1
|
Riley EP, Schwarz C, Derman AI, Lopez-Garrido J. Milestones in Bacillus subtilis sporulation research. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 8:1-16. [PMID: 33490228 PMCID: PMC7780723 DOI: 10.15698/mic2021.01.739] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.
Collapse
Affiliation(s)
- Eammon P. Riley
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Corinna Schwarz
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Alan I. Derman
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | |
Collapse
|
2
|
Van Brempt M, Clauwaert J, Mey F, Stock M, Maertens J, Waegeman W, De Mey M. Predictive design of sigma factor-specific promoters. Nat Commun 2020; 11:5822. [PMID: 33199691 PMCID: PMC7670410 DOI: 10.1038/s41467-020-19446-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
To engineer synthetic gene circuits, molecular building blocks are developed which can modulate gene expression without interference, mutually or with the host's cell machinery. As the complexity of gene circuits increases, automated design tools and tailored building blocks to ensure perfect tuning of all components in the network are required. Despite the efforts to develop prediction tools that allow forward engineering of promoter transcription initiation frequency (TIF), such a tool is still lacking. Here, we use promoter libraries of E. coli sigma factor 70 (σ70)- and B. subtilis σB-, σF- and σW-dependent promoters to construct prediction models, capable of both predicting promoter TIF and orthogonality of the σ-specific promoters. This is achieved by training a convolutional neural network with high-throughput DNA sequencing data from fluorescence-activated cell sorted promoter libraries. This model functions as the base of the online promoter design tool (ProD), providing tailored promoters for tailored genetic systems.
Collapse
Affiliation(s)
- Maarten Van Brempt
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Jim Clauwaert
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Friederike Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Michiel Stock
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium
| | - Willem Waegeman
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
3
|
Rodriguez Ayala F, Bartolini M, Grau R. The Stress-Responsive Alternative Sigma Factor SigB of Bacillus subtilis and Its Relatives: An Old Friend With New Functions. Front Microbiol 2020; 11:1761. [PMID: 33042030 PMCID: PMC7522486 DOI: 10.3389/fmicb.2020.01761] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.
Collapse
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Micro y Nanotecnología, Instituto de Nanociencia y Nanotecnología - Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Bartolini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Roberto Grau
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
4
|
Bervoets I, Van Brempt M, Van Nerom K, Van Hove B, Maertens J, De Mey M, Charlier D. A sigma factor toolbox for orthogonal gene expression in Escherichia coli. Nucleic Acids Res 2019; 46:2133-2144. [PMID: 29361130 PMCID: PMC5829568 DOI: 10.1093/nar/gky010] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Synthetic genetic sensors and circuits enable programmable control over timing and conditions of gene expression and, as a result, are increasingly incorporated into the control of complex and multi-gene pathways. Size and complexity of genetic circuits are growing, but stay limited by a shortage of regulatory parts that can be used without interference. Therefore, orthogonal expression and regulation systems are needed to minimize undesired crosstalk and allow for dynamic control of separate modules. This work presents a set of orthogonal expression systems for use in Escherichia coli based on heterologous sigma factors from Bacillus subtilis that recognize specific promoter sequences. Up to four of the analyzed sigma factors can be combined to function orthogonally between each other and toward the host. Additionally, the toolbox is expanded by creating promoter libraries for three sigma factors without loss of their orthogonal nature. As this set covers a wide range of transcription initiation frequencies, it enables tuning of multiple outputs of the circuit in response to different sensory signals in an orthogonal manner. This sigma factor toolbox constitutes an interesting expansion of the synthetic biology toolbox and may contribute to the assembly of more complex synthetic genetic systems in the future.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Maarten Van Brempt
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Katleen Van Nerom
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Bob Van Hove
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Jo Maertens
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Mearls EB, Jackter J, Colquhoun JM, Farmer V, Matthews AJ, Murphy LS, Fenton C, Camp AH. Transcription and translation of the sigG gene is tuned for proper execution of the switch from early to late gene expression in the developing Bacillus subtilis spore. PLoS Genet 2018; 14:e1007350. [PMID: 29702640 PMCID: PMC5942855 DOI: 10.1371/journal.pgen.1007350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 12/01/2022] Open
Abstract
A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence—promoter spacing, secondary structure potential of the mRNA, and start codon identity—that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5’ leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore. Global changes in gene expression occur during normal cellular growth and development, as well as during cancer cell transformation and bacterial pathogenesis. In this study we have investigated the molecular mechanisms that drive the switch from early to late developmental gene expression during spore formation by the model bacterium Bacillus subtilis. At early times, gene expression in the developing spore is directed by the transcription factor σF; at later times σF is replaced by σG. An important, yet poorly understood aspect of this σF-to-σG transition is how σG activation is delayed until the early, σF-directed phase of gene expression is complete. Here we have carefully examined expression of the gene encoding σG, sigG, and found that its transcription and translation are ordinarily dampened by several features of its regulatory and coding sequences. Moreover, we have found that this “tuning” of sigG expression is required for proper timing of the switch to σG. These results reframe our understanding of how sigG is regulated during B. subtilis sporulation and, more broadly, advance our understanding of how global changes in gene expression can be precisely executed at the molecular/genetic level.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/physiology
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Inverted Repeat Sequences
- Models, Genetic
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/biosynthesis
- Sigma Factor/genetics
- Signal Transduction
- Spores, Bacterial/genetics
- Spores, Bacterial/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Elizabeth B. Mearls
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Jacquelin Jackter
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | | | - Veronica Farmer
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Allison J. Matthews
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Laura S. Murphy
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Colleen Fenton
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
- * E-mail:
| |
Collapse
|
6
|
Riley EP, Trinquier A, Reilly ML, Durchon M, Perera VR, Pogliano K, Lopez-Garrido J. Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of σ H and σ A. Mol Microbiol 2018; 108:45-62. [PMID: 29363854 DOI: 10.1111/mmi.13916] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 11/27/2022]
Abstract
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA , during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aude Trinquier
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Madeline L Reilly
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marine Durchon
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Varahenage R Perera
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Javier Lopez-Garrido
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
A Membrane-Embedded Amino Acid Couples the SpoIIQ Channel Protein to Anti-Sigma Factor Transcriptional Repression during Bacillus subtilis Sporulation. J Bacteriol 2016; 198:1451-63. [PMID: 26929302 DOI: 10.1128/jb.00958-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED SpoIIQ is an essential component of a channel connecting the developing forespore to the adjacent mother cell during Bacillus subtilis sporulation. This channel is generally required for late gene expression in the forespore, including that directed by the late-acting sigma factor σ(G) Here, we present evidence that SpoIIQ also participates in a previously unknown gene regulatory circuit that specifically represses expression of the gene encoding the anti-sigma factor CsfB, a potent inhibitor of σ(G) The csfB gene is ordinarily transcribed in the forespore only by the early-acting sigma factor σ(F) However, in a mutant lacking the highly conserved SpoIIQ transmembrane amino acid Tyr-28, csfB was also aberrantly transcribed later by σ(G), the very target of CsfB inhibition. This regulation of csfB by SpoIIQ Tyr-28 is specific, given that the expression of other σ(F)-dependent genes was unaffected. Moreover, we identified a conserved element within the csfB promoter region that is both necessary and sufficient for SpoIIQ Tyr-28-mediated inhibition. These results indicate that SpoIIQ is a bifunctional protein that not only generally promotes σ(G)activity in the forespore as a channel component but also specifically maximizes σ(G)activity as part of a gene regulatory circuit that represses σ(G)-dependent expression of its own inhibitor, CsfB. Finally, we demonstrate that SpoIIQ Tyr-28 is required for the proper localization and stability of the SpoIIE phosphatase, raising the possibility that these two multifunctional proteins cooperate to fine-tune developmental gene expression in the forespore at late times. IMPORTANCE Cellular development is orchestrated by gene regulatory networks that activate or repress developmental genes at the right time and place. Late gene expression in the developing Bacillus subtilis spore is directed by the alternative sigma factor σ(G) The activity of σ(G)requires a channel apparatus through which the adjacent mother cell provides substrates that generally support gene expression. Here we report that the channel protein SpoIIQ also specifically maximizes σ(G)activity as part of a previously unknown regulatory circuit that prevents σ(G)from activating transcription of the gene encoding its own inhibitor, the anti-sigma factor CsfB. The discovery of this regulatory circuit significantly expands our understanding of the gene regulatory network controlling late gene expression in the developing B. subtilis spore.
Collapse
|
8
|
Wang X, Rudner DZ. Spatial organization of bacterial chromosomes. Curr Opin Microbiol 2015; 22:66-72. [PMID: 25460798 DOI: 10.1016/j.mib.2014.09.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Bacterial chromosomes are organized in stereotypical patterns that are faithfully and robustly regenerated in daughter cells. Two distinct spatial patterns were described almost a decade ago in our most tractable model organisms. In recent years, analysis of chromosome organization in a larger and more diverse set of bacteria and a deeper characterization of chromosome dynamics in the original model systems have provided a broader and more complete picture of both chromosome organization and the activities that generate the observed spatial patterns. Here, we summarize these different patterns highlighting similarities and differences and discuss the protein factors that help establish and maintain them.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Traag BA, Ramirez-Peralta A, Wang Erickson AF, Setlow P, Losick R. A novel RNA polymerase-binding protein controlling genes involved in spore germination in Bacillus subtilis. Mol Microbiol 2013; 89:113-22. [PMID: 23678950 DOI: 10.1111/mmi.12262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 01/17/2023]
Abstract
A growing class of proteins regulates transcription through interaction with DNA-dependent RNA polymerase. Here we report that a recently identified, highly conserved sporulation gene ylyA encodes a novel RNA polymerase-binding protein that influences the expression of genes under the control of the late-acting, sporulation sigma factor σ(G) in Bacillus subtilis. Spores from a ylyA mutant exhibited defects in germination corresponding to changes in the levels of membrane receptors for spore germinants and a protein channel governing the release of dipicolinic acid and hydration of the spore core during germination. Purified YlyA interacted with RNA polymerase and stimulated transcription from promoters dependent on σ(G) but not promoters dependent on the housekeeping sigma factor σ(A) . YlyA is a previously unrecognized RNA polymerase-binding protein that is dedicated to modulating the expression of genes involved in spore germination.
Collapse
Affiliation(s)
- Bjorn A Traag
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
10
|
Coupling of σG activation to completion of engulfment during sporulation of Bacillus subtilis survives large perturbations to DNA translocation and replication. J Bacteriol 2012; 194:6264-71. [PMID: 22984259 DOI: 10.1128/jb.01470-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spore formation in Bacillus subtilis is characterized by activation of RNA polymerase sigma factors, including the late-expressed σ(G). During spore formation an asymmetric division occurs, yielding the smaller prespore and the larger mother cell. At division, only 30% of the chromosome is in the prespore, and the rest is then translocated into the prespore. Following completion of engulfment of the prespore by the mother cell, σ(G) is activated in the prespore. Here we tested the link between engulfment and σ(G) activation by perturbing DNA translocation and replication, which are completed before engulfment. One approach was to have large DNA insertions in the chromosome; the second was to have an impaired DNA translocase; the third was to use a strain in which the site of termination of chromosome replication was relocated. Insertion of 2.3 Mb of Synechocystis DNA into the B. subtilis genome had the largest effect, delaying engulfment by at least 90 min. Chromosome translocation was also delayed and was completed shortly before the completion of engulfment. Despite the delay, σ(G) became active only after the completion of engulfment. All results are consistent with a strong link between completion of engulfment and σ(G) activation. They support a link between completion of chromosome translocation and completion of engulfment.
Collapse
|
11
|
Germination protein levels and rates of germination of spores of Bacillus subtilis with overexpressed or deleted genes encoding germination proteins. J Bacteriol 2012; 194:3156-64. [PMID: 22493018 DOI: 10.1128/jb.00405-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of Bacillus subtilis spores' GerA germinant receptor (GR) had no effect on spore germination via the GerB plus GerK GRs, and loss of GerB plus GerK did not affect germination via GerA. Loss of one or two GRs also did not affect levels of GRs that were not deleted. Overexpression of GRs 5- to 18-fold increased rates of germination via the overexpressed GR and slowed germination by other GRs up to 15-fold. However, overexpression of one or two GRs had no effect on levels of GRs that were not overexpressed. These results suggest that either interaction between different GRs reduces the activity of GRs in triggering spore germination or all GRs compete for interaction with a limiting amount of a downstream signaling molecule in the germination pathway. Overexpression or deletion of GRs also had no effect on spores' levels of the GerD protein needed for normal GR-dependent germination or of the SpoVAD protein likely involved in dipicolinic acid release early in germination. Loss of GerD also had no effect on levels of GRs or SpoVAD. Spores of a strain lacking the only B. subtilis prelipoprotein diacylglycerol transferase, GerF, also had no detectable GerD or the GerA's C subunit, both of which are most likely lipoproteins; GerA's A subunit was also absent. However, levels of GerB's C subunit, also almost certainly a lipoprotein, and GerK's A subunit were normal in gerF spores. These results with gerF spores were consistent with effects of loss of GerF on spore germination by different GRs.
Collapse
|
12
|
Fajardo-Cavazos P, Waters SM, Schuerger AC, George S, Marois JJ, Nicholson WL. Evolution of Bacillus subtilis to enhanced growth at low pressure: up-regulated transcription of des-desKR, encoding the fatty acid desaturase system. ASTROBIOLOGY 2012; 12:258-270. [PMID: 22416764 DOI: 10.1089/ast.2011.0728] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The atmospheric pressure on Mars ranges from 1-10 mbar, about 1% of Earth pressure (∼1013 mbar). Low pressure is a growth-inhibitory factor for terrestrial microorganisms on Mars, and a putative low-pressure barrier for growth of Earth bacteria of ∼25 mbar has been postulated. In a previous communication, we described the isolation of a strain of Bacillus subtilis that had evolved enhanced growth ability at the near-inhibitory low pressure of 50 mbar. To explore mechanisms that enabled growth of the low-pressure-adapted strain, numerous genes differentially transcribed between the ancestor strain WN624 and low-pressure-evolved strain WN1106 at 50 mbar were identified by microarray analysis. Among these was a cluster of three candidate genes (des, desK, and desR), whose mRNA levels in WN1106 were higher than the ancestor on the microarrays. Up-regulation of these genes was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The des, desK, and desR genes encode the Des membrane fatty acid (FA) desaturase, the DesK sensor kinase, and the DesR response regulator, respectively, which function to maintain membrane fluidity in acute response to temperature downshift. Pressure downshift caused an up-regulation of des mRNA levels only in WN1106, but expression of a des-lacZ transcriptional fusion was unaffected, which suggests that des regulation was different in response to temperature versus pressure downshift. Competition experiments showed that inactivation of the des gene caused a slight, but statistically significant, loss of fitness of strain WN1106 at 50 mbar. Further, analysis of membrane FA composition of cells grown at 1013 versus 50 mbar revealed a decrease in the ratio of unsaturated to saturated FAs but an increase in the ratio of anteiso- to iso-FAs. The present study represents a first step toward identification of molecular mechanisms by which B. subtilis could sense and respond to the novel environmental stress of low pressure.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida, Kennedy Space Center, 32899, USA
| | | | | | | | | | | |
Collapse
|
13
|
Serrano M, Real G, Santos J, Carneiro J, Moran CP, Henriques AO. A negative feedback loop that limits the ectopic activation of a cell type-specific sporulation sigma factor of Bacillus subtilis. PLoS Genet 2011; 7:e1002220. [PMID: 21935351 PMCID: PMC3174212 DOI: 10.1371/journal.pgen.1002220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/18/2011] [Indexed: 11/18/2022] Open
Abstract
Two highly similar RNA polymerase sigma subunits, σF and σG, govern the early and late phases of forespore-specific gene expression during spore differentiation in Bacillus subtilis. σF drives synthesis of σG but the latter only becomes active once engulfment of the forespore by the mother cell is completed, its levels rising quickly due to a positive feedback loop. The mechanisms that prevent premature or ectopic activation of σG while discriminating between σF and σG in the forespore are not fully comprehended. Here, we report that the substitution of an asparagine by a glutamic acid at position 45 of σG (N45E) strongly reduced binding by a previously characterized anti-sigma factor, CsfB (also known as Gin), in vitro, and increased the activity of σG in vivo. The N45E mutation caused the appearance of a sub-population of pre-divisional cells with strong activity of σG. CsfB is normally produced in the forespore, under σF control, but sigGN45E mutant cells also expressed csfB and did so in a σG-dependent manner, autonomously from σF. Thus, a negative feedback loop involving CsfB counteracts the positive feedback loop resulting from ectopic σG activity. N45 is invariant in the homologous position of σG orthologues, whereas its functional equivalent in σF proteins, E39, is highly conserved. While CsfB does not bind to wild-type σF, a E39N substitution in σF resulted in efficient binding of CsfB to σF. Moreover, under certain conditions, the E39N alteration strongly restrains the activity of σF in vivo, in a csfB-dependent manner, and the efficiency of sporulation. Therefore, a single amino residue, N45/E39, is sufficient for the ability of CsfB to discriminate between the two forespore-specific sigma factors in B. subtilis. Positive auto-regulation of a transcriptional activator during cell differentiation or development often allows the rapid and robust deployment of cell- and stage-specific genes and the routing of the differentiating cell down a specific path. Positive auto-regulation however, raises the potential for inappropriate activity of the transcription factor. Here we unravel the role of a previously characterized anti-sigma factor, CsfB, in a negative feedback loop that prevents ectopic expression of the sporulation-specific sigma factor σG of Bacillus subtilis. σG is activated in the forespore, one of the two chambers of the developing cell, at an intermediate stage in spore development. Once active, a positive feedback loop allows the rapid accumulation of σG. Synthesis of both σG and CsfB is under the control of the early forespore regulator σF, and CsfB may help prevent the premature activity of σG in the forespore. However, CsfB is also produced under σG control in non-sporulating cells, setting a negative feedback loop that we show limits its ectopic activation. We further show that an asparagine residue conserved among σG orthologues is critical for binding and inhibition by CsfB, whereas the exclusion of asparagine from the homologous position in σF confers immunity to CsfB.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gonçalo Real
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Joana Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Charles P. Moran
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
14
|
A small protein required for the switch from {sigma}F to {sigma}G during sporulation in Bacillus subtilis. J Bacteriol 2010; 193:116-24. [PMID: 21037003 DOI: 10.1128/jb.00949-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cascade of alternative sigma factors governs the program of developmental gene expression during sporulation in Bacillus subtilis. Little is known, however, about how the early-acting sigma factors are inactivated and replaced by the later-acting factors. Here we identify a small protein, Fin (formerly known as YabK), that is required for efficient switching from σ(F)- to σ(G)-directed gene expression in the forespore compartment of the developing sporangium. The fin gene, which is conserved among Bacillus species and species of related genera, is transcribed in the forespore under the control of both σ(F) and σ(G). Cells mutant for fin are unable to fully deactivate σ(F) and, conversely, are unable to fully activate σ(G). Consistent with their deficiency in σ(G)-directed gene expression, fin cells are arrested in large numbers following the engulfment stage of sporulation, ultimately forming 50-fold fewer heat-resistant spores than the wild type. Based in part on the similarity of Fin to the anti-σ(G) factor CsfB (also called Gin), we speculate that Fin is an anti-σ(F) factor which, by disabling σ(F), promotes the switch to late developmental gene expression in the forespore.
Collapse
|
15
|
Abstract
Spore formation in Bacillus subtilis is a superb experimental system with which to study some of the most fundamental problems of cellular development and differentiation. Work begun in the 1980s and ongoing today has led to an impressive understanding of the temporal and spatial regulation of sporulation, and the functions of many of the several hundred genes involved. Early in sporulation the cells divide in an unusual asymmetrical manner, to produce a small prespore cell and a much larger mother cell. Aside from developmental biology, this modified division has turned out to be a powerful system for investigation of cell cycle mechanisms, including the components of the division machine, how the machine is correctly positioned in the cell, and how division is coordinated with replication and segregation of the chromosome. Insights into these fundamental mechanisms have provided opportunities for the discovery and development of novel antibiotics. This review summarizes how the bacterial cell cycle field has developed over the last 20 or so years, focusing on opportunities emerging from the B. subtilis system.
Collapse
Affiliation(s)
- Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| |
Collapse
|
16
|
Camp AH, Losick R. A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev 2009; 23:1014-24. [PMID: 19390092 DOI: 10.1101/gad.1781709] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spore formation by Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of intercellular communication. One pathway, which couples the activation of the forespore transcription factor sigma(G) to the action of sigma(E) in the mother cell, has remained mysterious. Traditional models hold that sigma(E) initiates a signal transduction pathway that specifically activates sigma(G) in the forespore. Recent experiments indicating that the mother cell and forespore are joined by a channel have led to the suggestion that a specific regulator of sigma(G) is transported from the mother cell into the forespore. As we report here, however, the requirement for the channel is not limited to sigma(G). Rather, it is also required for the persistent activity of the early-acting forespore transcription factor sigma(F) as well as that of a heterologous RNA polymerase (that of phage T7). We infer that macromolecular synthesis in the forespore becomes dependent on the channel at intermediate stages of development. We propose that the channel is a gap junction-like feeding tube through which the mother cell nurtures the developing spore by providing small molecules needed for biosynthetic activity, including sigma(G)-directed gene activation.
Collapse
Affiliation(s)
- Amy H Camp
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachustts 02138, USA
| | | |
Collapse
|
17
|
Processing of a membrane protein required for cell-to-cell signaling during endospore formation in Bacillus subtilis. J Bacteriol 2008; 190:7786-96. [PMID: 18820020 DOI: 10.1128/jb.00715-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the late prespore-specific RNA polymerase sigma factor sigma(G) during Bacillus subtilis sporulation coincides with completion of the engulfment process, when the prespore becomes a protoplast fully surrounded by the mother cell cytoplasm and separated from it by a double membrane system. Activation of sigma(G) also requires expression of spoIIIJ, coding for a membrane protein translocase of the YidC/Oxa1p/Alb3 family, and of the mother cell-specific spoIIIA operon. Here we present genetic and biochemical evidence indicating that SpoIIIAE, the product of one of the spoIIIA cistrons, and SpoIIIJ interact in the membrane, thereby linking the function of the spoIIIJ and spoIIIA loci in the activation of sigma(G). We also show that SpoIIIAE has a functional Sec-type signal peptide, which is cleaved during sporulation. Furthermore, mutations that reduce or eliminate processing of the SpoIIIAE signal peptide arrest sporulation following engulfment completion and prevent activation of sigma(G). SpoIIIJ-type proteins can function in cooperation with or independently of the Sec system. In one model, SpoIIIJ interacts with SpoIIIAE in the context of the Sec translocon to promote its correct localization and/or topology in the membrane, so that it can signal the activation of sigma(G) following engulfment completion.
Collapse
|
18
|
Camp AH, Losick R. A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol Microbiol 2008; 69:402-17. [PMID: 18485064 DOI: 10.1111/j.1365-2958.2008.06289.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
During spore formation in Bacillus subtilis, sigma(E)-directed gene expression in the mother-cell compartment of the sporangium triggers the activation of sigma(G) in the forespore by a pathway of intercellular signalling that is composed of multiple proteins of unknown function. Here, we confirm that the vegetative protein SpoIIIJ, the forespore protein SpoIIQ and eight membrane proteins (SpoIIIAA through SpoIIIAH) produced in the mother cell under the control of sigma(E) are ordinarily required for intercellular signalling. In contrast, an anti-sigma(G) factor previously implicated in the pathway is shown to be dispensable. We also present evidence suggesting that SpoIIIJ is a membrane protein translocase that facilitates the insertion of SpoIIIAE into the membrane. In addition, we report the isolation of a mutation that partially bypasses the requirement for SpoIIIJ and for SpoIIIAA through SpoIIIAG, but not for SpoIIIAH or SpoIIQ, in the activation of sigma(G). We therefore propose that under certain genetic conditions, SpoIIIAH and SpoIIQ can constitute a minimal pathway for the activation of sigma(G). Finally, based on the similarity of SpoIIIAH to a component of type III secretion systems, we speculate that signalling is mediated by a channel that links the mother cell to the forespore.
Collapse
Affiliation(s)
- Amy H Camp
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
19
|
Chary VK, Xenopoulos P, Piggot PJ. Blocking chromosome translocation during sporulation of Bacillus subtilis can result in prespore-specific activation of sigmaG that is independent of sigmaE and of engulfment. J Bacteriol 2006; 188:7267-73. [PMID: 17015665 PMCID: PMC1636243 DOI: 10.1128/jb.00744-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of spores by Bacillus subtilis is characterized by cell compartment-specific gene expression directed by four RNA polymerase sigma factors, which are activated in the order sigma(F)-sigma(E)-sigma(G)-sigma(K). Of these, sigma(G) becomes active in the prespore upon completion of engulfment of the prespore by the mother cell. Transcription of the gene encoding sigma(G), spoIIIG, is directed in the prespore by RNA polymerase containing sigma(F) but also requires the activity of sigma(E) in the mother cell. When first formed, sigma(G) is not active. Its activation requires expression of additional sigma(E)-directed genes, including the genes required for completion of engulfment. Here we report conditions in which sigma(G) becomes active in the prespore in the absence of sigma(E) activity and of completion of engulfment. The conditions are (i) having an spoIIIE mutation, so that only the origin-proximal 30% of the chromosome is translocated into the prespore, and (ii) placing spoIIIG in an origin-proximal location on the chromosome. The main function of the sigma(E)-directed regulation appears to be to coordinate sigma(G) activation with the completion of engulfment, not to control the level of sigma(G) activity. It seems plausible that the role of sigma(E) in sigma(G) activation is to reverse some inhibitory signal (or signals) in the engulfed prespore, a signal that is not present in the spoIIIE mutant background. It is not clear what the direct activator of sigma(G) in the prespore is. Competition for core RNA polymerase between sigma(F) and sigma(G) is unlikely to be of major importance.
Collapse
Affiliation(s)
- Vasant K Chary
- Department of Microbiology and Immunology, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
20
|
Igarashi T, Setlow P. Transcription of the Bacillus subtilis gerK operon, which encodes a spore germinant receptor, and comparison with that of operons encoding other germinant receptors. J Bacteriol 2006; 188:4131-6. [PMID: 16707705 PMCID: PMC1482912 DOI: 10.1128/jb.00265-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gerA, gerB, and gerK operons, which encode germinant receptors in spores of Bacillus subtilis, were transcribed only in sporulation, and their mRNA levels peaked initially approximately 3 h before the initiation of accumulation of the spore's dipicolinic acid. After a rapid fall, levels of these mRNAs peaked again approximately 5 h later. In one wild-type strain (PS832), gerA mRNA was the most abundant, with levels of gerB and gerK mRNAs approximately 50% of that of gerA mRNA, whereas gerB mRNA was the most abundant in another wild-type strain (PY79). The synthesis of gerK mRNA in sporulation was abolished by loss of the forespore-specific RNA polymerase sigma factor, sigma(G), and induction of sigma(G) synthesis in vegetative cells led to synthesis of gerK mRNA. SpoVT, a regulator of sigma(G)-dependent gene expression, repressed gerK expression. The gerK promoter showed sequence similarities to sigma(G)-dependent promoters, and deletion of elements of this putative promoter abolished gerK expression in sporulation.
Collapse
Affiliation(s)
- Takao Igarashi
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | |
Collapse
|
21
|
Jiang X, Rubio A, Chiba S, Pogliano K. Engulfment-regulated proteolysis of SpoIIQ: evidence that dual checkpoints control sigma activity. Mol Microbiol 2006; 58:102-15. [PMID: 16164552 PMCID: PMC2885156 DOI: 10.1111/j.1365-2958.2005.04811.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During Bacillus subtilis sporulation, the engulfment checkpoint is thought to directly regulate late forespore transcription but to indirectly regulate late mother cell transcription, via the sigmaG-produced protease SpoIVB. We here demonstrate that SpoIIQ is subject to sigmaG-independent, but engulfment-dependent, proteolysis that depends on SpoIVB. Thus, SpoIVB produced before engulfment supports some SpoIVB-dependent events, suggesting that its activity or access to substrates must be regulated by engulfment. Furthermore, a mutation (bofA) that allows sigmaK to be active without sigmaG does not allow sigmaK activity in engulfment mutants, although the pro-sigmaK processing enzyme (SpoIVFB) is localized to the septum in engulfment mutants, suggesting that engulfment comprises a second checkpoint for sigmaK Finally, we find that SpoIIQ and another protein required for sigmaG activity (SpoIIIAH), which directly interact and assemble helical structures around the forespore, recruit the sigmaK-processing enzyme SpoIVFB to the forespore and these structures. We suggest that these foci serve a synapse-like role, allowing engulfment to simultaneously control both sigmaG and sigmaK, and integrating multiple checkpoints and signalling pathways.
Collapse
Affiliation(s)
| | | | | | - Kit Pogliano
- For correspondence. ; Tel. (+1) 858 822 1314; Fax (+1) 858 822 1431
| |
Collapse
|
22
|
Wang ST, Setlow B, Conlon EM, Lyon JL, Imamura D, Sato T, Setlow P, Losick R, Eichenberger P. The Forespore Line of Gene Expression in Bacillus subtilis. J Mol Biol 2006; 358:16-37. [PMID: 16497325 DOI: 10.1016/j.jmb.2006.01.059] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/13/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Endospore formation by Bacillus subtilis involves three differentiating cell types, the predivisional cell, the mother cell, and the forespore. Here we report the program of gene expression in the forespore, which is governed by the RNA polymerase sigma factors sigma(F) and sigma(G) and the DNA-binding proteins RsfA and SpoVT. The sigma(F) factor turns on about 48 genes, including the gene for RsfA, which represses a gene in the sigma(F) regulon, and the gene for sigma(G). The sigma(G) factor newly activates 81 genes, including the gene for SpoVT, which turns on (in nine cases) or stimulates (in 11 cases) the expression of 20 genes that had been turned on by sigma(G) and represses the expression of 27 others. The forespore line of gene expression consists of many genes that contribute to morphogenesis and to the resistance and germination properties of the spore but few that have metabolic functions. Comparative genomics reveals a core of genes in the sigma(F) and sigma(G) regulons that are widely conserved among endospore-forming species but are absent from closely related, but non-spore-forming Listeria spp. Two such partially conserved genes (ykoU and ykoV), which are members of the sigma(G) regulon, are shown to confer dry-heat resistance to dormant spores. The ykoV gene product, a homolog of the non-homologous end-joining protein Ku, is shown to associate with the nucleoid during germination. Extending earlier work on gene expression in the predivisional cell and the mother cell, we present an integrated overview of the entire program of sporulation gene expression.
Collapse
Affiliation(s)
- Stephanie T Wang
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Loconto J, Viswanathan P, Nowak SJ, Gloudemans M, Kroos L. Identification of the omega4406 regulatory region, a developmental promoter of Myxococcus xanthus, and a DNA segment responsible for chromosomal position-dependent inhibition of gene expression. J Bacteriol 2005; 187:4149-62. [PMID: 15937177 PMCID: PMC1151744 DOI: 10.1128/jb.187.12.4149-4162.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When starved, Myxococcus xanthus cells send signals to each other that coordinate their movements, gene expression, and differentiation. C-signaling requires cell-cell contact, and increasing contact brought about by cell alignment in aggregates is thought to increase C-signaling, which induces expression of many genes, causing rod-shaped cells to differentiate into spherical spores. C-signaling involves the product of the csgA gene. A csgA mutant fails to express many genes that are normally induced after about 6 h into the developmental process. One such gene was identified by insertion of Tn5 lac at site omega4406 in the M. xanthus chromosome. Tn5 lac fused transcription of lacZ to the upstream omega4406 promoter. In this study, the omega4406 promoter region was identified by analyzing mRNA and by testing different upstream DNA segments for the ability to drive developmental lacZ expression in M. xanthus. The 5' end of omega4406 mRNA mapped to approximately 1.3 kb upstream of the Tn5 lac insertion. A 1.0-kb DNA segment from 0.8 to 1.8 kb upstream of the Tn5 lac insertion, when fused to lacZ and integrated at a phage attachment site in the M. xanthus chromosome, showed a similar pattern of developmental expression as Tn5 lac Omega4406. The DNA sequence upstream of the putative transcriptional start site was strikingly similar to promoter regions of other C-signal-dependent genes. Developmental lacZ expression from the 1.0-kb segment was abolished in a csgA mutant but was restored upon codevelopment of the csgA mutant with wild-type cells, which supply C-signal, demonstrating that the omega4406 promoter responds to extracellular C-signaling. Interestingly, the 0.8-kb DNA segment immediately upstream of Tn5 lac omega4406 inhibited expression of a downstream lacZ reporter in transcriptional fusions integrated at a phage attachment site in the chromosome but not at the normal omega4406 location. To our knowledge, this is the first example in M. xanthus of a chromosomal position-dependent effect on gene expression attributable to a DNA segment outside the promoter region.
Collapse
Affiliation(s)
- Jennifer Loconto
- Department of Biochemistry, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
24
|
Errington J, Murray H, Wu LJ. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos Trans R Soc Lond B Biol Sci 2005; 360:497-505. [PMID: 15897175 PMCID: PMC1569464 DOI: 10.1098/rstb.2004.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial cells are much smaller and have a much simpler overall structure and organization than eukaryotes. Several prominent differences in cell organization are relevant to the mechanisms of chromosome segregation, particularly the lack of an overt chromosome condensation/decondensation cycle and the lack of a microtubule-based spindle. Although bacterial chromosomes have a rather dispersed appearance, they nevertheless have an underlying high level of spatial organization. During the DNA replication cycle, early replicated (oriC) regions are localized towards the cell poles, whereas the late replicated terminus (terC) region is medially located. This spatial organization is thought to be driven by an active segregation mechanism that separates the sister chromosomes continuously as replication proceeds. Comparisons of various well-characterized bacteria suggest that the mechanisms of chromosome segregation are likely to be diverse, and that in many bacteria, multiple overlapping mechanisms may contribute to efficient segregation. One system in which the molecular mechanisms of chromosome segregation are beginning to be elucidated is that of sporulating cells of Bacillus subtilis. The key components of this system have been identified, and their functions are understood, in outline. Although this system appears to be specialized, most of the functions are conserved widely throughout the bacteria.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
25
|
Igarashi T, Setlow P. Interaction between individual protein components of the GerA and GerB nutrient receptors that trigger germination of Bacillus subtilis spores. J Bacteriol 2005; 187:2513-8. [PMID: 15774895 PMCID: PMC1065238 DOI: 10.1128/jb.187.7.2513-2518.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Germination of Bacillus subtilis spores via the GerA nutrient receptor was suppressed by GerAC lacking the diacylglycerylated cysteine essential for receptor function. Overexpression of the C protein of the GerB nutrient receptor also suppressed the function of both the GerA receptor and a variant GerB receptor, GerB*. These findings suggest that GerAC and GerBC interact with their respective A and B proteins in GerA or GerB receptors and that GerBC potentially interacts with GerAA-GerAB. However, GerAC did not appear to interact with GerBA-GerBB.
Collapse
Affiliation(s)
- Takao Igarashi
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA.
| | | |
Collapse
|
26
|
Cowan AE, Koppel DE, Setlow B, Setlow P. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc Natl Acad Sci U S A 2003; 100:4209-14. [PMID: 12646705 PMCID: PMC404470 DOI: 10.1073/pnas.0636762100] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Indexed: 11/18/2022] Open
Abstract
Fluorescence redistribution after photobleaching has been used to show that a cytoplasmic GFP fusion is immobile in dormant spores of Bacillus subtilis but becomes freely mobile in germinated spores in which cytoplasmic water content has increased approximately 2-fold. The GFP immobility in dormant spores is not due to the high levels of dipicolinic acid in the spore cytoplasm, because GFP was also immobile in germinated cwlD spores that had excreted their dipicolinic acid but where cytoplasmic water content had only increased to a level similar to that in dormant spores of several other Bacillus species. The immobility of a normally mobile protein in dormant wild-type spores and germinated cwlD spores is consistent with the lack of metabolism and enzymatic activity in these spores and suggests that protein immobility, presumably due to low water content, is a major reason for the metabolic dormancy of spores of Bacillus species.
Collapse
Affiliation(s)
- Ann E Cowan
- Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
27
|
Chary VK, Piggot PJ. Postdivisional synthesis of the Sporosarcina ureae DNA translocase SpoIIIE either in the mother cell or in the prespore enables Bacillus subtilis to translocate DNA from the mother cell to the prespore. J Bacteriol 2003; 185:879-86. [PMID: 12533463 PMCID: PMC142829 DOI: 10.1128/jb.185.3.879-886.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The differentiation of vegetative cells of Bacillus subtilis into spores involves asymmetric cell division, which precedes complete chromosome partitioning. The DNA translocase SpoIIIE is required to translocate the origin distal 70% of the chromosome from the larger mother cell into the smaller prespore, the two cells that result from the division. We have tested the effect of altering the time and location of SpoIIIE synthesis on spore formation. We have expressed the spoIIIE homologue from Sporosarcina ureae in B. subtilis under the control of different promoters. Expression from either a weak mother cell-specific (sigma(E)) promoter or a weak prespore-specific (sigma(F)) promoter partly complemented the sporulation defect of a spoIIIE36 mutant; however, expression from a strong prespore-specific (sigma(F)) promoter did not. DNA translocation from the mother cell to the prespore was assayed using spoIIQ-lacZ inserted at thrC; transcription of spoIIQ occurs only in the prespore. Translocation of thrC::spoIIQ-lacZ into the prespore occurred efficiently when spoIIIE(Su) was expressed from the weak sigma(E)- or sigma(F)-controlled promoters but not when it was expressed from the strong sigma(F)-controlled promoter. It is speculated that the mechanism directing SpoIIIE insertion into the septum in the correct orientation may accommodate slow postseptational, prespore-specific SpoIIIE synthesis but may be swamped by strong prespore-specific synthesis.
Collapse
Affiliation(s)
- Vasant K Chary
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
28
|
Abstract
Certain species of Gram-positive bacteria can initiate a developmental program that results in the formation of two daughter cells with different fates. One cell develops into a spore and the other cell undergoes programmed lysis, with each process being mediated by a cascade of cell-type-specific transcription factors. An early and critical step in this developmental pathway is the formation of a division septum near one pole, creating two compartments of different sizes. But how is this morphological asymmetry translated into the transcriptional asymmetry of the two compartments? Recent results suggest that the chromosomal position of the genes encoding several key components of the transcriptional regulatory network has an important role in this process.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Molecular and Cellular Biology, The Biological Laboratories, 16 Divinity Avenue, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
29
|
Abstract
Spore formation in Bacillus subtilis involves a switch in the site of cell division from the midcell to a polar position. Both medial division and polar division are mediated in part by the actin-like, cytokinetic protein FtsA. We report the isolation of an FtsA mutant (FtsA(D265G)) that is defective in sporulation but is apparently unimpaired in vegetative growth. Sporulating cells of the mutant reach the stage of asymmetric division but are partially blocked in the subsequent morphological process of engulfment. As judged by fluorescence microscopy and electron microscopy, the FtsA(D265G) mutant produces normal-looking medial septa but immature (abnormally thin) polar septa. The mutant was unimpaired in transcription under the control of Spo0A, the master regulator for entry into sporulation, but was defective in transcription under the control of sigmaF, a regulatory protein whose activation is known to depend on polar division. An amino acid substitution at a residue (Y264) adjacent to D265 also caused a defect in sporulation. D265 and Y264 are conserved among endospore-forming bacteria, raising the possibility that these residues are involved in a sporulation-specific protein interaction that facilitates maturation of the sporulation septum and the activation of sigmaF.
Collapse
Affiliation(s)
- Jennifer T Kemp
- The Biological Laboratories, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
30
|
Kanamaru K, Stephenson S, Perego M. Overexpression of the PepF oligopeptidase inhibits sporulation initiation in Bacillus subtilis. J Bacteriol 2002; 184:43-50. [PMID: 11741842 PMCID: PMC134765 DOI: 10.1128/jb.184.1.43-50.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yjbG gene encoding the homologue of the PepF1 and PepF2 oligoendopeptidases of Lactococcus lactis (Monnet et al., J. Biol. Chem. 269:32070-32076, 1994; Nardi et al., J. Bacteriol. 179:4164-4171, 1997) has been identified in Bacillus subtilis as an inhibitor of sporulation initiation when present in the cells on a multicopy plasmid. Genetic analysis suggested that the inhibitory effect is due to hydrolysis of the PhrA peptide in a form as small as the pentapeptide (ARNQT). Inactivation of PhrA results in deregulation of the RapA phosphatase and thus dephosphorylation of the Spo0F approximately P response regulator component of the phosphorelay for sporulation initiation. When overexpressed, the B. subtilis PepF is most likely hydrolyzing additional peptides of the Phr family, as is the case for PhrC involved in control of competence development. Chromosomal inactivation of the yjbG/pepF gene did not give rise to any detectable phenotype. The function of PepF in B. subtilis remains unknown. Limited experiments with a yjbG paralogue called yusX indicated that a frameshift is present, making the corresponding gene product inactive.
Collapse
Affiliation(s)
- Kyoko Kanamaru
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
31
|
Abstract
The activity of the transcription factor sigmaF is confined to one (the forespore) of two cells created by asymmetric division during sporulation in B. subtilis. We show that sigmaF activation is partly governed by the position of the gene for the unstable anti-sigmaF factor SpoIIAB. Because cytokinesis precedes chromosome segregation, most of the chromosome is translocated into the forespore after division. We hypothesize that because spoIIAB enters the forespore late, SpoIIAB lost to proteolysis is temporarily not replenished. Thus, chromosome asymmetry would be translated into the asymmetric distribution of SpoIIAB. Supporting this idea, transposition of spoIIAB to sites present in the forespore at the time of division impaired sporulation when a second pathway that participates in sigmaF activation was disabled.
Collapse
Affiliation(s)
- J Dworkin
- Department of Molecular and Cellular Biology, The Biological Laboratories, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
32
|
Amaya E, Khvorova A, Piggot PJ. Analysis of promoter recognition in vivo directed by sigma(F) of Bacillus subtilis by using random-sequence oligonucleotides. J Bacteriol 2001; 183:3623-30. [PMID: 11371526 PMCID: PMC95239 DOI: 10.1128/jb.183.12.3623-3630.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of spores from vegetative bacteria by Bacillus subtilis is a primitive system of cell differentiation. Critical to spore formation is the action of a series of sporulation-specific RNA polymerase sigma factors. Of these, sigma(F) is the first to become active. Few genes have been identified that are transcribed by RNA polymerase containing sigma(F) (E-sigma(F)), and only two genes of known function are exclusively under the control of E-sigma(F), spoIIR and spoIIQ. In order to investigate the features of promoters that are recognized by E-sigma(F), we studied the effects of randomizing sequences for the -10 and -35 regions of the promoter for spoIIQ. The randomized promoter regions were cloned in front of a promoterless copy of lacZ in a vector designed for insertion by double crossover of single copies of the promoter-lacZ fusions into the amyE region of the B. subtilis chromosome. This system made it possible to test for transcription of lacZ by E-sigma(F) in vivo. The results indicate a weak sigma(F)-specific -10 consensus, GG/tNNANNNT, of which the ANNNT portion is common to all sporulation-associated sigma factors, as well as to sigma(A). There was a rather stronger -35 consensus, GTATA/T, of which GNATA is also recognized by other sporulation-associated sigma factors. The looseness of the sigma(F) promoter requirement contrasts with the strict requirement for sigma(A)-directed promoters of B. subtilis. It suggests that additional, unknown, parameters may help determine the specificity of promoter recognition by E-sigma(F) in vivo.
Collapse
Affiliation(s)
- E Amaya
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
33
|
Thomaides HB, Freeman M, El Karoui M, Errington J. Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 2001; 15:1662-73. [PMID: 11445541 PMCID: PMC312724 DOI: 10.1101/gad.197501] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DivIVA is a coiled-coil, tropomyosin-like protein of Gram-positive bacteria. Previous work showed that this protein is targeted to division sites and retained at the cell poles after division. In vegetative cells, DivIVA sequesters the MinCD division inhibitor to the cell poles, thereby helping to direct cell division to the correct midcell site. We now show that DivIVA has a second, quite separate role in sporulating cells of Bacillus subtilis. It again acts at the cell pole but in this case interacts with the chromosome segregation machinery to help position the oriC region of the chromosome at the cell pole, in preparation for polar division. We isolated mutations in divIVA that separate the protein's role in sporulation from its vegetative function in cell division. DivIVA therefore appears to be a bifunctional protein with distinct roles in division-site selection and chromosome segregation.
Collapse
Affiliation(s)
- H B Thomaides
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
34
|
Adler E, Barák I, Stragier P. Bacillus subtilis locus encoding a killer protein and its antidote. J Bacteriol 2001; 183:3574-81. [PMID: 11371520 PMCID: PMC95233 DOI: 10.1128/jb.183.12.3574-3581.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2001] [Accepted: 03/30/2001] [Indexed: 11/20/2022] Open
Abstract
We have isolated mutations that block sporulation after formation of the polar septum in Bacillus subtilis. These mutations were mapped to the two genes of a new locus, spoIIS. Inactivation of the second gene, spoIISB, decreases sporulation efficiency by 4 orders of magnitude. Inactivation of the first gene, spoIISA, has no effect on sporulation but it fully restores sporulation of a spoIISB null mutant, indicating that SpoIISB is required only to counteract the negative effect of SpoIISA on sporulation. An internal promoter ensures the synthesis of an excess of SpoIISB over SpoIISA during exponential growth and sporulation. In the absence of SpoIISB, the sporulating cells show lethal damage of their envelope shortly after asymmetric septation, a defect that can be corrected by synthesizing SpoIISB only in the mother cell. However, forced synthesis of SpoIISA in exponentially growing cells or in the forespore leads to the same type of morphological damage and to cell death. In both cases protection against the killing effect of SpoIISA can be provided by simultaneous synthesis of SpoIISB. The spoIIS locus is unique to B. subtilis, and since it is completely dispensable for sporulation its physiological role remains elusive.
Collapse
Affiliation(s)
- E Adler
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | |
Collapse
|
35
|
Zupancic ML, Tran H, Hofmeister AE. Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis. Mol Microbiol 2001; 39:1471-81. [PMID: 11260465 DOI: 10.1046/j.1365-2958.2001.02331.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During the early stages of spore formation in Bacillus subtilis, asymmetric division precedes chromosome segregation, such that the forespore transiently contains only about one-third of the genetic material surrounding the origin of replication. Shortly after septum formation, the transcription factor sigmaF initiates forespore-specific gene expression that is essential for the proteolytic activation of pro-sigmaE in the neighbouring mother cell. Moving the sigmaF-dependent spoIIR gene from its original origin-proximal position to an ectopic origin-distal site caused a delay in spoIIR transcription, as well as delays and reductions in the proteolytic activation of pro-sigmaE and sigmaE-directed gene expression. These defects correlated with the accumulation of disporic sporangia, thus reducing sporulation efficiency in a manner that depended upon the distance that spoIIR had been moved from the origin-proximal third of the chromosome. A significant proportion of disporic sporangia exhibited sigmaE activity in their central compartment, indicating that delays and reductions in sigmaE activation can lead to the formation of a second septum at the opposite pole. These observations support a model in which chromosomal spoIIR position temporally regulates sigmaE activation, thereby allowing for the rapid establishment of mother cell-specific gene expression that is essential for efficient spore formation. The implications of these findings for cell type-specific gene expression during the early stages of spore formation in B. subtilis are discussed.
Collapse
Affiliation(s)
- M L Zupancic
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | | | |
Collapse
|
36
|
Khvorova A, Chary VK, Hilbert DW, Piggot PJ. The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J Bacteriol 2000; 182:4425-9. [PMID: 10913074 PMCID: PMC94612 DOI: 10.1128/jb.182.16.4425-4429.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of the asymmetrically located septum during sporulation of Bacillus subtilis results in enclosure of the origin-proximal 30% of the chromosome in the prespore compartment. The rest of the chromosome is then translocated into the prespore from the mother cell. Transcription of spoIIR is initiated in the prespore by RNA polymerase containing sigma(F) soon after the septum is formed. The SpoIIR protein is required for the activation of the transcription program directed by sigma(E) in the mother cell. The spoIIR locus is located at 324 degrees, near the origin of replication (0/360 degrees ). We show here that movement of spoIIR to 28 degrees had little effect on sporulation. However, movement to regions not in the origin-proximal part of the chromosome substantially reduced sporulation efficiency. At 283 degrees sporulation was reduced to less than 20% of the level obtained when spoIIR was at its natural location, and movement to 190 degrees reduced sporulation to about 6% of that level. These positional effects were also seen in the transcription of a spoIIR-lacZ fusion. In contrast, movement of other spo-lacZ fusions from 28 degrees to 190 degrees had little effect on their expression. These results suggest that spoIIR is the subject of "positional regulation," in the sense that the chromosomal position of spoIIR is important for its expression and function.
Collapse
Affiliation(s)
- A Khvorova
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
37
|
Cabrera-Hernandez A, Setlow P. Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins of Bacillus subtilis. Gene 2000; 248:169-81. [PMID: 10806362 DOI: 10.1016/s0378-1119(00)00125-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Four genes [sspI, sspK, sspM, and sspO (originally called cotK)] encoding minor small, acid-soluble proteins (SASP) unique to spores of Bacillus subtilis are expressed only in the forespore compartment of sporulating cells of this organism. The sspI, sspK and sspM genes are monocistronic, while sspO is the first gene in a likely operon with sspP (originally called cotL), which also encodes a putative very small protein. Transcription of these genes is primarily, if not exclusively, by RNA polymerase with the forespore-specific sigma factor, sigma(G). Sequences centered 10 and 35nt upstream of the 5'-ends of sspI, sspK, sspM and sspO also show homology to the -10 and -35 sequences recognized by sigma(G). Mutations deleting these genes cause the loss of the appropriate SASP from spores, and the sspK, sspM and sspO (and likely sspP) mutations had no discernable effect on sporulation, spore properties or spore germination. Loss of sspI also had no effect on sporulation, spore properties or spore germination, but DeltasspI spores had a significant defect in spore outgrowth.
Collapse
Affiliation(s)
- A Cabrera-Hernandez
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | |
Collapse
|
38
|
Sun YL, Sharp MD, Pogliano K. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J Bacteriol 2000; 182:2919-27. [PMID: 10781563 PMCID: PMC102003 DOI: 10.1128/jb.182.10.2919-2927.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the stage of engulfment in the Bacillus subtilis spore formation pathway, the larger mother cell engulfs the smaller forespore. We have tested the role of forespore-specific gene expression in engulfment using two separate approaches. First, using an assay that unambiguously detects sporangia that have completed engulfment, we found that a mutant lacking the only forespore-expressed engulfment protein identified thus far, SpoIIQ, is able to efficiently complete engulfment under certain sporulation conditions. However, we have found that the mutant is defective, under all conditions, in the expression of the late-forespore-specific transcription factor sigma(G); thus, SpoIIQ is essential for spore production. Second, to determine if engulfment could proceed in the absence of forespore-specific gene expression, we made use of a strain in which activation of the mother cell-specific sigma factor sigma(E) was uncoupled from forespore-specific gene expression. Remarkably, engulfment occurred in the complete absence of sigma(F)-directed gene expression under the same conditions permissive for engulfment in the absence of SpoIIQ. Our results demonstrate that forespore-specific gene expression is not essential for engulfment, suggesting that the machinery used to move the membranes around the forespore is within the mother cell.
Collapse
Affiliation(s)
- Y L Sun
- Department of Biology, University of California, San Diego, La Jolla, California 92093-0349, USA
| | | | | |
Collapse
|
39
|
Wu LJ, Errington J. Identification and characterization of a new prespore-specific regulatory gene, rsfA, of Bacillus subtilis. J Bacteriol 2000; 182:418-24. [PMID: 10629188 PMCID: PMC94291 DOI: 10.1128/jb.182.2.418-424.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differential gene expression during Bacillus subtilis sporulation is controlled by sigma factors and other regulatory effectors. The first compartmentalized sigma factor, sigma(F), is active specifically in the prespore compartment. During our screening for new chromosome segregation mutants using a sigma(F)-dependent gpr-lacZ reporter as a probe, we identified a new gene (ywfN) required for maximal expression of the reporter and named it rsfA. The product of rsfA has features of gene regulatory proteins, and the protein colocalizes with DNA. The expression of rsfA is under the control of both sigma(F) and sigma(G). Null mutations in rsfA have different effects on the expression of sigma(F)-dependent genes, suggesting that the RsfA protein is a regulator of transcription that fine-tunes gene expression in the prespore.
Collapse
Affiliation(s)
- L J Wu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
40
|
Feucht A, Daniel RA, Errington J. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol Microbiol 1999; 33:1015-26. [PMID: 10476035 DOI: 10.1046/j.1365-2958.1999.01543.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early in the process of spore formation in Bacillus subtilis, asymmetric cell division produces a large mother cell and a much smaller prespore. Differentiation of the prespore is initiated by activation of an RNA polymerase sigma factor, sigmaF, specifically in that cell. sigmaF is controlled by a regulatory cascade involving an anti-sigma factor, SpoIIAB, an anti-anti-sigma factor, SpoIIAA, and a membrane-bound phosphatase, SpoIIE, which converts the inactive, phosphorylated form of SpoIIAA back to the active form. SpoIIE is required for proper asymmetric division and much of the protein is sequestered into the prespore during septation. Importantly, activation of sigmaF is dependent on formation of the asymmetric septum. We have now characterized this morphological checkpoint in detail, using strains affected in cell division and/or spoIIE function. Surprisingly, we found that significant dephosphorylation of SpoIIAA occurred even in the absence of septation. This shows that the SpoIIE phosphatase is at least partially active independent of the morphological event and also that cells can tolerate significant levels of unphosphorylated SpoIIAA without activating sigmaF. We also describe a spoIIE mutant in which the checkpoint is bypassed, probably by an increase in the dephosphorylation of SpoIIAA. Taken together, the results support the idea that sequestration of SpoIIE protein into the prespore plays an important role in the control of sigmaF activation and in coupling this activation to septation.
Collapse
Affiliation(s)
- A Feucht
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
41
|
Cabrera-Hernandez A, Sanchez-Salas JL, Paidhungat M, Setlow P. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 1999; 232:1-10. [PMID: 10333516 DOI: 10.1016/s0378-1119(99)00124-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Three genes (sspH, sspL, and tlp) encoding new, minor small, acid-soluble proteins (SASP) unique to spores of Bacillus subtilis are expressed only in the forespore compartment during sporulation of this organism. The sspH and sspL genes are monocistronic, whereas tlp is the second gene in an operon with a second small orf, which we have termed sspN. The sspH and sspL genes are recognized primarily by the forespore-specific sigma factor for RNA polymerase, sigmaG; the sspN-tlp operon is recognized equally well by sigmaG and the other forespore-specific sigma factor, sigmaF. Sequences centered 10 and 35nt upstream of the 5'-ends of sspH, sspL, and sspN mRNAs all show homology to -10 and -35 sequences recognized by sigmaF and sigmaG, which are generally quite similar. Mutations disrupting the sspH, sspL, sspN-tlp, or tlp loci cause a loss of the appropriate SASP from spores, but have no discernible effect on sporulation, spore properties, or spore germination.
Collapse
Affiliation(s)
- A Cabrera-Hernandez
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
42
|
Arigoni F, Guérout-Fleury AM, Barák I, Stragier P. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol Microbiol 1999; 31:1407-15. [PMID: 10200961 DOI: 10.1046/j.1365-2958.1999.01282.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Making a spore in Bacillus subtilis requires the formation of two cells, the forespore and the mother cell, which follow dissimilar patterns of gene expression. Cell specificity is first established in the forespore under the control of the sigma F factor, which is itself activated through the action of the SpoIIE serine phosphatase, an enzyme targeted to the septum between the two cells. Deletion of the 10 transmembrane segments of the SpoIIE protein leads to random distribution of SpoIIE in the cytoplasm. Activation of sigma F is slightly delayed and less efficient than in wild type, but it remains restricted to the forespore in a large proportion of cells and the bacteria sporulate with 30% efficiency. Overexpression of the complete SpoIIE protein in a divIC mutant leads to significant sigma F activity, indicating that the septum requirement for activating sigma F can be bypassed. In contradiction to current models, we propose that genetic asymmetry is not created by unequal distribution of SpoIIE within the sporangium, but by exclusion of an inhibitor of SpoIIE from the forespore. This putative inhibitor would be a cytoplasmic molecule that interacts with SpoIIE and shuts off its phosphatase activity until it disappears specifically from the forespore.
Collapse
Affiliation(s)
- F Arigoni
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
43
|
Abstract
Recent work on cell division and chromosome orientation and partitioning in Bacillus subtilis has provided insights into cell cycle regulation during growth and development. The cell cycle is an integral part of development and entrance into sporulation is modulated by signals that transmit the status of DNA integrity, chromosome replication and segregation. In addition, B. subtilis modifies cell division and DNA segregation to establish cell-type-specific gene expression during sporulation.
Collapse
Affiliation(s)
- P A Levin
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
44
|
Bagyan I, Setlow B, Setlow P. New small, acid-soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and regulation and function of two of these genes. J Bacteriol 1998; 180:6704-12. [PMID: 9852018 PMCID: PMC107777 DOI: 10.1128/jb.180.24.6704-6712.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1998] [Accepted: 10/09/1998] [Indexed: 11/20/2022] Open
Abstract
Eleven small, acid-soluble proteins (SASP) which are present in spores but not in growing cells of Bacillus subtilis were identified by sequence analysis of proteins separated by acrylamide gel electrophoresis of acid extracts from spores which lack the three major SASP (alpha, beta, and gamma). Six of these proteins are encoded by open reading frames identified previously or by analysis of the complete sequence of the B. subtilis genome, including two minor alpha/beta-type SASP (SspC and SspD) and a putative spore coat protein (CotK). Five proteins are encoded by short open reading frames that were not identified as coding regions in the analysis of the complete B. subtilis genomic sequence. Studies of the regulation of two of the latter genes, termed sspG and sspJ, showed that both are expressed only in sporulation. The sspG gene is transcribed in the mother cell compartment by RNA polymerase with the mother cell-specific sigma factor for RNA polymerase, sigmaK, and is cotranscribed with a downstream gene, yurS; sspG transcription also requires the DNA binding protein GerE. In contrast, sspJ is transcribed in the forespore compartment by RNA polymerase with the forespore-specific sigmaG and appears to give a monocistronic transcript. A mutation eliminating SspG had no effect on sporulation or spore properties, while loss of SspJ caused a slight decrease in the rate of spore outgrowth in an otherwise wild-type background.
Collapse
Affiliation(s)
- I Bagyan
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | |
Collapse
|
45
|
Abstract
A highly ordered program of temporal and spatial gene activation during sporulation in Bacillus subtilis is governed by the principal RNA polymerase, and RNA polymerases containing at least five developmental sigma factors appearing successively during sporulation. This report describes a rapid procedure for extracting RNA polymerase from sporulating B. subtilis cells, which involves the construction of hexahistidine tagged beta' subunit of RNA polymerase and the isolation of RNA polymerase holoenzyme with Ni2+-NTA resin. In in vitro transcription of various promoters with the RNA polymerase thus purified, we observed the temporal change of each RNA polymerase activity during sporulation. This procedure enables isolation of RNA polymerase within 4h, starting with cell pellets. Our results indicated that a principal sigma factor, sigmaA, could be detected in a holoenzyme form during all the stages of growth and sporulation, while the other sigma factors sigmaH, sigmaE, sigmaF, sigmaG, and sigmaK involved in sporulation could be detected sequentially during sporulation. Moreover, Spo0A, the central transcription factor of commitment to sporulation, was also co-purified with RNA polymerase at early stages of sporulation.
Collapse
Affiliation(s)
- M Fujita
- Radioisotope Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | |
Collapse
|
46
|
Abstract
The basic properties of prokaryotic promoters and the promotor region are described with special emphasis on promoters that are found in Escherichia coli and Bacillus subtilis. Promoters recognized by major and minor forms of RNA polymerase holoenzymes are compared for their specificities and differences. Both natural and hybrid promoters that have been constructed for purposes of efficient and regulated transcription are discussed in terms of their utility. Since promoter regions contain sequences that are recognized not only by RNA polymerase but by positive and negative regulatory factors that regulate expression from promoters, the functions and properties of these promoter regions are also described. The current utility and the future prospects of the prokaryotic promoters in expressing heterologous genes for biotechnology purposes are discussed.
Collapse
Affiliation(s)
- M A Goldstein
- Section of Plant Biology, University of California, Davis 95616, USA
| | | |
Collapse
|
47
|
DeMaio J, Zhang Y, Ko C, Bishai WR. Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. TUBERCLE AND LUNG DISEASE : THE OFFICIAL JOURNAL OF THE INTERNATIONAL UNION AGAINST TUBERCULOSIS AND LUNG DISEASE 1998; 78:3-12. [PMID: 9666957 DOI: 10.1016/s0962-8479(97)90010-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Mycobacterium tuberculosis (MTB) SigF alternate sigma factor has been shown to have significant homology to the Bacillus subtilis (BSU) stress-response sigma factor, SigB, as well as to the BSU developmental sigma factor, SigF. In this study we report that like both the BSU sigB and sigF genes, MTB sigF is preceded by an open reading frame (usfX) encoding a protein with significant homology to the previously described BSU anti-sigma factors, RsbW and SpollAB. Sequence analysis suggests that the usfX and sigF genes appear to be cotranscribed and translationally coupled. A second open reading frame called usfY precedes usfX, but has no significant homologues and may not be contranscribed with the usfX and sigF. The sigF gene has been overexpressed in Escherichia coli, purified, and used to raise polyclonal antibodies. Immunoblotting demonstrates that MTB SigF is antigenically closer to BSU SigB than to BSU SigF. Fusion of the MTB sigF gene to the MTB hsp60 promoter has demonstrated that inappropriate overexpression of sigF is lethal for the slow-grower Mycobacterium bovis bacille Calmette-Guérin (BCG), but not for the rapid-grower Mycobacterium smegmatis which lacks a sigF homologue. Hence, sigF, encoding an MTB stress response, stationary phase transcription factor, is preceded by an antisigma factor homologue and is incompatible with growth when constitutively overexpressed in BCG.
Collapse
Affiliation(s)
- J DeMaio
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, USA
| | | | | | | |
Collapse
|
48
|
Daniel RA, Harry EJ, Katis VL, Wake RG, Errington J. Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol Microbiol 1998; 29:593-604. [PMID: 9720875 DOI: 10.1046/j.1365-2958.1998.00954.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified the Bacillus subtilis homologue of the essential cell division gene, ftsL, of Escherichia coli. Repression of ftsL in a strain engineered to carry a conditional promoter results in cell filamentation, with a near immediate arrest of cell division. The filaments show no sign of invagination, indicating that division is blocked at an early stage. FtsL is also shown to be required for septation during sporulation, and depletion of FtsL blocks the activation but not the synthesis of the prespore-specific sigma factor, sigmaF. Immunofluorescence microscopy shows that depletion of FtsL has little or no effect on FtsZ ring formation, but the assembly of other division proteins, DivIB and DivIC, at the site of division is prevented. Repression of FtsL also results in a rapid loss of DivIC protein, indicating that DivIC stability is dependent on the presence of FtsL, in turn suggesting that FtsL is intrinsically unstable. The instability of one or more components of the division apparatus may be important for the cyclic assembly/disassembly of the division apparatus.
Collapse
Affiliation(s)
- R A Daniel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
49
|
Lewis PJ, Wu LJ, Errington J. Establishment of prespore-specific gene expression in Bacillus subtilis: localization of SpoIIE phosphatase and initiation of compartment-specific proteolysis. J Bacteriol 1998; 180:3276-84. [PMID: 9642177 PMCID: PMC107279 DOI: 10.1128/jb.180.13.3276-3284.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunofluorescence microscopy was used to study the establishment of compartment-specific transcription during sporulation in Bacillus subtilis. Analysis of the distribution of the anti-anti-sigma factor, SpoIIAA, in a variety of mutant backgrounds supports a model in which the SpoIIE phosphatase, which activates SpoIIAA by dephosphorylation, is sequestered onto the prespore face of the asymmetric septum. Thus, prespore-specific gene expression apparently arises as a result of the compartmentalization of SpoIIE protein. The results also suggest the existence of at least two compartment-specific programs of proteolysis, one dependent on the mother cell-specific sigma factor sigma E and the other dependent on the prespore-specific sigma factor sigma F.
Collapse
Affiliation(s)
- P J Lewis
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | |
Collapse
|
50
|
Bagyan I, Noback M, Bron S, Paidhungat M, Setlow P. Characterization of yhcN, a new forespore-specific gene of Bacillus subtilis. Gene 1998; 212:179-88. [PMID: 9611260 DOI: 10.1016/s0378-1119(98)00172-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new Bacillus subtilis sporulation-specific gene, yhcN, has been identified, the expression of which is dependent on the forespore-specific sigma factor sigmaG and to a much lesser extent on sigmaF. A translational yhcN-lacZ fusion is expressed at a very high level in the forespore, and the protein encoded by yhcN was detected in the inner spore membrane. A yhcN mutant sporulates normally and yhcN spores have identical resistance properties to wild-type spores. However, the outgrowth of yhcN spores is slower than that of wild-type spores.
Collapse
Affiliation(s)
- I Bagyan
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | | | |
Collapse
|