1
|
Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. MOLECULAR PLANT PATHOLOGY 2008; 9:403-23. [PMID: 18705857 PMCID: PMC6640453 DOI: 10.1111/j.1364-3703.2008.00472.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
TAXONOMY Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. HOST RANGE Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. DISEASE SYMPTOMS In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. DISEASE CONTROL The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich Research Park, Colney Lane, Colney, Norwich, Norfolk NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
2
|
Tran-Nguyen LTT, Gibb KS. Optimizing Phytoplasma DNA purification for genome analysis. J Biomol Tech 2007; 18:104-12. [PMID: 17496222 PMCID: PMC2062537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genome analysis of uncultivable plant pathogenic phytoplasmas is hindered by the difficulty in obtaining sufficient quantities of phytoplasma enriched DNA. We investigated a combination of conventional enrichment techniques such as cesium chloride (CsCl) buoyant gradient centrifugation, and new methods such as rolling circle amplification (RCA), suppression subtractive hybridization (SSH), and mirror orientation selection (MOS) to obtain DNA with a high phytoplasma:host ratio as the major first step in genome analysis of Candidatus Phytoplasma australiense. The phytoplasma:host ratio was calculated for five different plasmid libraries. Based on sequence data, 90% of clones from CsCl DNA enrichment contained chromosomal phytoplasma DNA, compared to 60% from RCA CsCl DNA and 20% from SSH subtracted libraries. Based on an analysis of representative libraries, none contained plant DNA. A high percentage of clones (80-100%) from SSH libraries contained extrachromosomal DNA (eDNA), and we speculate that eDNA in the original DNA preparation was amplified in subsequent SSH manipulations. Despite the availability of new techniques for nucleic acid amplification, we found that conventional CsCl gradient centrifugation was the best enrichment method for obtaining chromosomal phytoplasma DNA with low host DNA content.
Collapse
Affiliation(s)
- L T T Tran-Nguyen
- Charles Darwin University, School of Science and Primary Industries, Darwin, NT, Australia.
| | | |
Collapse
|
3
|
Davis RE, Jomantiene R, Zhao Y. Lineage-specific decay of folate biosynthesis genes suggests ongoing host adaptation in phytoplasmas. DNA Cell Biol 2006; 24:832-40. [PMID: 16332180 DOI: 10.1089/dna.2005.24.832] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phytoplasmas are nonculturable cell wall-less, obligate intracellular pathogens of plants and insect vectors. In their descent from walled bacterial ancestors, phytoplasmas underwent massive genome reduction, resulting in some of the smallest cellular genomes known in nonsymbiotic bacteria. While requirements for in vitro culture of phytoplasmas remain unknown, two opposing reports have appeared concerning genes encoding the ability of phytoplasmas to synthesize folates de novo. One study found pseudogene homologs of folP and folK, obviating folate synthesis in "Candidatus Phytoplasma asteris"-related strain CPh, whereas, a separate study found intact genes encoding a complete folate biosynthesis pathway in "Ca. Phytoplasma asteris"-related strain OY. To resolve the apparent conflict, we hypothesized that evolutionary adaptation to the availability of folate and/or other metabolites in host cells is an ongoing process in the phytoplasma clade that is reflected in part by differences among phytoplasmas in the status of genes of the folate biosynthesis pathway. By studying folP and folK loci in 11 closely related phytoplasmas, we determined that these essential folate biosynthesis genes are intact in some phytoplasmas but are deteriorating in closely related strains. We suggest that the status of the folate biosynthesis pathway and the course of gene decay are lineage-specific, predicting the eventual, lineage-related loss of recognizable folP and folK homologs in phytoplasma genomes.
Collapse
Affiliation(s)
- Robert E Davis
- Molecular Plant Pathology Laboratory, USDA--Agricultural Research Service, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
4
|
Davis RE, Jomantiene R, Zhao Y, Dally EL. Folate biosynthesis pseudogenes, PsifolP and PsifolK, and an O-sialoglycoprotein endopeptidase gene homolog in the phytoplasma genome. DNA Cell Biol 2004; 22:697-706. [PMID: 14659042 DOI: 10.1089/104454903770946674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phytoplasmas are wall-less phytopathogenic prokaryotes of small genome sizes that are obligate parasites of insect vectors and plant hosts. We have cloned a clover phyllody (CPh) phytoplasma DNA locus containing five potential coding sequences. Two were identified as pseudogenes (PsifolP and PsifolK) homologous to folP and folK genes, which encode dihydropteroate synthase (DHPS) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), respectively, in other bacteria. Evolution of the phytoplasma presumably involved loss of functions through the formation of these and other pseudogenes during adaptation to obligate parasitism. The findings suggest that the phytoplasma lacks capacity for de novo folate biosynthesis and possesses a transport system for absorption of preformed folate from host cells. The PsifolP-PsifolK region was flanked by three open reading frames (ORFs) encoding a DegV family protein, a hypothetical protein with a P60-like lipoprotein domain homologous with the P60-like Mycoplasma hominis protein, and a glycoprotease (Gcp) protein that possibly functions as a host adaptation or virulence factor.
Collapse
Affiliation(s)
- Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Room 118, Building 004, BARC West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
6
|
Yu YL, Yeh KW, Lin CP. An antigenic protein gene of a phytoplasma associated with sweet potato witches' broom. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1257-1262. [PMID: 9611800 DOI: 10.1099/00221287-144-5-1257] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A gene encoding the major antigenic protein of phytoplasma associated with sweet potato witches' broom (SPWB) was cloned and analysed by screening the genomic library of SPWB phytoplasma with monoclonal antibodies for SPWB phytoplasma. The entire predicted structural gene encoded an antigenic protein composed of 172 amino acids with a computed molecular mass of 19.15 kDa and a pl value of 9.78. The -10 region of the promoter and the terminator region of the gene were identified and found to be similar to those of prokaryotes. The hydropathy profile of the deduced amino acid sequence consisted of two distinct regions, a strongly hydrophobic N-terminus and a highly hydrophilic C-terminus. This major antigenic protein was also present in phytoplasma associated with peanut witches' broom (PNWB) and the two showed homology based on the results of Western blot analysis, Southern hybridization, Northern hybridization, primer extension analysis and PCR. The homologous genes of the antigenic protein of SPWB phytoplasma and PNWB phytoplasma were not found in other phytoplasmas tested.
Collapse
Affiliation(s)
- Yen-Ling Yu
- Department of Plant Pathology and EntomologyTaiwan 106, Republic of China
| | - Kai-Wun Yeh
- Department of Botany National Taiwan University, Taipei, Taiwan 106, Republic of China
| | - Chan-Pin Lin
- Department of Plant Pathology and EntomologyTaiwan 106, Republic of China
| |
Collapse
|
7
|
Gundersen DE, Lee IM, Rehner SA, Davis RE, Kingsbury DT. Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 1994; 176:5244-54. [PMID: 8071198 PMCID: PMC196707 DOI: 10.1128/jb.176.17.5244-5254.1994] [Citation(s) in RCA: 223] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A global phylogenetic analysis using parsimony of 16S rRNA gene sequences from 46 mollicutes, 19 mycoplasmalike organisms (MLOs) (new trivial name, phytoplasmas), and several related bacteria placed the MLOs definitively among the members of the class Mollicutes and revealed that MLOs form a large discrete monophyletic clade, paraphyletic to the Acholeplasma species, within the Anaeroplasma clade. Within the MLO clade resolved in the global mollicutes phylogeny and a comprehensive MLO phylogeny derived by parsimony analyses of 16S rRNA gene sequences from 30 diverse MLOs representative of nearly all known distinct MLO groups, five major phylogenetic groups with a total of 11 distinct subclades (monophyletic groups or taxa) could be recognized. These MLO subclades (roman numerals) and designated type strains were as follows: i, Maryland aster yellows AY1; ii, apple proliferation AP-A; iii, peanut witches'-broom PnWB; iv, Canada peach X CX; v, rice yellow dwarf RYD; vi, pigeon pea witches'-broom PPWB; vii, palm lethal yellowing LY; viii, ash yellows AshY; ix, clover proliferation CP; x, elm yellows EY; and xi, loofah witches'-broom LfWB. The designations of subclades and their phylogenetic positions within the MLO clade were supported by a congruent phylogeny derived by parsimony analyses of ribosomal protein L22 gene sequences from most representative MLOs. On the basis of the phylogenies inferred in the present study, we propose that MLOs should be represented taxonomically at the minimal level of genus and that each phylogenetically distinct MLO subclade identified should represent at least a distinct species under this new genus.
Collapse
Affiliation(s)
- D E Gundersen
- Molecular Plant Pathology Laboratory, Agriculture Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705
| | | | | | | | | |
Collapse
|
8
|
Neimark H, Kirkpatrick BC. Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic Mycoplasma-like organisms. Mol Microbiol 1993; 7:21-8. [PMID: 7679771 DOI: 10.1111/j.1365-2958.1993.tb01093.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe the isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic, mycoplasma-like organisms (MLOs). MLO chromosomes are circular and their sizes (640 to 1185 kbp) are heterogeneous. Divergence in the range of chromosome sizes is apparent between MLOs in the two major MLO disease groups, and chromosome size polymorphism occurs among some related agents. MLO chromosome sizes overlap those of culturable mycoplasmas; consequently, small genome size alone cannot explain MLO non-culturability. Hybridization with cloned MLO-specific chromosomal and 16S rRNA probes detected two separate chromosomes in some MLO 'type' strains. Large DNA molecules that appear to be MLO megaplasmids were also demonstrated. The ability to characterize full-length chromosomes from virtually any non-culturable prokaryote should greatly facilitate the molecular and genetic analysis of these difficult bacteria.
Collapse
Affiliation(s)
- H Neimark
- Department of Microbiology and Immunology, Morse Institute for Molecular Biology, State University of New York, Brooklyn 11203
| | | |
Collapse
|
9
|
|
10
|
Lim PO, Sears BB. Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. J Bacteriol 1992; 174:2606-11. [PMID: 1556079 PMCID: PMC205900 DOI: 10.1128/jb.174.8.2606-2611.1992] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The families within the class Mollicutes are distinguished by their morphologies, nutritional requirements, and abilities to metabolize certain compounds. Biosystematic classification of the plant-pathogenic mycoplasmalike organisms (MLOs) has been difficult because these organisms have not been cultured in vitro, and hence their nutritional requirements have not been determined nor have physiological characterizations been possible. To investigate the evolutionary relationship of the MLOs to other members of the class Mollicutes, a segment of a ribosomal protein operon was cloned and sequenced from an aster yellows-type MLO which is pathogenic for members of the genus Oenothera and from Acholeplasma laidlawii. The deduced amino acid sequence data from the rpl22 and rps3 genes indicate that the MLOs are more closely related to A. laidlawii than to animal mycoplasmas, confirming previous results from 16S rRNA sequence comparisons. This conclusion is also supported by the finding that the UGA codon is not read as a tryptophan codon in the MLO and A. laidlawii, in contrast to its usage in Mycoplasma capricolum.
Collapse
Affiliation(s)
- P O Lim
- Genetics Program, Michigan State University, East Lansing 48824
| | | |
Collapse
|
11
|
Lim PO, Sears BB, Klomparens KL. Membrane properties of a plant-pathogenic mycoplasmalike organism. J Bacteriol 1992; 174:682-6. [PMID: 1732203 PMCID: PMC206143 DOI: 10.1128/jb.174.3.682-686.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In terms of biosystematics, the plant-pathogenic mycoplasmalike organisms (MLOs) have been tentatively placed into the class Mollicutes. Certain physiological tests have been used to distinguish families within this class: the sterol-nonrequiring Acholeplasmataceae differ from the sterol-requiring Mycoplasmataceae in that the former are more resistant to lysis by digitonin and more sensitive to lysis in hypotonic salt solutions. To test MLOs for these membrane properties and thus assist in their definitive classification, a dot-blot microassay procedure was used to detect nucleic acids released from lysed cells. The results show that MLOs resemble acholeplasmas grown in the absence of sterols in that they are resistant to digitonin and sensitive to hypotonic salt solutions. The MLOs can be differentiated from acholeplasmas grown without sterols by their greater resistance to lysis in hypotonic sucrose solutions.
Collapse
Affiliation(s)
- P O Lim
- Genetics Program, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
12
|
Lim PO, Sears BB. DNA sequence of the ribosomal protein genesrp12andrps19from a plant-pathogenic mycoplasma-like organism. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04571.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|