1
|
Abushaheen MA, Muzaheed, Fatani AJ, Alosaimi M, Mansy W, George M, Acharya S, Rathod S, Divakar DD, Jhugroo C, Vellappally S, Khan AA, Shaik J, Jhugroo P. Antimicrobial resistance, mechanisms and its clinical significance. Dis Mon 2020; 66:100971. [PMID: 32201008 DOI: 10.1016/j.disamonth.2020.100971] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Antimicrobial agents play a key role in controlling and curing infectious disease. Soon after the discovery of the first antibiotic, the challenge of antibiotic resistance commenced. Antimicrobial agents use different mechanisms against bacteria to prevent their pathogenesis and they can be classified as bactericidal or bacteriostatic. Antibiotics are one of the antimicrobial agents which has several classes, each with different targets. Consequently, bacteria are endlessly using methods to overcome the effectivity of the antibiotics by using distinct types of mechanisms. Comprehending the mechanisms of resistance is vital for better understanding and to continue use of current antibiotics. Which also helps to formulate synthetic antimicrobials to overcome the current mechanism of resistance. Also, encourage in prudent use and misuse of antimicrobial agents. Thus, decline in treatment costs and in the rate of morbidity and mortality. This review will be concentrating on the mechanism of actions of several antibiotics and how bacteria develop resistance to them, as well as the method of acquiring the resistance in several bacteria and how can a strain be resistant to several types of antibiotics. This review also analyzes the prevalence, major clinical implications, clinical causes of antibiotic resistance. Further, it evaluates the global burden of antimicrobial resistance, identifies various challenges and strategies in addressing the issue. Finally, put forward certain recommendations to prevent the spread and reduce the rate of resistance growth.
Collapse
Affiliation(s)
- Manar Ali Abushaheen
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muzaheed
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| | - Amal Jamil Fatani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alosaimi
- Consultant, Department of Restorative Dentistry, College of Dentistry, King Saud bin Abdul Aziz University for Health Sciences, P.O Box: 22490, Riyadh 11426, Saudi Arabia
| | - Wael Mansy
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, Saudi Arabia; Pharmacology Department, Faculty of Medicine, Cairo University, Egypt
| | - Merin George
- General Dentist and Public Health Researcher, Australia
| | - Sadananda Acharya
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sanjay Rathod
- Department of Post Graduate Studies and Research in Microbiology, Gulbarga University, Gulbarga- 585106, India
| | - Darshan Devang Divakar
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Chitra Jhugroo
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Sajith Vellappally
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Aftab Ahmed Khan
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Jilani Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Poojdev Jhugroo
- CAP Research Ltd., 2nd Floor Orbis Court, 132 St Jean Road 72218 Quatre Bornes, Mauritius
| |
Collapse
|
2
|
Mehla K, Ramana J. Tapping into Salmonella typhimurium LT2 genome in a quest to explore its therapeutic arsenal: A metabolic network modeling approach. Biomed Pharmacother 2016; 86:57-66. [PMID: 27939520 DOI: 10.1016/j.biopha.2016.11.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/17/2023] Open
Abstract
S. typhimurium, the classical broad-host-range serovar is a widely distributed cause of food-borne illness. Escalating antibiotic resistance and potential of conjugal transmission to other pathogens attributable to its broad spectrum host specificities have aided S. typhimurium to emerge as a global health threat. To keep pace with ever evolving bacterial defenses, there is dire need to restock the antibiotic pipeline. Genome scale metabolic reconstructions present immense possibilities to decipher physiological properties of an organism using constraint-based methods The systems-level approaches of genome scale metabolic networks interrogation open up new avenues of drug target identification against deadly infectious diseases. We performed flux balance analysis and minimization of metabolic adjustment studies of genome scale reconstruction model of S. typhimurium targeted at identifying large number of metabolites with a potential to be utilized as therapeutic drug targets. These constraint based approaches initially predict a set of genes indispensable to bacterial survival by performing gene knockout studies which are then prioritized through a multistep process. Metabolites involved in l-rhamnose biosynthesis, peptidoglycan biosynthesis, fatty acid biosynthesis, and folate biosynthesis pathways were prioritized as candidate drug targets. This study provides a general therapeutic approach which can be effectively applied to other pathogens as well.
Collapse
Affiliation(s)
- Kusum Mehla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, PIN 173234 Himachal Pradesh, India
| | - Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, PIN 173234 Himachal Pradesh, India.
| |
Collapse
|
3
|
Hunter DJ, Torkelson JL, Bodnar J, Mortazavi B, Laurent T, Deason J, Thephavongsa K, Zhong J. The Rickettsia Endosymbiont of Ixodes pacificus Contains All the Genes of De Novo Folate Biosynthesis. PLoS One 2015; 10:e0144552. [PMID: 26650541 PMCID: PMC4674097 DOI: 10.1371/journal.pone.0144552] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/19/2015] [Indexed: 11/30/2022] Open
Abstract
Ticks and other arthropods often are hosts to nutrient providing bacterial endosymbionts, which contribute to their host’s fitness by supplying nutrients such as vitamins and amino acids. It has been detected, in our lab, that Ixodes pacificus is host to Rickettsia species phylotype G021. This endosymbiont is predominantly present, and 100% maternally transmitted in I. pacificus. To study roles of phylotype G021 in I. pacificus, bioinformatic and molecular approaches were carried out. MUMmer genome alignments of whole genome sequence of I. scapularis, a close relative to I. pacificus, against completely sequenced genomes of R. bellii OSU85-389, R. conorii, and R. felis, identified 8,190 unique sequences that are homologous to Rickettsia sequences in the NCBI Trace Archive. MetaCyc metabolic reconstructions revealed that all folate gene orthologues (folA, folC, folE, folKP, ptpS) required for de novo folate biosynthesis are present in the genome of Rickettsia buchneri in I. scapularis. To examine the metabolic capability of phylotype G021 in I. pacificus, genes of the folate biosynthesis pathway of the bacterium were PCR amplified using degenerate primers. BLAST searches identified that nucleotide sequences of the folA, folC, folE, folKP, and ptpS genes possess 98.6%, 98.8%, 98.9%, 98.5% and 99.0% identity respectively to the corresponding genes of Rickettsia buchneri. Phylogenetic tree constructions show that the folate genes of phylotype G021 and homologous genes from various Rickettsia species are monophyletic. This study has shown that all folate genes exist in the genome of Rickettsia species phylotype G021 and that this bacterium has the genetic capability for de novo folate synthesis.
Collapse
Affiliation(s)
- Daniel J. Hunter
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Jessica L. Torkelson
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - James Bodnar
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Bobak Mortazavi
- Center for Outcomes Research and Evaluation, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Timothy Laurent
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Jeff Deason
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Khanhkeo Thephavongsa
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
| | - Jianmin Zhong
- Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Delmar JA, Yu EW. The AbgT family: A novel class of antimetabolite transporters. Protein Sci 2015; 25:322-37. [PMID: 26443496 DOI: 10.1002/pro.2820] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
The AbgT family of transporters was thought to contribute to bacterial folate biosynthesis by importing the catabolite p-aminobenzoyl-glutamate for producing this essential vitamin. Approximately 13,000 putative transporters of the family have been identified. However, before our work, no structural information was available and even functional data were minimal for this family of membrane proteins. To elucidate the structure and function of the AbgT family of transporters, we recently determined the X-ray structures of the full-length Alcanivorax borkumensis YdaH and Neisseria gonorrhoeae MtrF membrane proteins. The structures reveal that these two transporters assemble as dimers with architectures distinct from all other families of transporters. Both YdaH and MtrF are bowl-shaped dimers with a solvent-filled basin extending from the cytoplasm halfway across the membrane bilayer. The protomers of YdaH and MtrF contain nine transmembrane helices and two hairpins. These structures directly suggest a plausible pathway for substrate transport. A combination of the crystal structure, genetic analysis and substrate accumulation assay indicates that both YdaH and MtrF behave as exporters, capable of removing the folate metabolite p-aminobenzoic acid from bacterial cells. Further experimental data based on drug susceptibility and radioactive transport assay suggest that both YdaH and MtrF participate as antibiotic efflux pumps, importantly mediating bacterial resistance to sulfonamide antimetabolite drugs. It is possible that many of these AbgT-family transporters act as exporters, thereby conferring bacterial resistance to sulfonamides. The AbgT-family transporters may be important targets for the rational design of novel antibiotics to combat bacterial infections.
Collapse
Affiliation(s)
- Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011
| | - Edward W Yu
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011.,Department of Chemistry, Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
5
|
Folate Biosynthesis, Reduction, and Polyglutamylation and the Interconversion of Folate Derivatives. EcoSal Plus 2015; 2. [PMID: 26443588 DOI: 10.1128/ecosalplus.3.6.3.6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many microorganisms and plants possess the ability to synthesize folic acid derivatives de novo, initially forming dihydrofolate. All the folic acid derivatives that serve as recipients and donors of one-carbon units are derivatives of tetrahydrofolate, which is formed from dihydrofolate by an NADPH-dependent reduction catalyzed by dihydrofolate reductase (FolA). This review discusses the biosynthesis of dihydrofolate monoglutamate, its reduction to tetrahydrofolate monoglutamate, and the addition of glutamyl residues to form folylpolyglutamates. Escherichia coli and Salmonella, like many microorganisms that can synthesize folate de novo, appear to lack the ability to transport folate into the cell and are thus highly susceptible to inhibitors of folate biosynthesis. The review includes a brief discussion of the inhibition of folate biosynthesis by sulfa drugs. The folate biosynthetic pathway can be divided into two sections. First, the aromatic precursor chorismate is converted to paminobenzoic acid (PABA) by the action of three proteins. Second, the pteridine portion of folate is made from GTP and coupled to PABA to generate dihydropteroate, and the bifunctional protein specified by folC, dihydrofolate synthetase, or folylpolyglutamate synthetase, adds the initial glutamate molecule to form dihydrofolate (H2PteGlu1, or dihydropteroylmonoglutamate). Bacteriophage T4 infection of E. coli has been shown to cause alterations in the metabolism of folate derivatives. Infection is associated with an increase in the chain lengths in folylpolyglutamates and particularly the accumulation of hexaglutamate derivatives.
Collapse
|
6
|
Bolla JR, Su CC, Delmar JA, Radhakrishnan A, Kumar N, Chou TH, Long F, Rajashankar KR, Yu EW. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology. Nat Commun 2015; 6:6874. [PMID: 25892120 PMCID: PMC4410182 DOI: 10.1038/ncomms7874] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/08/2015] [Indexed: 12/04/2022] Open
Abstract
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a reevaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here, we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Chih-Chia Su
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Jared A Delmar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | | | - Nitin Kumar
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Tsung-Han Chou
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Feng Long
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Kanagalaghatta R Rajashankar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700S. Cass Avenue, Argonne. Illinois 60439, USA
| | - Edward W Yu
- 1] Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA [2] Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Mehrshahi P, Gonzalez-Jorge S, Akhtar TA, Ward JL, Santoyo-Castelazo A, Marcus SE, Lara-Núñez A, Ravanel S, Hawkins ND, Beale MH, Barrett DA, Knox JP, Gregory JF, Hanson AD, Bennett MJ, Dellapenna D. Functional analysis of folate polyglutamylation and its essential role in plant metabolism and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:267-79. [PMID: 21070407 DOI: 10.1111/j.1365-313x.2010.04336.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.
Collapse
Affiliation(s)
- Payam Mehrshahi
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Silo-Suh LA, Elmore B, Ohman DE, Suh SJ. Isolation, characterization, and utilization of a temperature-sensitive allele of a Pseudomonas replicon. J Microbiol Methods 2009; 78:319-24. [PMID: 19615413 DOI: 10.1016/j.mimet.2009.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/23/2009] [Accepted: 07/07/2009] [Indexed: 11/15/2022]
Abstract
In order to facilitate genetic study of the opportunistic bacterial pathogen Pseudomonas aeruginosa, we isolated a conditional, temperature-sensitive plasmid origin of replication. We mutagenized the popular Pseudomonas stabilizing fragment from pRO1610 in vitro using the Taq thermostable DNA polymerase in a polymerase chain reaction (PCR). Out of approximately 23,000 potential clones, 48 temperature-sensitive mutants were isolated. One mutant was further characterized and the origin of replication was designated as mSF(ts1). The mutations that resulted in a temperature-sensitive phenotype in mSF(ts1) were localized to the 1.2 kb of minimum sequence required for replication in P. aeruginosa. The DNA sequence analysis revealed two mutations within the coding sequence of the Replication control (Rep) protein. Growth of P. aeruginosa carrying the temperature-sensitive plasmid at the non-permissive temperature of 42 degrees C resulted in loss of the plasmid by greater than 99.9999% of the cells after 16 h of growth. In order to facilitate its utilization, the mSF(ts1) was converted into a genetic cassette flanked by mirrored restriction endonuclease digestion sites of a pUC1918 derivative. We demonstrate utilization of the mSF(ts1) for genetic studies involving complementation and regeneration of a mutant in P. aeruginosa research.
Collapse
Affiliation(s)
- Laura A Silo-Suh
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849, United States
| | | | | | | |
Collapse
|
9
|
Sheng Y, Khanam N, Tsaksis Y, Shi XM, Lu QS, Bognar AL. Mutagenesis of folylpolyglutamate synthetase indicates that dihydropteroate and tetrahydrofolate bind to the same site. Biochemistry 2008; 47:2388-96. [PMID: 18232714 DOI: 10.1021/bi701670y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Medical Genetics and Microbiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
10
|
Young PG, Smith CA, Sun X, Baker EN, Metcalf P. Purification, crystallization and preliminary X-ray analysis of Mycobacterium tuberculosisfolylpolyglutamate synthase (MtbFPGS). Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:579-82. [PMID: 16754987 PMCID: PMC2243083 DOI: 10.1107/s1744309106017180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/09/2006] [Indexed: 05/10/2023]
Abstract
The gene encoding Mycobacterium tuberculosis FPGS (MtbFPGS; Rv2447c) has been cloned and the protein (51 kDa) expressed in Escherichia coli. The purified protein was crystallized either by the batch method in the presence of adenosine diphosphate (ADP) and CoCl2 or by vapour diffusion in the presence of ADP, dihydrofolate and CaCl2. X-ray diffraction data to approximately 2.0 and 2.6 A resolution were collected at the Stanford Synchrotron Radiation Laboratory (SSRL) for crystals grown under the respective conditions. Both crystals belong to the cubic space group P2(1)3, with a unit-cell parameter of 112.6 and 111.8 A, respectively. Structure determination is proceeding.
Collapse
Affiliation(s)
- P G Young
- Laboratory of Structural Biology, School of Biological Sciences, Thomas Building, 3A Symonds Street, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
11
|
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008. [PMID: 16738554 PMCID: PMC1681482 DOI: 10.1038/msb4100050] [Citation(s) in RCA: 5884] [Impact Index Per Article: 309.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 12/07/2005] [Indexed: 11/17/2022] Open
Abstract
We have systematically made a set of precisely defined, single-gene deletions of all nonessential genes in Escherichia coli K-12. Open-reading frame coding regions were replaced with a kanamycin cassette flanked by FLP recognition target sites by using a one-step method for inactivation of chromosomal genes and primers designed to create in-frame deletions upon excision of the resistance cassette. Of 4288 genes targeted, mutants were obtained for 3985. To alleviate problems encountered in high-throughput studies, two independent mutants were saved for every deleted gene. These mutants—the ‘Keio collection'—provide a new resource not only for systematic analyses of unknown gene functions and gene regulatory networks but also for genome-wide testing of mutational effects in a common strain background, E. coli K-12 BW25113. We were unable to disrupt 303 genes, including 37 of unknown function, which are candidates for essential genes. Distribution is being handled via GenoBase (http://ecoli.aist-nara.ac.jp/).
Collapse
Affiliation(s)
- Tomoya Baba
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Takeshi Ara
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Miki Hasegawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- CREST, JST (Japan Science and Technology), Kawaguchi, Saitama, Japan
| | - Yuki Takai
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- CREST, JST (Japan Science and Technology), Kawaguchi, Saitama, Japan
| | - Yoshiko Okumura
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Miki Baba
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Kirill A Datsenko
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
| | - Barry L Wanner
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA. Tel.: +1 765 494 8034; Fax: +1 765 494 0876; E-mail:
| | - Hirotada Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan. Tel.: +81 743 72 5660; Fax: +81 743 72 5669; E-mail:
| |
Collapse
|
12
|
Mathieu M, Debousker G, Vincent S, Viviani F, Bamas-Jacques N, Mikol V. Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy. J Biol Chem 2005; 280:18916-22. [PMID: 15705579 DOI: 10.1074/jbc.m413799200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In some bacteria, such as Escherichia coli, the addition of L-glutamate to dihydropteroate (dihydrofolate synthetase activity) and the subsequent additions of L-glutamate to tetrahydrofolate (folylpolyglutamate synthetase (FPGS) activity) are catalyzed by the same enzyme, FolC. The crystal structure of E. coli FolC is described in this paper. It showed strong similarities to that of the FPGS enzyme of Lactobacillus casei within the ATP binding site and the catalytic site, as do all other members of the Mur synthethase superfamily. FolC structure revealed an unexpected dihydropteroate binding site very different from the folate site identified previously in the FPGS structure. The relevance of this site is exemplified by the presence of phosphorylated dihydropteroate, a reaction intermediate in the DHFS reaction. L. casei FPGS is considered a relevant model for human FPGS. As such, the presence of a folate binding site in E. coli FolC, which is different from the one seen in FPGS enzymes, provides avenues for the design of specific inhibitors of this enzyme in antimicrobial therapy.
Collapse
Affiliation(s)
- Magali Mathieu
- Department of Structural Biology, Aventis Pharma, 13 Quai J. Guesde, F-94403 Vitry/Seine, France.
| | | | | | | | | | | |
Collapse
|
13
|
Bermingham A, Derrick JP. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 2002; 24:637-48. [PMID: 12111724 DOI: 10.1002/bies.10114] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been acknowledged for many years and validated by the clinical use of several drugs. Recently, the crystal structures of all but one of the enzymes in the pathway from GTP to dihydrofolate have been determined. Given that structure-based drug design strategies are now widely employed, these recent developments have prompted a re-evaluation of the potential of each of the enzymes in the pathway as a target for development of specific inhibitors. Here, we review the current knowledge of the structure and mechanism of each enzyme in the bacterial folic acid biosynthesis pathway from GTP to dihydrofolate and draw conclusions regarding the potential of each enzyme as a target for therapeutic intervention.
Collapse
|
14
|
Murata T, Bognar AL, Hayashi T, Ohnishi M, Nakayama K, Terawaki Y. Molecular analysis of the folC gene of Pseudomonas aeruginosa. Microbiol Immunol 2001; 44:879-86. [PMID: 11145267 DOI: 10.1111/j.1348-0421.2000.tb02578.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have cloned the Pseudomonas aeruginosa folC gene coding for folylpolyglutamate synthetase-dihydrofolate synthetase, which was located between the trpF and purF loci, and determined the nucleotide sequence of the folC gene and its flanking region. The deduced amino acid sequence of P. aeruginosa FolC was highly homologous to that of Escherichia coli FolC. The cloned gene complemented E. coli folC mutations and was found to encode both folylpolyglutamate synthetase and dihydrofolate synthetase activities. The gene organization around the folC gene in P. aeruginosa was completely conserved with that in E. coli; the accD gene was located upstream of the folC gene, and dedD, cvpA and purF genes followed the folC gene in this order. The gene arrangement and the result of the promoter activity assay suggested that the P. aeruginosa accD and folC genes were co-transcribed.
Collapse
Affiliation(s)
- T Murata
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Herrington MB, Chirwa NT. Growth properties of afolAnull mutant ofEscherichia coliK12. Can J Microbiol 1999. [DOI: 10.1139/w98-229] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli, dihydrofolate reductase is required for both the de novo synthesis of tetrahydrofolate and the recycling of dihydrofolate produced during the synthesis of thymidylate. The coding region of the dihydrofolate reductase gene, folA, was replaced with a kanamycin resistance determinant. Unlike earlier deletions, this mutation did not disrupt flanking genes. When the mutation was transferred into a wild-type strain and a thymidine- (thy) requiring strain, the resulting strains were viable but slow growing on rich medium. Both synthesized less folate than their parents, as judged by the incorporation of radioactive para-aminobenzoic acid. The derivative of the wild-type strain did not grow on any defined minimal media tested. In contrast, the derivative of the thy-requiring strain grew slowly on minimal medium with thy but exhibited auxotrophies on some combinations of supplements. These results suggest that when folates are limited, they can be distributed appropriately to folate-dependent biosynthetic reactions only under some conditions. Key words: dihydrofolate reductase, Escherichia coli, biosynthesis, folates, one-carbon metabolism.
Collapse
|
16
|
Abstract
A series of cloning vectors with conditional, temperature-sensitive replication that are selectable with ampicillin, chloramphenicol, and kanamycin has been constructed. These vectors are derivatives of a pSC101 mutant that can replicate only at low temperatures. The cloning vectors carry a number of unique restriction sites and provide for screening of recombinant plasmids by alpha complementation. These vectors have proven useful for a variety of applications where conditional replication of a recombinant plasmid is desired.
Collapse
Affiliation(s)
- G J Phillips
- Department of Microbiology, Iowa State University, Ames, Iowa, 50011,
| |
Collapse
|
17
|
Burger A, Brandt B, Süsstrunk U, Thompson CJ, Wohlleben W. Analysis of a Streptomyces coelicolor A3(2) locus containing the nucleoside diphosphate kinase (ndk) and folylpolyglutamate synthetase (folC) genes. FEMS Microbiol Lett 1998; 159:283-91. [PMID: 9503623 DOI: 10.1111/j.1574-6968.1998.tb12873.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A 3.6-kb DNA fragment from Streptomyces coelicolor A3(2) with the genes valS probably encoding a valyl-tRNA synthetase, folC encoding folylpolyglutamate synthetase, and ndk encoding a nucleoside diphosphate kinase was analysed. folC and ndk are separated by a small open reading frame of unknown function, orfX. The deduced folC gene product is a protein of 46,677 Da whose sequence is similar to other folylpolyglutamate synthetases and folylpolyglutamate synthetase-dihydrofolate synthetases from both Gram-positive and Gram-negative bacteria. After cloning folC behind the lacZ promoter, the Streptomyces folC complemented a folC mutant of Escherichia coli. An essential function for Streptomyces folC was suggested by the fact that it could not be mutated using a conventional gene disruption technique.
Collapse
Affiliation(s)
- A Burger
- Eberhard-Karls-Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
Folate-dependent pathways of one-carbon metabolism are essential for the synthesis of purines, formylmethionyl-tRNA, thymidylate, serine and methionine. These syntheses use a cellular source of one-carbon substituted, tetrahydrofolate polyglutamate derivatives which are the preferred substrates of most folate-dependent enzymes. In the last decade, there have been major advances in the folate biochemistry of animal, bacterial, fungal and plant systems. These have included the refinement of methods for folate isolation and characterization, basic work on key enzymes of folate biosynthesis and the detailed characterization of proteins that catalyze the generation and utilization of one-carbon substituted folates.
Collapse
Affiliation(s)
- E A Cossins
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
19
|
Fermér C, Swedberg G. Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli. J Bacteriol 1997; 179:831-7. [PMID: 9006040 PMCID: PMC178767 DOI: 10.1128/jb.179.3.831-837.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, the effects of three point mutations (at amino acid positions 31, 84, and 194) in the gene coding for a sulfonamide-resistant dihydropteroate synthase of Neisseria meningitidis were analyzed by site-directed mutagenesis. Changes at positions 31 and 194 abolished the phenotypic expression of sulfonamide resistance, while a change at position 84 appeared to be neutral. These studies are here extended to correlate the alterations in phenotype with effects on enzyme kinetics by expressing the cloned meningococcal genes in an Escherichia coli strain that had its dhps gene partially deleted and replaced by a resistance determinant. The most dramatic effects were produced by mutations at position 31. A change from the Leu found in the resistant isolate to a Phe (the residue found in sensitive isolates) led to a 10-fold decrease in the Km and a concomitant drop in the Ki. Changes at position 194 also affected both the Km and Ki but not to the same extent as mutations at position 31. Changing position 84 altered the Km only slightly but significantly. This latter change was interpreted as a compensatory change modulating the function of the enzyme. In another type of resistance gene, 2 amino acid residues, proposed to be an insertion, were deleted, resulting in a sensitive enzyme. However, the resulting Km was raised 10-fold, suggesting that compensatory changes have accumulated in this type of resistance determinant as well. This resistance gene differs by as much as 10% from the sensitive isolates, which makes identification of important mutations difficult.
Collapse
Affiliation(s)
- C Fermér
- Department of Pharmaceutical Biosciences, Division of Microbiology, Faculty of Pharmacy, Uppsala University, Sweden
| | | |
Collapse
|
20
|
Fussenegger M, Meyer TF. Cloning and characterization of the Neisseria gonorrhoeae MS11 folC gene. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:277-285. [PMID: 8602142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gene coding for folylpoly-(gamma)-glutamate synthetase (FPGS)-dihydrofolate synthetase (DHFS) of Neisseria gonorrhoeae (Ngo) has been cloned by functional complementation of an Escherichia coli folC mutant (SF4). The sequence encodes a 224-residue protein of 46.4 kDa. It shows 46% identity to the E. coli FPGS-DHFS and 29% identity to the FPGS of Lacto-bacillus casei. Sequence comparisons between the three genes reveal regions of high homology, including ATP binding sites required for bifunctionality, all of which may be important for FPGS activity. In contrast to L. casei FPGS, the E. coli and Ngo enzymes share some additional regions which may be essential for DHFS activity. The products of Ngo folC and flanking genes were monitored by T7 promoter expression. Interestingly, deletion of the upstream folI gene, which encodes a 16.5 kDa protein, abolishes the capacity of folC to complement E. coli SF4 to the wild-type phenotype. The ability to complement can be restored by folI provided in trans. Unlike folC mutants, gonococcal folI mutants are viable and display no apparent phenotype. Thus, in contrast to E. coli, Ngo folC is expressed at a sufficiently high level from its own promoter, in the absence of FolI This study provides the first insights into the genetic complexity of one-carbon metabolism in Nqo.
Collapse
Affiliation(s)
- M Fussenegger
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | |
Collapse
|