1
|
Abstract
Phage Mu is the paradigm of a growing family of bacteriophages that infect a wide range of bacterial species and replicate their genome by replicative transposition. This molecular process, which is used by other mobile genetic elements to move within genomes, involves the profound rearrangement of the host genome [chromosome(s) and plasmid(s)] and can be exploited for the genetic analysis of the host bacteria and the in vivo cloning of host genes. In this chapter we review Mu-derived constructs that optimize the phage as a series of genetic tools that could inspire the development of similarly efficient tools from other transposable phages for a large spectrum of bacteria.
Collapse
|
2
|
Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion. Curr Genet 2017; 64:405-412. [DOI: 10.1007/s00294-017-0765-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022]
|
3
|
Ge J, Harshey RM. Congruence of in vivo and in vitro insertion patterns in hot E. coli gene targets of transposable element Mu: opposing roles of MuB in target capture and integration. J Mol Biol 2008; 380:598-607. [PMID: 18556020 PMCID: PMC2529481 DOI: 10.1016/j.jmb.2008.05.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/09/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Phage Mu transposes promiscuously, employing protein MuB for target capture. MuB forms stable filaments on A/T-rich DNA, and a correlation between preferred MuB binding and Mu integration has been observed. We have investigated the relationship between MuB-binding and Mu insertion into hot and cold Mu targets within the Escherichia coli genome. Although higher binding of MuB to select hot versus cold genes was seen in vivo, the hot genes had an average A/T content and were less preferred targets in vitro, whereas cold genes had higher A/T values and were more efficient targets in vitro. These data suggest that A/T-rich regions are unavailable for MuB binding, and that A/T content is not a good predictor of Mu behavior in vivo. Insertion patterns within two hot genes in vivo could be superimposed on those obtained in vitro in reactions employing purified MuA transposase and MuB, ruling out the contribution of a special DNA structure or additional host factors to the hot behavior of these genes. While A/T-rich DNA is a preferred target in vitro, a fragment made up exclusively of A/T was an extremely poor target. A continuous MuB filament assembled along the A/T region likely protects it against the action of MuA. Our results suggest that MuB binds E. coli DNA in an interspersed manner utilizing local A/T richness, and facilitates capture of these bound regions by the transpososome. Actual integration events are then directed to sites that are in proximity to MuB filaments but are themselves free of MuB.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| | - Rasika M. Harshey
- Section of Molecular Genetics and Microbiology & Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
4
|
Manna D, Porwollik S, McClelland M, Tan R, Higgins NP. Microarray analysis of Mu transposition in Salmonella enterica, serovar Typhimurium: transposon exclusion by high-density DNA binding proteins. Mol Microbiol 2007; 66:315-28. [PMID: 17850262 DOI: 10.1111/j.1365-2958.2007.05915.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All organisms contain transposons with the potential to disrupt and rearrange genes. Despite the presence of these destabilizing sequences, some genomes show remarkable stability over evolutionary time. Do bacteria defend the genome against disruption by transposons? Phage Mu replicates by transposition and virtually all genes are potential insertion targets. To test whether bacteria limit Mu transposition to specific parts of the chromosome, DNA arrays of Salmonella enterica were used to quantitatively measure target site preference and compare the data with Escherichia coli. Essential genes were as susceptible to transposon disruption as non-essential ones in both organisms, but the correlation of transposition hot spots among homologous genes was poor. Genes in highly transcribed operons were insulated from transposon mutagenesis in both organisms. A 10 kb cold spot on the pSLT plasmid was near parS, a site to which the ParB protein binds and spreads along DNA. Deleting ParB erased the plasmid cold spot, and an ectopic parS site placed in the Salmonella chromosome created a new cold spot in the presence of ParB. Our data show that competition between cellular proteins and transposition proteins on plasmids and the chromosome is a dominant factor controlling the genetic footprint of transposons in living cells.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL-35294, USA
| | | | | | | | | |
Collapse
|
5
|
Manna D, Breier AM, Higgins NP. Microarray analysis of transposition targets in Escherichia coli: the impact of transcription. Proc Natl Acad Sci U S A 2004; 101:9780-5. [PMID: 15210965 PMCID: PMC470751 DOI: 10.1073/pnas.0400745101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Indexed: 11/18/2022] Open
Abstract
Transposable elements have influenced the genetic and physical composition of all modern organisms. Defining how different transposons select target sites is critical for understanding the biochemical mechanism of this type of recombination and the impact of mobile genes on chromosome structure and function. Phage Mu replicates in Gram-negative bacteria using an extremely efficient transposition reaction. Replicated copies are excised from the chromosome and packaged into virus particles. Each viral genome plus several hundred base pairs of host DNA covalently attached to the prophage right end is packed into a virion. To study Mu transposition preferences, we used DNA microarray technology to measure the abundance of >4,000 Escherichia coli genes in purified Mu phage DNA. Insertion hot- and cold-spot genes were found throughout the genome, reflecting >1,000-fold variation in utilization frequency. A moderate preference was observed for genes near the origin compared to terminus of replication. Large biases were found at hot and cold spots, which often include several consecutive genes. Efficient transcription of genes had a strong negative influence on transposition. Our results indicate that local chromosome structure is more important than DNA sequence in determining Mu target-site selection.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
6
|
Haapa-Paananen S, Rita H, Savilahti H. DNA transposition of bacteriophage Mu. A quantitative analysis of target site selection in vitro. J Biol Chem 2002; 277:2843-51. [PMID: 11700310 DOI: 10.1074/jbc.m108044200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mu transpositional DNA recombination machinery selects target sites by assembling a protein-DNA complex that interacts with the target DNA and reacts whenever it locates a favorable sequence composition. Splicing of a transposon into the target generates a 5-bp duplication that reflects the original target site. Preferential usage of different target pentamers was examined with a minimal Mu in vitro system and quantitatively compiled consensus sequences for the most preferred and the least preferred sites were generated. When analyzed as base steps, preferences toward certain steps along the 5-bp target site were detected. We further show that insertion sites can be predicted on the basis of additively calculated base step values. Also surrounding sequences influence the preference of a given pentamer; a symmetrical structural component was revealed, suggesting potential hinges at and around the target site.
Collapse
Affiliation(s)
- Saija Haapa-Paananen
- Program in Cellular Biotechnology, Institute of Biotechnology, Viikki Biocenter, PO Box 56, Viikinkaari 9, 00014 University of Helsinki, Finland
| | | | | |
Collapse
|
7
|
Abstract
The Mu-related transposon Tn5090, also called Tn402, was observed to be highly selective for targets clustered in or close to recombination sites of serine-type recombinases in plasmids R388 and RP1. Transposition to the par area of RP1 responded strongly to a deletion in the gene of resolvase ParA. A search in sequence databanks revealed further insertions of Tn5090/Tn402 close to different genes of resolvases. These results imply that the target selection of Tn5090 depends on a property that is shared among several serine recombinases.
Collapse
Affiliation(s)
- M Kamali-Moghaddam
- Department of Pharmaceutical Biosciences, Division of Microbiology, Uppsala University, Biomedicum, SE-751 23, Uppsala, Sweden
| | | |
Collapse
|
8
|
Abstract
The Escherichia coli resident mobile element IS30 has pronounced target specificity. Upon transposition, the element frequently inserts exactly into the same position of a preferred target sequence. Insertion sites in phages, plasmids and in the genome of E. coli are characterized by an exceptionally long palindromic consensus sequence that provides strong specificity for IS30 insertions, despite a relatively high level of degeneracy. This 24-bp-long region alone determines the attractiveness of the target DNA and the exact position of IS30 insertion. The divergence of a target site from the consensus and the occurrence of 'non-permitted' bases in certain positions influence the target activity. Differences in attractiveness are emphasized if two targets are present in the same replicon, as was demonstrated by quantitative analysis. In a system of competitive targets, the oligonucleotide sequence representing the consensus of genomic IS30 insertion sites proved to be the most efficient target. Having compared the known insertion sites, we suppose that IS30-like target specificity, which may represent an alternative strategy in target selection among mobile elements, is characteristic of the insertion sequences IS3, IS6 and IS21, too.
Collapse
Affiliation(s)
- F Olasz
- Biozentrum der Universität Basel, Abteilung Mikrobiologie, Basle, Switzerland.
| | | | | | | | | | | |
Collapse
|
9
|
Naigamwalla DZ, Chaconas G. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J 1997; 16:5227-34. [PMID: 9311983 PMCID: PMC1170155 DOI: 10.1093/emboj/16.17.5227] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mu DNA transposition occurs within the context of higher order nucleoprotein structures or transpososomes. We describe a new set of transpososomes in which Mu B-bound target DNA interacts non-covalently with previously characterized intermediates prior to the actual strand transfer. This interaction can occur at several points along the reaction pathway: with the LER, the Type 0 or the Type 1 complexes. The formation of these target capture complexes, which rapidly undergo the strand transfer chemistry, is the rate-limiting step in the overall reaction. These complexes provide alternate pathways to strand transfer, thereby maximizing transposition potential. This versatility is in contrast to other characterized transposons, which normally capture target DNA only at a single point in their respective reaction pathways.
Collapse
Affiliation(s)
- D Z Naigamwalla
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
10
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
11
|
|
12
|
Wang X, Higgins NP. 'Muprints' of the lac operon demonstrate physiological control over the randomness of in vivo transposition. Mol Microbiol 1994; 12:665-77. [PMID: 7934890 DOI: 10.1111/j.1365-2958.1994.tb01054.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method called Muprinting has been developed that uses PCR to generate a detailed picture of the bacteriophage Mu transposition sites in chosen domains of the bacterial chromosome. Muprinting experiments in Escherichia coli show that the frequency of phage integration changes dramatically near two repressor binding sites in the lac operon. When the lac operon was repressed, hotspots for Mu transposition were found near the O1 and O2 operators that are proposed to make a repression loop. When cells were grown in lactose, Mu transposition near these operators was greatly diminished. Striking changes in transposition frequencies were limited to the control region and were not found in a region of the lacZ gene lying beyond the O2 operator. Muprints of the bgl operon showed a different pattern; hotspots for Mu transposition detected in sequences upstream of the bglC promoter when the operon was silenced changed when the operon became activated by mutation. By targeting transposition to the regulatory regions around non-expressed genes, Mu may demonstrate a self-restraint mechanism that allows the virus to move through its host genome without disrupting the functions that contribute to a healthy cell physiology.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, University of Alabama at Birmingham 35294
| | | |
Collapse
|
13
|
van Drunen CM, Mientjes E, van Zuylen O, van de Putte P, Goosen N. Transposase A binding sites in the attachment sites of bacteriophage Mu that are essential for the activity of the enhancer and A binding sites that promote transposition towards Fpro-lac. Nucleic Acids Res 1994; 22:773-9. [PMID: 8139917 PMCID: PMC307881 DOI: 10.1093/nar/22.5.773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this paper we determine which of the A binding sites in the attachment sites of phage Mu are required for the stimulatory activity of the transpositional enhancer (IAS). For this purpose the transposition frequencies of mini-Mu's with different truncated attachment sites to an Ftet target were measured both in the presence and the absence of the IAS. The results show that in our in vivo assay the L3 and R3 sites are dispensable for functioning of the IAS. An additional deletion of L2 or R2 however abolishes the stimulating activity of the enhancer suggesting an interaction between A molecules bound to these sites and the IAS. The residual transposition activity of a IAS-containing mini Mu in which R2 (and R3) are deleted is much lower than the activity of the comparable construct without the IAS. This means that in the absence of R2 the IAS is inhibiting transposition. Such an inhibition is not observed when L2 (and L3) are deleted. This suggests that the IAS interacts with the attachment sites in an ordered fashion, first with attL and then with attR. Furthermore we show that mini-Mu transposition is enhanced when Fpro-lac is used as a target instead of Ftet. We show that this elevated transposition is dependent on the Mu A binding sites L2,L3 and R2. These sequences could possibly mediate an interaction between the mini-Mu plasmid and sequences present on Fpro-lac.
Collapse
Affiliation(s)
- C M van Drunen
- Laboratory of Molecular Genetics, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Abstract
The past year has seen a number of important advances in our understanding of the mechanisms of DNA transposition. The molecular details of the protein-protein, protein-DNA and chemical-reaction steps in several transposition systems have been revealed and have highlighted remarkable uniformity in some areas, ranging from bacterial to retroviral mechanisms.
Collapse
|
15
|
Vartak NB, Liu L, Wang BM, Berg CM. A functional leuABCD operon is required for leucine synthesis by the tyrosine-repressible transaminase in Escherichia coli K-12. J Bacteriol 1991; 173:3864-71. [PMID: 1646790 PMCID: PMC208018 DOI: 10.1128/jb.173.12.3864-3871.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In Escherichia coli K-12, two enzymes, encoded by ilvE and tyrB, catalyze the amination of 2-ketoisocaproate (2-KIC) to form leucine. Although leucine-requiring derivatives of an ilvE strain that are unable to grow on 2-KIC were expected to have mutations only in tyrB, mapping studies showed that one such mutation was tightly linked to the leu operon (at 1.5 min), not to tyrB (at 92 min). Chromosomal fragments cloned because they complemented this mutation were found to complement leu mutations, and vice versa, but none of these fragments complemented a tyrB mutation. The Tn5 insertion and flanking host DNA from this anomalous mutant was cloned in vivo, using Mu dII4042, and an in vivo procedure was developed to isolate deletion derivatives of Tn5-containing plasmids. These deletion plasmids were used to determine the DNA sequences flanking the transposon. The data showed that Tn5 was inserted between bp 122 and 132 in the leu leader. In addition, other ilvE leu double mutants were found to be unable to grow on 2-KIC in place of leucine. The accumulation of 2-ketoisovalerate in ilvE leu double mutants was shown to interfere with 2-KIC amination by the tyrB-encoded transaminase and also by the aspC- and avtA-encoded transaminases (which are able to catalyze this reaction in vivo when the corresponding genes are present on multicopy plasmids).
Collapse
Affiliation(s)
- N B Vartak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-2131
| | | | | | | |
Collapse
|