1
|
Sleytr UB, Pum D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q Rev Biophys 2025; 58:e4. [PMID: 39819733 DOI: 10.1017/s0033583524000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Prokaryotic microorganisms, comprising Bacteria and Archaea, exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution. S-layers provide organisms with a great variety of selective advantages, including acting as an antifouling layer, protective coating, molecular sieve, ion trap, structure involved in cell and molecular adhesion, surface recognition and virulence factor for pathogens. In Archaea that possess S-layers as the exclusive cell wall component, the (glyco)protein lattices function as a cell shape-determining/maintaining scaffold. The wealth of information available on the structure, chemistry, genetics and in vivo and in vitro morphogenesis has revealed a broad application potential for S-layers as patterning elements in a molecular construction kit for bio- and nanotechnology, synthetic biology, biomimetics, biomedicine and diagnostics. In this review, we try to describe the scientifically exciting early days of S-layer research with a special focus on the 'Vienna-S-Layer-Group'. Our presentation is intended to illustrate how our curiosity and joy of discovery motivated us to explore this new structure and to make the scientific community aware of its relevance in the realm of prokaryotes, and moreover, how we developed concepts for exploiting this unique self-assembly structure. We hope that our presentation, with its many personal notes, is also of interest from the perspective of the history of S-layer research.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Pum
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Bharat TAM, von Kügelgen A, Alva V. Molecular Logic of Prokaryotic Surface Layer Structures. Trends Microbiol 2021; 29:405-415. [PMID: 33121898 PMCID: PMC8559796 DOI: 10.1016/j.tim.2020.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Most prokaryotic cells are encased in a surface layer (S-layer) consisting of a paracrystalline array of repeating lattice-forming proteins. S-layer proteins populate a vast and diverse sequence space, performing disparate functions in prokaryotic cells, including cellular defense, cell-shape maintenance, and regulation of import and export of materials. This article highlights recent advances in the understanding of S-layer structure and assembly, made possible by rapidly evolving structural and cell biology methods. We underscore shared assembly principles revealed by recent work and discuss a common molecular framework that may be used to understand the structural organization of S-layer proteins across bacteria and archaea.
Collapse
Affiliation(s)
- Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK.
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Central Oxford Structural Microscopy and Imaging Centre, University of Oxford, Oxford OX1 3RE, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen 72076, Germany.
| |
Collapse
|
3
|
Haslberger A, Mader H, Schmalnauer M, Kohl G, Szostak M, Messner P, Sleytr U, Wanner G, Fürst-Ladani S, Lubitz W. Bacterial cell envelopes (ghosts) and LPS but not bacterial S-layers induce synthesis of immune-mediators in mouse macrophages involving CD14. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199700400607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis of inflammatory mediators in human macrophages/monocytes seen after stimulation with lipopolysaccharide (LPS) involves the binding of CD14 to LPS complexed to lipopolysaccharide binding protein (LBP). The binding mechanisms of different LPS domains to LBP and CD14, as well as the interaction of the entire bacterial cell wall and its components with CD14 and LBP, are poorly understood. We, therefore, studied the effects of anti-mouse CD14 antibodies on the synthesis of TNFα and PGE2 in RAW 264.7 mouse macrophages stimulated by bacterial cell envelopes (ghosts) of Escherichia coli 026:B6 and Salmonella typhimurium C5, LPS, lipid A, and crystalline bacterial cell surface layer (S-layer) preparations. Ghosts and S-layers, with distinct activities on the immune-system, are presently under investigation for their use as vaccines. Whereas LPS and E. coli ghosts exhibited a strong endotoxic activity in the Limulus amoebocyte lysate assay, the endotoxic activity of S-layer preparations was several orders of magnitude lower. LPS, ghosts, and bacterial S-layers all induced TNFα and PGE2 synthesis as well as the accumulation of TNFα mRNA. Pre-incubation with anti-mouse CD14 antibodies resulted in a dose-dependent inhibition of TNFα and PGE 2 synthesis after stimulation by LPS, lipid A (30-50%) and ghosts (40-70%). The bacterial S-layer-induced mediator synthesis remained unchanged following the addition of anti-mouse CD14 antibodies. Reproducible differences could be observed for the inhibition of TNFα induced by LPS of different species by anti-CD14. Adding fetal calf serum (FCS) strongly enhanced the release of cell mediators stimulated by low doses of LPS and bacterial ghosts. These effects of the FCS may be due to the presence of LBP in the FCS. The results show that CD14 is highly relevant for the activation of mouse macrophages by bacterial cells, LPS, and lipid A. Specially defined bacterial cell wall constituents such as bacterial S-layers might act through other activation pathways.
Collapse
Affiliation(s)
- A.G. Haslberger
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - H.J. Mader
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - M. Schmalnauer
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - G. Kohl
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - M.P. Szostak
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| | - P. Messner
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, Vienna, Austria
| | - U.B. Sleytr
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, Vienna, Austria
| | - G. Wanner
- Institute of Botany, LM University of Munich, Munich, Germany
| | - S. Fürst-Ladani
- Ludwig-Boltzmann Institut für experimentelle und klinische Traumatologie, Lorenz-Böhler Krankenhaus, Vienna, Austria
| | - W. Lubitz
- Institute of Microbiology and Genetics, Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
5
|
Abstract
Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | |
Collapse
|
6
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
7
|
Ferner-Ortner-Bleckmann J, Huber-Gries C, Pavkov T, Keller W, Mader C, Ilk N, Sleytr UB, Egelseer EM. The high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 interacts with the cell wall components by virtue of three specific binding regions. Mol Microbiol 2009; 72:1448-61. [PMID: 19460092 DOI: 10.1111/j.1365-2958.2009.06734.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complete nucleotide sequence encoding the high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 was established by PCR techniques. Based on the hmma gene sequence, the full-length rHMMA, four N- or C-terminal rHMMA truncations as well as three C-terminal rHMMA fragments were cloned and heterologously expressed in Escherichia coli. Purified rHMMA forms were used either for affinity studies with the recombinant (r) S-layer protein SbsC (rSbsC), peptidoglycan-containing sacculi (PGS) and pure peptidoglycan (PG) devoid of the secondary cell wall polymer (SCWP), or for surface plasmon resonance (SPR) studies using rSbsC and isolated SCWP. In the C-terminal part of the HMMA, three specific binding regions, one for each cell wall component (rSbsC, SCWP and PG), could be identified. The functionality of the PG-binding domain could be confirmed by replacing the main part of the SCWP-binding domain of an S-layer protein by the PG-binding domain of the HMMA. The present work describes a completely new and highly economic strategy for cell adhesion of an exoenzyme.
Collapse
|
8
|
Sleytr UB, Egelseer EM, Ilk N, Pum D, Schuster B. S-Layers as a basic building block in a molecular construction kit. FEBS J 2006; 274:323-34. [PMID: 17181542 DOI: 10.1111/j.1742-4658.2006.05606.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystalline arrays of protein or glycoprotein subunits forming surface layers (S-layers) are the most common outermost envelope components of prokaryotic organisms (archaea and bacteria). The wealth of information on the structure, chemistry, genetics, morphogenesis, and function of S-layers has revealed a broad application potential. As S-layers are periodic structures, they exhibit identical physicochemical properties for each molecular unit down to the subnanometer level and possess pores of identical size and morphology. Many applications of S-layers in nanobiotechnology depend on the ability of isolated subunits to recrystallize into monomolecular lattices in suspension or on suitable surfaces and interfaces. S-Layer lattices can be exploited as scaffolding and patterning elements for generating more complex supramolecular assemblies and structures, as required for life and nonlife science applications.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Center for NanoBiotechnology, University of Natural Resources and Applied Life Sciences Vienna, Austria.
| | | | | | | | | |
Collapse
|
9
|
Gonçalves RP, Bernadac A, Sturgis JN, Scheuring S. Architecture of the native photosynthetic apparatus of Phaeospirillum molischianum. J Struct Biol 2005; 152:221-8. [PMID: 16330228 DOI: 10.1016/j.jsb.2005.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/29/2005] [Accepted: 10/13/2005] [Indexed: 11/24/2022]
Abstract
The ubiquity and importance of photosynthetic organisms in nature has made the molecular mechanisms of photosynthesis a widely studied subject at both structural and functional levels. A current challenge is to understand the supramolecular assembly of the proteins involved in photosynthesis in native membranes. We have used atomic force microscopy to study the architecture of the photosynthetic apparatus and analyze the structure of single molecules in chromatophores of Phaeospirillum molischianum. Core complexes are formed by the reaction center enclosed by an elliptical light harvesting complex 1. LH2 are octameric rings, assembled either with cores or in hexagonally packed LH2 antenna domains. The symmetry mismatch caused by octameric LH2 packing in a hexagonal lattice, that could be avoided in a square lattice, suggests lipophobic effects rather than specific inter-molecular interactions drive protein organization. The core and LH2 complexes are organized to form a supramolecular assembly reminiscent to that found in Rhodospirillum photometricum, and very different from that observed in Rhodobacter sphaeroides, Rb. blasticus, and Blastochloris viridis.
Collapse
Affiliation(s)
- Rui Pedro Gonçalves
- Institut Curie, UMR-CNRS 168, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
| | | | | | | |
Collapse
|
10
|
|
11
|
Ventura M, Jankovic I, Walker DC, Pridmore RD, Zink R. Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl Environ Microbiol 2002; 68:6172-81. [PMID: 12450842 PMCID: PMC134427 DOI: 10.1128/aem.68.12.6172-6181.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family.
Collapse
Affiliation(s)
- Marco Ventura
- Nestlé Research Center, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Graninger M, Kneidinger B, Bruno K, Scheberl A, Messner P. Homologs of the Rml enzymes from Salmonella enterica are responsible for dTDP-beta-L-rhamnose biosynthesis in the gram-positive thermophile Aneurinibacillus thermoaerophilus DSM 10155. Appl Environ Microbiol 2002; 68:3708-15. [PMID: 12147463 PMCID: PMC124034 DOI: 10.1128/aem.68.8.3708-3715.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycan chains of the surface layer (S-layer) glycoprotein from the gram-positive, thermophilic bacterium Aneurinibacillus (formerly Bacillus) thermoaerophilus strain DSM 10155 are composed of L-rhamnose- and D-glycero-D-manno-heptose-containing disaccharide repeating units which are linked to the S-layer polypeptide via core structures that have variable lengths and novel O-glycosidic linkages. In this work we investigated the enzymes involved in the biosynthesis of thymidine diphospho-L-rhamnose (dTDP-L-rhamnose) and their specific properties. Comparable to lipopolysaccharide O-antigen biosynthesis in gram-negative bacteria, dTDP-L-rhamnose is synthesized in a four-step reaction sequence from dTTP and glucose 1-phosphate by the enzymes glucose-1-phosphate thymidylyltransferase (RmlA), dTDP-D-glucose 4,6-dehydratase (RmlB), dTDP-4-dehydrorhamnose 3,5-epimerase (RmlC), and dTDP-4-dehydrorhamnose reductase (RmlD). The rhamnose biosynthesis operon from A. thermoaerophilus DSM 10155 was sequenced, and the genes were overexpressed in Escherichia coli. Compared to purified enterobacterial Rml enzymes, the enzymes from the gram-positive strain show remarkably increased thermostability, a property which is particularly interesting for high-throughput screening and enzymatic synthesis. The closely related strain A. thermoaerophilus L420-91(T) produces D-rhamnose- and 3-acetamido-3,6-dideoxy-D-galactose-containing S-layer glycan chains. Comparison of the enzyme activity patterns in A. thermoaerophilus strains DSM 10155 and L420-91(T) for L-rhamnose and D-rhamnose biosynthesis indicated that the enzymes are differentially expressed during S-layer glycan biosynthesis and that A. thermoaerophilus L420-91(T) is not able to synthesize dTDP-L-rhamnose. These findings confirm that in each strain the enzymes act specifically on S-layer glycoprotein glycan formation.
Collapse
Affiliation(s)
- Michael Graninger
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | | | | | | | | |
Collapse
|
13
|
Schäffer C, Wugeditsch T, Kählig H, Scheberl A, Zayni S, Messner P. The surface layer (S-layer) glycoprotein of Geobacillus stearothermophilus NRS 2004/3a. Analysis of its glycosylation. J Biol Chem 2002; 277:6230-9. [PMID: 11741945 DOI: 10.1074/jbc.m108873200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacillus stearothermophilus NRS 2004/3a possesses an oblique surface layer (S-layer) composed of glycoprotein subunits as the outermost component of its cell wall. In addition to the elucidation of the complete S-layer glycan primary structure and the determination of the glycosylation sites, the structural gene sgsE encoding the S-layer protein was isolated by polymerase chain reaction-based techniques. The open reading frame codes for a protein of 903 amino acids, including a leader sequence of 30 amino acids. The mature S-layer protein has a calculated molecular mass of 93,684 Da and an isoelectric point of 6.1. Glycosylation of SgsE was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-beta-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->](n = 13-18), with a 2-O-methyl group capping the terminal trisaccharide repeating unit at the non-reducing end of the glycan chains. The glycan chains are bound via the disaccharide core -->3)-alpha-l-Rhap-(1-->3)-alpha-L-Rhap-(L--> and the linkage glycose beta-D-Galp in O-glycosidic linkages to the S-layer protein SgsE at positions threonine 620 and serine 794. This S-layer glycoprotein contains novel linkage regions and is the first one among eubacteria whose glycosylation sites have been characterized.
Collapse
Affiliation(s)
- Christina Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, A-1180 Wien, Austria.
| | | | | | | | | | | |
Collapse
|
14
|
Scholz HC, Riedmann E, Witte A, Lubitz W, Kuen B. S-layer variation in Bacillus stearothermophilus PV72 is based on DNA rearrangements between the chromosome and the naturally occurring megaplasmids. J Bacteriol 2001; 183:1672-9. [PMID: 11160098 PMCID: PMC95052 DOI: 10.1128/jb.183.5.1672-1679.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus stearothermophilus PV72 expresses different S-layer genes (sbsA and sbsB) under different growth conditions. No stretches of significant sequence identity between sbsA and sbsB were detected. In order to investigate S-layer gene regulation in B. stearothermophilus PV72, we characterized the upstream regulatory region of sbsA and sbsB by sequencing and primer extension analysis. Both genes are transcribed from unique but different promoters, independently of the growth phase. Localization of sbsB in the sbsA-expressing strain PV72/p6 revealed that the coding region of the second S-layer gene sbsB is located not on the chromosome but on a natural megaplasmid of the strain, whereas the upstream regulatory region of sbsB was exclusively detected on the chromosome of PV72/p6. For sbsB expression, the coding region has to be integrated into the chromosomally located expression site. After the switch to sbsB expression, the sbsA coding region was removed from the chromosome but could still be detected on the plasmid of the sbsB-expressing strain PV72/p2. The sbsA upstream regulatory region, however, remained on the chromosome. This is the first report of S-layer variation not caused by intrachromosomal DNA rearrangements, but where variant formation depends on recombinational events between the plasmid and the chromosome.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- Chromosomes, Bacterial/genetics
- DNA Primers/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genetic Variation/genetics
- Geobacillus stearothermophilus/genetics
- Geobacillus stearothermophilus/growth & development
- Membrane Proteins/genetics
- Molecular Sequence Data
- Plasmids/genetics
- Promoter Regions, Genetic
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Recombination, Genetic/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- H C Scholz
- Institute of Animal Hygiene and Public Veterinary Health, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
15
|
Howorka S, Sára M, Wang Y, Kuen B, Sleytr UB, Lubitz W, Bayley H. Surface-accessible residues in the monomeric and assembled forms of a bacterial surface layer protein. J Biol Chem 2000; 275:37876-86. [PMID: 10969072 DOI: 10.1074/jbc.m003838200] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The S-layer protein SbsB of the thermophilic, Gram-positive organism Bacillus stearothermophilus PV72/p2 forms a crystalline, porous array constituting the outermost component of the cell envelope. SbsB has a molecular mass of 98 kDa, and the corresponding S-layer exhibits an oblique lattice symmetry. To investigate the molecular structure and assembly of SbsB, we replaced 75 residues (mainly serine, threonine, and alanine), located throughout the primary sequence, with cysteine, which is not found in the wild-type protein. As determined by electron microscopy, 72 out of 75 mutants formed regularly-structured self-assembly products identical to wild-type, thereby proving that the replacement of most of the selected amino acids by cysteine does not dramatically alter the structure of the protein. The three defective mutants, which showed a greatly reduced ability to self-assemble, were, however, successfully incorporated into S-layers of wild-type protein. Monomeric SbsB mutants and SbsB mutants assembled into S-layers were subjected to a surface accessibility screen by targeted chemical modification with a 5-kDa hydrophilic cysteine-reactive polyethylene glycol conjugate. In the monomeric form of SbsB, 34 of the examined residues were not surface accessible, while 23 were classified as very accessible, and 18 were of intermediate surface accessibility. By contrast, in the assembled S-layers, 57 of the mutated residues were not accessible, six were very accessible, and 12 of intermediate accessibility. Together with other structural information, the results suggest a model for SbsB in which functional domains are segregated along the length of the polypeptide chain.
Collapse
Affiliation(s)
- S Howorka
- Department of Medical Biochemistry and Genetics, The Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Soual-Hoebeke E, Sousa-D'Auria CD, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G. S-layer protein production by Corynebacterium strains is dependent on the carbon source. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3399-3408. [PMID: 10627038 DOI: 10.1099/00221287-145-12-3399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three strains of Corynebacterium producing various amounts of PS2 S-layer protein were studied. For all strains, more PS2 was produced if the bacteria were grown in minimal medium supplemented with lactate than if they were grown in minimal medium supplemented with glucose. The consumption of substrate and PS2 production was studied in cultures with mixed carbon sources. It was found that the inhibitory effect of glucose consumption was stronger than the stimulatory effect of lactate in one strain, but not in the other two strains. The regulation of gene expression involved in S-layer formation may involve metabolic pathways, which probably differ between strains. S-layer organization was also studied by freeze-fracture electron microscopy. It was found that low levels of PS2 production correlated with the partial covering of the cell surface by a crystalline array. Finally, it was found that PS2 production was mainly regulated by changes in gene expression and that secretion was probably not a limiting step in PS2 accumulation.
Collapse
Affiliation(s)
- Emmanuelle Soual-Hoebeke
- Laboratoire de Biologie Molé culaire des Corynébactéries, Institut de Génétique et Microbiologie, UMR C8621 CNRS, Bât. 4091, and Laboratoire des Biomembranes, UMR 8619 CNRS, Bât. 4302, Université Paris XI, 91405 Orsay Cedex, France
| | - Célia de Sousa-D'Auria
- Laboratoire de Biologie Molé culaire des Corynébactéries, Institut de Génétique et Microbiologie, UMR C8621 CNRS, Bât. 4091, and Laboratoire des Biomembranes, UMR 8619 CNRS, Bât. 4302, Université Paris XI, 91405 Orsay Cedex, France
| | - Mohamed Chami
- Centre de Génétique Moléculaire, CNRS, 91190 Gif sur Yvette, France3
| | - Maire-France Baucher
- Laboratoire de Biologie Molé culaire des Corynébactéries, Institut de Génétique et Microbiologie, UMR C8621 CNRS, Bât. 4091, and Laboratoire des Biomembranes, UMR 8619 CNRS, Bât. 4302, Université Paris XI, 91405 Orsay Cedex, France
| | - Armel Guyonvarch
- Laboratoire de Biologie Molé culaire des Corynébactéries, Institut de Génétique et Microbiologie, UMR C8621 CNRS, Bât. 4091, and Laboratoire des Biomembranes, UMR 8619 CNRS, Bât. 4302, Université Paris XI, 91405 Orsay Cedex, France
| | - Nicolas Bayan
- Laboratoire de Biologie Molé culaire des Corynébactéries, Institut de Génétique et Microbiologie, UMR C8621 CNRS, Bât. 4091, and Laboratoire des Biomembranes, UMR 8619 CNRS, Bât. 4302, Université Paris XI, 91405 Orsay Cedex, France
| | - Karima Salim
- ORSAN SA, 46 rue de Nesle, BP 42, 80190 Mesnil Saint Nicaise, France4
| | - Gérard Leblon
- Laboratoire de Biologie Molé culaire des Corynébactéries, Institut de Génétique et Microbiologie, UMR C8621 CNRS, Bât. 4091, and Laboratoire des Biomembranes, UMR 8619 CNRS, Bât. 4302, Université Paris XI, 91405 Orsay Cedex, France
| |
Collapse
|
17
|
Kotiranta A, Haapasalo M, Kari K, Kerosuo E, Olsen I, Sorsa T, Meurman JH, Lounatmaa K. Surface structure, hydrophobicity, phagocytosis, and adherence to matrix proteins of Bacillus cereus cells with and without the crystalline surface protein layer. Infect Immun 1998; 66:4895-902. [PMID: 9746594 PMCID: PMC108605 DOI: 10.1128/iai.66.10.4895-4902.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonopsonic phagocytosis of Bacillus cereus by human polymorphonuclear leukocytes (PMNs) with particular attention to bacterial surface properties and structure was studied. Two reference strains (ATCC 14579(T) and ATCC 4342) and two clinical isolates (OH599 and OH600) from periodontal and endodontic infections were assessed for adherence to matrix proteins, such as type I collagen, fibronectin, laminin, and fibrinogen. One-day-old cultures of strains OH599 and OH600 were readily ingested by PMNs in the absence of opsonins, while cells from 6-day-old cultures were resistant. Both young and old cultures of the reference strains of B. cereus were resistant to PMN ingestion. Preincubation of PMNs with the phagocytosis-resistant strains of B. cereus did not affect the phagocytosis of the sensitive strain. Negatively stained cells of OH599 and OH600 studied by electron microscopy had a crystalline protein layer on the cell surface. In thin-sectioned cells of older cultures (3 to 6 days old), the S-layer was observed to peel off from the cells. No S-layer was detected on the reference strains. Extraction of cells with detergent followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major 97-kDa protein from the strains OH599 and OH600 but only a weak 97-kDa band from the reference strain ATCC 4342. One-day-old cultures of the clinical strains (hydrophobicity, 5.9 to 6.0%) showed strong binding to type I collagen, laminin, and fibronectin. In contrast, reference strains (hydrophobicity, -1.0 to 4.2%) as well as 6-day-old cultures of clinical strains (hydrophobicity, 19.0 to 53.0%) bound in only low numbers to the proteins. Gold-labelled biotinylated fibronectin was localized on the S-layer on the cell surface as well as on fragments of S-layer peeling off the cells of a 6-day-old culture of B. cereus OH599. Lactose, fibronectin, laminin, and antibodies against the S-protein reduced binding to laminin but not to fibronectin. Heating the cells at 84 degreesC totally abolished binding to both proteins. Benzamidine, a noncompetitive serine protease inhibitor, strongly inhibited binding to fibronectin whereas binding to laminin was increased. Overall, the results indicate that changes in the surface structure, evidently involving the S-layer, during growth of the clinical strains of B. cereus cause a shift from susceptibility to PMN ingestion and strong binding to matrix and basement membrane proteins. Furthermore, it seems that binding to laminin is mediated by the S-protein while binding to fibronectin is dependent on active protease evidently attached to the S-layer.
Collapse
Affiliation(s)
- A Kotiranta
- Institute of Dentistry, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Egelseer EM, Leitner K, Jarosch M, Hotzy C, Zayni S, Sleytr UB, Sára M. The S-layer proteins of two Bacillus stearothermophilus wild-type strains are bound via their N-terminal region to a secondary cell wall polymer of identical chemical composition. J Bacteriol 1998; 180:1488-95. [PMID: 9515918 PMCID: PMC107049 DOI: 10.1128/jb.180.6.1488-1495.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilus PV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1gamma chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.
Collapse
Affiliation(s)
- E M Egelseer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Beveridge TJ, Pouwels PH, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari ML, Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval SF. Functions of S-layers. FEMS Microbiol Rev 1997; 20:99-149. [PMID: 9276929 DOI: 10.1111/j.1574-6976.1997.tb00305.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although S-layers are being increasingly identified on Bacteria and Archaea, it is enigmatic that in most cases S-layer function continues to elude us. In a few instances, S-layers have been shown to be virulence factors on pathogens (e.g. Campylobacter fetus ssp. fetus and Aeromonas salmonicida), protective against Bdellovibrio, a depository for surface-exposed enzymes (e.g. Bacillus stearothermophilus), shape-determining agents (e.g. Thermoproteus tenax) and nucleation factors for fine-grain mineral development (e.g. Synechococcus GL 24). Yet, for the vast majority of S-layered bacteria, the natural function of these crystalline arrays continues to be evasive. The following review up-dates the functional basis of S-layers and describes such diverse topics as the effect of S-layers on the Gram stain, bacteriophage adsorption in lactobacilli, phagocytosis by human polymorphonuclear leukocytes, the adhesion of a high-molecular-mass amylase, outer membrane porosity, and the secretion of extracellular enzymes of Thermoanaerobacterium. In addition, the functional aspect of calcium on the Caulobacter S-layer is explained.
Collapse
Affiliation(s)
- T J Beveridge
- Department of Microbiology, College of Biological Science, University of Guelph, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bahl H, Scholz H, Bayan N, Chami M, Leblon G, Gulik-Krzywicki T, Shechter E, Fouet A, Mesnage S, Tosi-Couture E, Gounon P, Mock M, Conway de Macario E, Macario AJ, Fernández-Herrero LA, Olabarría G, Berenguer J, Blaser MJ, Kuen B, Lubitz W, Sára M, Pouwels PH, Kolen CP, Boot HJ, Resch S. Molecular biology of S-layers. FEMS Microbiol Rev 1997; 20:47-98. [PMID: 9276928 DOI: 10.1111/j.1574-6976.1997.tb00304.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this chapter we report on the molecular biology of crystalline surface layers of different bacterial groups. The limited information indicates that there are many variations on a common theme. Sequence variety, antigenic diversity, gene expression, rearrangements, influence of environmental factors and applied aspects are addressed. There is considerable variety in the S-layer composition, which was elucidated by sequence analysis of the corresponding genes. In Corynebacterium glutamicum one major cell wall protein is responsible for the formation of a highly ordered, hexagonal array. In contrast, two abundant surface proteins from the S-layer of Bacillus anthracis. Each protein possesses three S-layer homology motifs and one protein could be a virulence factor. The antigenic diversity and ABC transporters are important features, which have been studied in methanogenic archaea. The expression of the S-layer components is controlled by three genes in the case of Thermus thermophilus. One has repressor activity on the S-layer gene promoter, the second codes for the S-layer protein. The rearrangement by reciprocal recombination was investigated in Campylobacter fetus. 7-8 S-layer proteins with a high degree of homology at the 5' and 3' ends were found. Environmental changes influence the surface properties of Bacillus stearothermophilus. Depending on oxygen supply, this species produces different S-layer proteins. Finally, the molecular bases for some applications are discussed. Recombinant S-layer fusion proteins have been designed for biotechnology.
Collapse
Affiliation(s)
- H Bahl
- Universität Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sidhu MS, Olsen I. S-layers of Bacillus species. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1039-1052. [PMID: 9141671 DOI: 10.1099/00221287-143-4-1039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Maan Singh Sidhu
- Department of Oral Biology, Dental Faculty, University of Oslo, POB 1052, Blindern 0316, Oslo Norway
| | - Ingar Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, POB 1052, Blindern 0316, Oslo Norway
| |
Collapse
|
22
|
Kuen B, Koch A, Asenbauer E, Sará M, Lubitz W. Molecular characterization of the Bacillus stearothermophilus PV72 S-layer gene sbsB induced by oxidative stress. J Bacteriol 1997; 179:1664-70. [PMID: 9045827 PMCID: PMC178880 DOI: 10.1128/jb.179.5.1664-1670.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
S-layer protein variation from a hexagonally ordered (SbsA; 130 kDa) to a obliquely ordered (SbsB; 98 kDa) protein in Bacillus stearothermophilus PV72 is mediated by an increased oxygen supply. To elucidate the molecular basis of S-layer protein variation in B. stearothermophilus PV72, the sbsB gene, coding for the 98-kDa protein, was cloned by means of inverse PCR technology and sequenced. The sbsB coding region cloned in pUC18 was expressed in Escherichia coli, without its own regulatory upstream sequences but with its putative transcriptional terminator. The reading frame of sbsB (2,760 nucleotides) is predicted to encode a protein of 920 amino acids, including the signal sequence. Amino acid sequence comparison of SbsA and SbsB did not reveal any significant homology. The expression of sbsB in E. coli resulted in an accumulation of SbsB self-assembly products in the cytoplasm.
Collapse
Affiliation(s)
- B Kuen
- Institute of Microbiology and Genetics, Biocenter Vienna, Austria
| | | | | | | | | |
Collapse
|
23
|
Sleytr UB, Sára M. Bacterial and archaeal S-layer proteins: structure-function relationships and their biotechnological applications. Trends Biotechnol 1997; 15:20-6. [PMID: 9032989 DOI: 10.1016/s0167-7799(96)10063-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Crystalline cell surface layers (S-layers) composed of planar assemblies of protein or glycoprotein subunits are one of the most commonly observed cell envelope structures of bacteria and archaea. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at liquid-surface interfaces, including lipid films, on liposomes and on solid supports. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattices are aligned in well-defined positions and orientations. These characteristic features of S-layers have led to various applications in biotechnology, vaccine development, diagnostics, biomimetics and molecular nanotechnology.
Collapse
Affiliation(s)
- U B Sleytr
- Center for Ultrastructure Research, Universität für Bodenkultur Vienna, Austria
| | | |
Collapse
|
24
|
Sára M, Kuen B, Mayer HF, Mandl F, Schuster KC, Sleytr UB. Dynamics in oxygen-induced changes in S-layer protein synthesis from Bacillus stearothermophilus PV72 and the S-layer-deficient variant T5 in continuous culture and studies of the cell wall composition. J Bacteriol 1996; 178:2108-17. [PMID: 8606191 PMCID: PMC177912 DOI: 10.1128/jb.178.7.2108-2117.1996] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Stable synthesis of the hexagonally ordered (p6) S-layer protein from the wild-type strain of Bacillus stearothermophilus PV72 could be achieved in continuous culture on complex medium only under oxygen-limited conditions when glucose was used as the sole carbon source. Depending on the adaptation of the wild-type strain to low oxygen supply, the dynamics in oxygen-induced changes in S-layer protein synthesis was different when the rate of aeration was increased to a level that allowed dissimilation of amino acids. If oxygen supply was increased at the beginning of continuous culture, synthesis of the p6 S-layer protein from the wild-type strain (encoded by the sbsA gene) was immediately stopped and replaced by that of a new type of S-layer protein (encoded by the sbsB gene) which assembled into an oblique (p2) lattice. In cells adapted to a prolonged low oxygen supply, first, low-level p2 S-layer protein synthesis and second, synchronous synthesis of comparable amounts of both types of S-layer proteins could be induced by stepwise increasing the rate of aeration. The time course of changes in S-layer protein synthesis was followed up by immunogold labelling of whole cells. Synthesis of the p2 S-layer protein could also be induced in the p6-deficient variant T5. Hybridization data obtained by applying the radiolabelled N-terminal and C-terminal sbsA fragments and the N-terminal sbsB fragment to the genomic DNA of all the three organisms indicated that changes in S-layer protein synthesis were accompanied by chromosomal rearrangement. Chemical analysis of peptidoglycan-containing sacculi and extraction and recrystallization experiments revealed that at least for the wild-type strain, a cell wall polymer consisting of N-acetylglucosamine and glucose is responsible for binding of the p6 S-layer protein to the rigid cell wall layer.
Collapse
Affiliation(s)
- M Sára
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
25
|
Sára M, Sleytr UB. Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 65:83-111. [PMID: 9029942 DOI: 10.1016/s0079-6107(96)00007-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Sára
- Center for Ultrastructure Research, Universität für Bodenkultur, Vienna, Austria
| | | |
Collapse
|
26
|
Boot HJ, Kolen CP, Pouwels PH. Identification, cloning, and nucleotide sequence of a silent S-layer protein gene of Lactobacillus acidophilus ATCC 4356 which has extensive similarity with the S-layer protein gene of this species. J Bacteriol 1995; 177:7222-30. [PMID: 8522531 PMCID: PMC177603 DOI: 10.1128/jb.177.24.7222-7230.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The bacterial S-layer forms a regular structure, composed of a monolayer of one (glyco)protein, on the surfaces of many prokaryotic species. S-layers are reported to fulfil different functions, such as attachment structures for extracellular enzymes and major virulence determinants for pathogenic species. Lactobacillus acidophilus ATCC 4356, which originates from the human pharynx, possesses such an S-layer. No function has yet been assigned to the S-layer of this species. Besides the structural gene (slpA) for the S-layer protein (S-protein) which constitutes this S-layer, we have identified a silent gene (slpB), which is almost identical to slpA in two regions. From the deduced amino acid sequence, it appears that the mature SB-protein (44,884 Da) is 53% similar to the SA-protein (43,636 Da) in the N-terminal and middle parts of the proteins. The C-terminal parts of the two proteins are identical except for one amino acid residue. The physical properties of the deduced S-proteins are virtually the same. Northern (RNA) blot analysis shows that only the slpA gene is expressed in wild-type cells, in line with the results from sequencing and primer extension analyses, which reveal that only the slpA gene harbors a promoter, which is located immediately upstream of the region where the two genes are identical. The occurrence of in vivo chromosomal recombination between the two S-protein-encoding genes will be described elsewhere.
Collapse
Affiliation(s)
- H J Boot
- Biocentrum Amsterdam, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|