 1] Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States [2] Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
5
|
|
6
|
Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS One 2011; 6:e22389. [PMID: 21811596 PMCID: PMC3141056 DOI: 10.1371/journal.pone.0022389] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/20/2011] [Indexed: 11/24/2022] Open
Abstract
Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent.
Collapse
|
7
|
Oman TJ, van der Donk WA. Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem Biol 2009; 4:865-74. [PMID: 19678697 PMCID: PMC2812937 DOI: 10.1021/cb900194x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Haloduracin, a recently discovered two-peptide lantibiotic composed of the post-translationally modified peptides Halα and Halβ, is shown to have high potency against a range of Gram-positive bacteria and to inhibit spore outgrowth of Bacillus anthracis. The two peptides display optimal activity in a 1:1 stoichiometry and have efficacy similar to that of the commercially used lantibiotic nisin. However, haloduracin is more stable at pH 7 than nisin. Despite significant structural differences between the two peptides of haloduracin and those of the two-peptide lantibiotic lacticin 3147, these two systems show similarities in their mode of action. Like Ltnα, Halα binds to a target on the surface of Gram-positive bacteria, and like Ltnβ, the addition of Halβ results in pore formation and potassium efflux. Using Halα mutants, its B- and C-thioether rings are shown to be important but not required for bioactivity. A similar observation was made with mutants of Glu22, a residue that is highly conserved among several lipid II-binding lantibiotics such as mersacidin.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry, University of Illinois at Urbana-Champaign and the Howard Hughes Medical Institute, 600 S. Mathews Ave, Urbana, Illinois 61801
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign and the Howard Hughes Medical Institute, 600 S. Mathews Ave, Urbana, Illinois 61801
| |
Collapse
|
8
|
Chakicherla A, Ecale Zhou CL, Dang ML, Rodriguez V, Hansen JN, Zemla A. SpaK/SpaR two-component system characterized by a structure-driven domain-fusion method and in vitro phosphorylation studies. PLoS Comput Biol 2009; 5:e1000401. [PMID: 19503843 PMCID: PMC2686270 DOI: 10.1371/journal.pcbi.1000401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/04/2009] [Indexed: 12/23/2022] Open
Abstract
Here we introduce a quantitative structure-driven computational domain-fusion
method, which we used to predict the structures of proteins believed to be
involved in regulation of the subtilin pathway in Bacillus
subtilis, and used to predict a protein-protein complex formed by
interaction between the proteins. Homology modeling of SpaK and SpaR yielded
preliminary structural models based on a best template for SpaK comprising a
dimer of a histidine kinase, and for SpaR a response regulator protein. Our LGA
code was used to identify multi-domain proteins with structure homology to both
modeled structures, yielding a set of domain-fusion templates then used to model
a hypothetical SpaK/SpaR complex. The models were used to identify putative
functional residues and residues at the protein-protein interface, and
bioinformatics was used to compare functionally and structurally relevant
residues in corresponding positions among proteins with structural homology to
the templates. Models of the complex were evaluated in light of known properties
of the functional residues within two-component systems involving His-Asp
phosphorelays. Based on this analysis, a phosphotransferase complexed with a
beryllofluoride was selected as the optimal template for modeling a SpaK/SpaR
complex conformation. In vitro phosphorylation studies
performed using wild type and site-directed SpaK mutant proteins validated the
predictions derived from application of the structure-driven domain-fusion
method: SpaK was phosphorylated in the presence of 32P-ATP and the
phosphate moiety was subsequently transferred to SpaR, supporting the hypothesis
that SpaK and SpaR function as sensor and response regulator, respectively, in a
two-component signal transduction system, and furthermore suggesting that the
structure-driven domain-fusion approach correctly predicted a physical
interaction between SpaK and SpaR. Our domain-fusion algorithm leverages
quantitative structure information and provides a tool for generation of
hypotheses regarding protein function, which can then be tested using empirical
methods. Because proteins so frequently function in coordination with other proteins,
identification and characterization of the interactions among proteins are
essential for understanding how proteins work. Computational methods for
identification of protein-protein interactions have been limited by the degree
to which proteins are similar in sequence. However, methods that leverage
structure information can overcome this limitation of sequence-based methods;
the three-dimensional information provided by structure enables identification
of related proteins even when their sequences are dissimilar. In this work we
present a quantitative method for identification of protein interacting
partners, and we demonstrate its use in modeling the structure of a hypothetical
complex between two proteins that function in a bacterial signaling system. This
quantitative approach comprises a tool for generation of hypotheses regarding
protein function, which can then be tested using empirical methods, and provides
a basis for high-throughput prediction of protein-protein interactions, which
could be applied on a whole-genome scale.
Collapse
Affiliation(s)
- Anu Chakicherla
- Computing Applications and Research Department, Lawrence Livermore
National Laboratory, Livermore, California, United States of America
| | - Carol L. Ecale Zhou
- Computing Applications and Research Department, Lawrence Livermore
National Laboratory, Livermore, California, United States of America
- * E-mail:
| | | | - Virginia Rodriguez
- Genome Technology Branch, National Human Genome Research Institute,
National Institutes of Health, Bethesda, Maryland, United States of
America
| | - J. Norman Hansen
- Department of Chemistry and Biochemistry, University of Maryland, College
Park, Maryland, United States of America
| | - Adam Zemla
- Computing Applications and Research Department, Lawrence Livermore
National Laboratory, Livermore, California, United States of America
| |
Collapse
|
9
|
Yuksel S, Hansen JN. Transfer of nisin gene cluster from Lactococcus lactis ATCC 11454 into the chromosome of Bacillus subtilis 168. Appl Microbiol Biotechnol 2007; 74:640-9. [PMID: 17143619 DOI: 10.1007/s00253-006-0713-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/18/2006] [Accepted: 10/10/2006] [Indexed: 10/23/2022]
Abstract
Nisin is an antimicrobial peptide produced by certain strains of Lactococcus lactis. It is a gene-encoded peptide that contains unusual amino acid residues. These novel residues are introduced by posttranslational modification machinery and confer unique chemical and physical properties that are not attainable by regular amino acid residues. To study the modification mechanisms and to create structural analogs with superior properties, it would be advantageous to insert the nisin genes into a bacterial strain that is amenable to genetic manipulation. In this study, we report the cloning and integration of the complete and intact nisin gene cluster into the Bacillus subtilis 168 chromosome. Furthermore, we demonstrate that the nisin genes are transcriptionally active. These results should greatly facilitate the studies of the genes and proteins involved in nisin expression, as well as provide a standard system for the manipulation and expression of genes involved in other members of the lantibiotic family of antimicrobial peptides.
Collapse
Affiliation(s)
- Sahru Yuksel
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | | |
Collapse
|
10
|
Tsuge K, Inoue S, Ano T, Itaya M, Shoda M. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 2006; 49:4641-8. [PMID: 16251307 PMCID: PMC1280175 DOI: 10.1128/aac.49.11.4641-4648.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iturin A and its derivatives are lipopeptide antibiotics produced by Bacillus subtilis and several closely related bacteria. Three iturin group operons (i.e., iturin A, mycosubtilin, and bacillomycin D) of those antibiotic-producing strains have been cloned and sequenced thus far, strongly implying the horizontal transfer of these operons. To examine the nature of such horizontal transfer in terms of antibiotic production, a 42-kb region of the B. subtilis RB14 genome, which contains a complete 38-kb iturin A operon, was transferred via competent cell transformation to the genome of a non-iturin A producer, B. subtilis 168, using a method based on double-crossover homologous recombination with two short landing pad sequences (LPSs) in the genome. The recombinant was positively selected by confirming the elimination of the cI repressor gene, which was localized between the two LPSs and substituted by the transferred segment. The iturin A operon-transferred strain 168 was then converted into an iturin A producer by the introduction of an sfp gene, which encodes 4'-phosphopantetheinyl transferase and is mutated in strain 168. By inserting the pleiotropic regulator degQ, the productivity of iturin A increased sevenfold and was restored to about half that of the donor strain RB14, without the transfer of additional genes, such as regulatory or self-resistance genes.
Collapse
Affiliation(s)
- Kenji Tsuge
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
11
|
Chen P, Qi F, Novak J, Caufield PW. The specific genes for lantibiotic mutacin II biosynthesis in Streptococcus mutans T8 are clustered and can be transferred en bloc. Appl Environ Microbiol 1999; 65:1356-60. [PMID: 10049909 PMCID: PMC91190 DOI: 10.1128/aem.65.3.1356-1360.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutacin II is a ribosomally synthesized peptide lantibiotic produced by group II Streptococcus mutans. DNA sequencing has revealed that the mutacin II biosynthetic gene cluster consists of seven specific open reading frames: a regulator (mutR), the prepromutacin structural gene (mutA), a modifying protein (mutM), an ABC transporter (mutT), and an immunity cluster (mutFEG). Transformations of a non-mutacin-producing strain, S. mutans UA159, and a mutacin I-producing strain, S. mutans UA140, with chromosomal DNA from S. mutans T8 with an aphIII marker inserted upstream of the mutacin II structural gene yielded transformants producing mutacin II and mutacins I and II, respectively.
Collapse
Affiliation(s)
- P Chen
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
12
|
Paik SH, Chakicherla A, Hansen JN. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 1998; 273:23134-42. [PMID: 9722542 DOI: 10.1074/jbc.273.36.23134] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An antimicrobial peptide produced by Bacillus subtilis 168 was isolated and characterized. It was named sublancin 168, and its behavior during Edman sequence analysis and its NMR spectrum suggested that sublancin is a dehydroalanine-containing lantibiotic. A hybridization probe based on the peptide sequence was used to clone the presublancin gene, which encoded a 56-residue polypeptide consisting of a 19-residue leader segment and a 37-residue mature segment. The mature segment contained one serine, one threonine, and five cysteine residues. Alkylation of mature sublancin showed no free sulfhydryl groups, suggesting that one sulfydryl had formed a beta-methyllanthionine bridge with a dehydrobutyrine derived by posttranslational modification of threonine; with the other four cysteines forming two disulfide bridges. It is unprecedented for a lantibiotic to contain a disulfide bridge. The sublancin leader was similar to known type AII lantibiotics, containing a double-glycine motif that is typically recognized by dual-function transporters. A protein encoded immediately downstream from the sublancin gene possessed features of a dual-function ABC transporter with a proteolytic domain and an ATP-binding domain. The antimicrobial activity spectrum of sublancin was like other lantibiotics, inhibiting Gram-positive bacteria but not Gram-negative bacteria; and like the lantibiotics nisin and subtilin in its ability to inhibit both bacterial spore outgrowth and vegetative growth. Sublancin is an extraordinarily stable lantibiotic, showing no degradation or inactivation after being stored in aqueous solution at room temperature for 2 years. The fact that sublancin is a natural product of B. subtilis 168, for which a great deal of genetic information is available, including the entire sequence of its genome, suggests that sublancin will be an especially good model for studying the potential of lantibiotics as sources of novel biomaterials.
Collapse
Affiliation(s)
- S H Paik
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
13
|
Izaguirre G, Hansen JN. Use of alkaline phosphatase as a reporter polypeptide to study the role of the subtilin leader segment and the SpaT transporter in the posttranslational modifications and secretion of subtilin in Bacillus subtilis 168. Appl Environ Microbiol 1997; 63:3965-71. [PMID: 9327561 PMCID: PMC168708 DOI: 10.1128/aem.63.10.3965-3971.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The subtilin leader segment of presubtilin was fused to alkaline phosphatase (AP), which was used as a reporter polypeptide to study the role of the subtilin leader segment in posttranslational modifications during the conversion of presubtilin to subtilin and in the translocation of presubtilin from the cytoplasm of Bacillus subtilis 168 to the extracellular medium. It was observed that the subtilin leader segment could be utilized by a wild-type transporter, but secretion was enhanced if the subtilin transporter was available. The subtilin leader was not cleaved away from the AP component of the precursor until the precursor had been transported to the cell wall, and none of the AP was released into the medium until after cleavage had occurred. The role of SpaT, which is an ABC transporter that has been implicated in subtilin secretion, was explored by making a large in-frame deletion from the central region of SpaT and observing the effect on translocation of the AP reporter. Instead of having an effect on translocation, the deletion disrupted proteolytic cleavage of the subtilin leader segment and release of the AP reporter into the medium. The AP that was secreted by means of the subtilin leader segment had not undergone any posttranslational modifications, as assessed by amino acid composition analysis and enzymatic activity analysis.
Collapse
Affiliation(s)
- G Izaguirre
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
14
|
Lin Y, Hansen JN. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168. J Bacteriol 1995; 177:6874-80. [PMID: 7592481 PMCID: PMC177556 DOI: 10.1128/jb.177.23.6874-6880.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ability to respond to osmotic stress by osmoregulation is common to virtually all living cells. Gram-negative bacteria such as Escherichia coli and Salmonella typhimurium can achieve osmotolerance by import of osmoprotectants such as proline and glycine betaine by an import system encoded in an operon called proU with genes for proteins ProV, ProW, and ProX. In this report, we describe the discovery of a proU-type locus in the gram-positive bacterium Bacillus subtilis. It contains four open reading frames (ProV, ProW, ProX, and ProZ) with homology to the gram-negative ProU proteins, with the B. subtilis ProV, ProW, and ProX proteins having sequence homologies of 35, 29, and 17%, respectively, to the E. coli proteins. The B. subtilis ProZ protein is similar to the ProW protein but is smaller and, accordingly, may fulfill a novel role in osmoprotection. The B. subtilis proU locus was discovered while exploring the chromosomal sequence upstream from the spa operon in B. subtilis LH45, which is a subtilin-producing mutant of B. subtilis 168. B. subtilis LH45 had been previously constructed by transformation of strain 168 with linear DNA from B. subtilis ATCC 6633 (W. Liu and J. N. Hansen, J. Bacteriol. 173:7387-7390, 1991). Hybridization experiments showed that LH45 resulted from recombination in a region of homology in the proV gene, so that the proU locus in LH45 is a chimera between strains 168 and 6633. Despite being a chimera, this proU locus was fully functional in its ability to confer osmotolerance when glycine betaine was available in the medium. Conversely, a mutant (LH45 deltaproU) in which most of the proU locus had been deleted grew poorly at high osmolarity in the presence of glycine betaine. We conclude that the proU-like locus in B. subtilis LH45 is a gram-positive counterpart of the proU locus in gram-negative bacteria and probably evolved prior to the evolutionary split of prokaryotes into gram-positive and gram-negative forms.
Collapse
Affiliation(s)
- Y Lin
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
15
|
Abstract
Nisin is a ribosomally synthesized peptide that has broad-spectrum antibacterial activity, including activity against many bacteria that are food-spoilage pathogens. Nisin is produced as a fermentation product of a food-grade bacterium, and the safety and efficacy of nisin as a food preservative have resulted in its widespread use throughout the world, including the U.S. Nisin is a member of the class of antimicrobial substances known as lantibiotics, so called because they contain the unusual amino acid lanthionine. Lantibiotics, in general, have considerable promise as food preservatives, although only nisin has been sufficiently well characterized to be used for this purpose. As the number of known natural lantibiotics has increased and their useful characteristics have been explored, it has become desirable to synthesize structural analogs of nisin and other lantibiotics that do not occur naturally. The fact that lantibiotics are gene-encoded peptides synthesized by transcription and translation allows structural variants to be generated by mutagenesis. This review focuses on the progress that has been made in the construction and biological expression of genetically engineered nisin structural analogs. For example, a host-vector pair has been engineered that permits the construction of mutants of the structural gene for subtilin, which is a naturally occurring structural analog of nisin. The vector is designed in such a way that the mutant gene can be substituted for the natural subtilin gene in the chromosome of Bacillus subtilis, which in turn directs the transcription, translation, posttranslational modifications, and secretion of the mature form of the structural analog. Several structural analogs have been constructed, and their properties have provided insight into some of the structure-function relationships in lantibiotics, as well as their mechanism of antimicrobial action. These advances are assessed together with potential problems in the future development of nisin analogs as valuable new food preservatives.
Collapse
Affiliation(s)
- J N Hansen
- Department of Chemistry and Biochemistry, College of Life Sciences, University of Maryland, College Park 20742-2021
| |
Collapse
|
16
|
Liu W, Hansen JN. The antimicrobial effect of a structural variant of subtilin against outgrowing Bacillus cereus T spores and vegetative cells occurs by different mechanisms. Appl Environ Microbiol 1993; 59:648-51. [PMID: 8434932 PMCID: PMC202163 DOI: 10.1128/aem.59.2.648-651.1993] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Subtilin is a ribosomally synthesized antimicrobial peptide that contains several unusual amino acids as a result of posttranslational modifications. Site-directed mutagenesis was employed to construct a structural variant of subtilin in which the unusual dehydroalanine (Dha) residue at position 5 was changed to alanine. Proton nuclear magnetic resonance spectroscopy, amino acid composition, and N-terminal sequence analysis established that the mutation did not disrupt posttranslational processing of the precursor peptide. This mutant subtilin was devoid of antimicrobial activity as assessed by its lack of inhibitory effects on outgrowth of Bacillus cereus T spores. However, this same mutant subtilin was fully active with respect to its ability to induce lysis of vegetative B. cereus T cells. Because an intact Dha-5 residue is required in the one instance but not in the other, it was concluded that the molecular mechanism by which subtilin inhibits (without lysis) spore outgrowth is not the same as the mechanism by which it inhibits (with lysis) vegetative cells.
Collapse
Affiliation(s)
- W Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742
| | | |
Collapse
|
17
|
Liu W, Hansen J. Enhancement of the chemical and antimicrobial properties of subtilin by site-directed mutagenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74008-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Chung YJ, Hansen JN. Determination of the sequence of spaE and identification of a promoter in the subtilin (spa) operon in Bacillus subtilis. J Bacteriol 1992; 174:6699-702. [PMID: 1400221 PMCID: PMC207657 DOI: 10.1128/jb.174.20.6699-6702.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An 851-residue open reading frame (ORF) called SpaE has been discovered in the subtilin (spa) operon. Interruption of this ORF with a chloramphenicol acetyltransferase gene destroys the ability of Bacillus subtilis LH45 delta c (a derivative of B. subtilis 168) to produce subtilin, which is an antimicrobial peptide belonging to the class of ribosomally synthesized peptide antibiotics called lantibiotics. SpaE shows strong homology to NisB, which is in the nisin (nis) operon in Lactococcus lactis ATCC 11454. Despite the strong sequence homology between SpaE and NisB, the spaE and nisB genes occupy very different locations in their respective operons, indicating that they have been evolving separately for a long time. Primer extension analysis was employed to identify a promoter upstream from the spaE gene, which appears to define the 5' end of the spa operon, which contains four other ORFs (Y. J. Chung, M. T. Steen, and J. N. Hansen, J. Bacteriol. 174:1417-1422, 1992).
Collapse
Affiliation(s)
- Y J Chung
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742
| | | |
Collapse
|
19
|
Chung YJ, Steen MT, Hansen JN. The subtilin gene of Bacillus subtilis ATCC 6633 is encoded in an operon that contains a homolog of the hemolysin B transport protein. J Bacteriol 1992; 174:1417-22. [PMID: 1735728 PMCID: PMC206441 DOI: 10.1128/jb.174.4.1417-1422.1992] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sequence analysis upstream from the subtilin structural gene (spaS) in Bacillus subtilis ATCC 6633 revealed several open reading frames, SpaB, SpaC, and SpaD. SpaB, consisting of 599 amino acid residues, shows excellent homology with a variety of membrane translocator proteins, such as HlyB from Escherichia coli and some mammalian multidrug resistance proteins. When the spaB gene was interrupted by integration of a chloramphenicol acetyltransferase gene, the ability of the cell to produce subtilin, as determined by a halo assay, was lost. The homology of SpaB to translocator proteins, including transmembrane and ATP-binding regions, suggests that SpaB may play a role in subtilin secretion. The SpaB open reading frame overlaps with another open reading frame called SpaC, and the possibility that the SpaB and SpaC proteins become fused by frameshifting is considered. Regions of homology between SpaD (177 residues) and HlyD were also found, suggesting that SpaD may participate with SpaB in translocation of subtilin through the membrane. Although no readily interpretable homologies to SpaC (442 residues) were found, its sequence suggests that it is membrane associated. The absence of rho-independent transcription terminators between these open reading frames suggests that they are all part of the same operon.
Collapse
Affiliation(s)
- Y J Chung
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742
| | | | | |
Collapse
|