1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
The Disordered C-Terminus of the Chaperone DnaK Increases the Competitive Fitness of Pseudomonas putida and Facilitates the Toxicity of GraT. Microorganisms 2021; 9:microorganisms9020375. [PMID: 33668424 PMCID: PMC7918210 DOI: 10.3390/microorganisms9020375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Chaperone proteins are crucial for proper protein folding and quality control, especially when cells encounter stress caused by non-optimal temperatures. DnaK is one of such essential chaperones in bacteria. Although DnaK has been well characterized, the function of its intrinsically disordered C-terminus has remained enigmatic as the deletion of this region has been shown to either enhance or reduce its protein folding ability. We have shown previously that DnaK interacts with toxin GraT of the GraTA toxin-antitoxin system in Pseudomonas putida. Interestingly, the C-terminal truncation of DnaK was shown to alleviate GraT-caused growth defects. Here, we aim to clarify the importance of DnaK in GraT activity. We show that DnaK increases GraT toxicity, and particularly important is the negatively charged motif in the DnaK C-terminus. Given that GraT has an intrinsically disordered N-terminus, the assistance of DnaK is probably needed for re-modelling the toxin structure. We also demonstrate that the DnaK C-terminal negatively charged motif contributes to the competitive fitness of P. putida at both high and optimal growth temperatures. Thus, our data suggest that the disordered C-terminal end of DnaK enhances the chaperone functionality.
Collapse
|
3
|
Kim H, Seong W, Rha E, Lee H, Kim SK, Kwon KK, Park KH, Lee DH, Lee SG. Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosens Bioelectron 2020; 170:112670. [DOI: 10.1016/j.bios.2020.112670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
|
4
|
Elken E, Heinaru E, Jõesaar M, Heinaru A. Formation of new PHE plasmids in pseudomonads in a phenol-polluted environment. Plasmid 2020; 110:102504. [PMID: 32289323 DOI: 10.1016/j.plasmid.2020.102504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/01/2022]
Abstract
Several years ago, a laboratory-constructed plasmid with a single-component phenol monooxygenase gene (pheBA operon) flanked by two IS elements was released to a phenol-polluted area. During the following years, we found in the test area widely distributed pheBA operon-containing bacteria. The new pheBA+ strains belong predominantly to the Pseudomonas fluorescens group, and they did not arise via selection of the released PHE plasmid. On the contrary, the formation of several different types of PHE plasmids occurred, namely pPHE101 (60,958 bp) from the IncP-9 group, non-transferable plasmid pPHE69 (44,717 bp), mobilizable plasmid pPHE20 (39,609 bp) and the IncP-7 type plasmid pPHE24ΔpheBA (120,754 bp), in which the pheBA operon was translocated from the plasmid to the chromosome. In two cases, PHE plasmid-bearing strains exist in a multi-plasmid state, also containing the non-catabolic plasmids pG20 (133,709 bp) and pG69 (144,433 bp) with backbones sharing 97% DNA identity and with redundant genes for the initiation of replication, repA1and repA2, of which only one was active. Seemingly, several other plasmids and bacterial features besides the pheBA operon were involved in selective distribution of catabolic operons in the natural environment. The comparison of the genetic structure of plasmids and IS elements' functions, as well as resistance to heavy metals of seven completely sequenced plasmids, are discussed.
Collapse
Affiliation(s)
- Eve Elken
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Eeva Heinaru
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia.
| | - Merike Jõesaar
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Ain Heinaru
- Department of Genetics, Institute of Molecular and Cell Biology, Faculty of Science and Technology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| |
Collapse
|
5
|
Seibt H, Sauer UH, Shingler V. The Y233 gatekeeper of DmpR modulates effector-responsive transcriptional control of σ 54 -RNA polymerase. Environ Microbiol 2019; 21:1321-1330. [PMID: 30773776 DOI: 10.1111/1462-2920.14567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
DmpR is the obligate transcriptional activator of genes involved in (methyl)phenol catabolism by Pseudomonas putida. DmpR belongs to the AAA+ class of mechano-transcriptional regulators that employ ATP-hydrolysis to engage and remodel σ54 -RNA polymerase to allow transcriptional initiation. Previous work has established that binding of phenolic effectors by DmpR is a prerequisite to relieve interdomain repression and allow ATP-binding to trigger transition to its active multimeric conformation, and further that a structured interdomain linker between the effector- and ATP-binding domains is involved in coupling these processes. Here, we present evidence from ATPase and in vivo and in vitro transcription assays that a tyrosine residue of the interdomain linker (Y233) serves as a gatekeeper to constrain ATP-hydrolysis and aromatic effector-responsive transcriptional activation by DmpR. An alanine substitution of Y233A results in both increased ATPase activity and enhanced sensitivity to aromatic effectors. We propose a model in which effector-binding relocates Y233 to synchronize signal-reception with multimerisation to provide physiologically appropriate sensitivity of the transcriptional response. Given that Y233 counterparts are present in many ligand-responsive mechano-transcriptional regulators, the model is likely to be pertinent for numerous members of this family and has implications for development of enhanced sensitivity of biosensor used to detect pollutants.
Collapse
Affiliation(s)
- Henrik Seibt
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Uwe H Sauer
- Deparment of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
6
|
Wirebrand L, Madhushani AWK, Irie Y, Shingler V. Multiple Hfq-Crc target sites are required to impose catabolite repression on (methyl)phenol metabolism in Pseudomonas putida CF600. Environ Microbiol 2017; 20:186-199. [PMID: 29076626 DOI: 10.1111/1462-2920.13966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
The dmp-system encoded on the IncP-2 pVI150 plasmid of Pseudomonas putida CF600 confers the ability to assimilate (methyl)phenols. Regulation of the dmp-genes is subject to sophisticated control, which includes global regulatory input to subvert expression of the pathway in the presence of preferred carbon sources. Previously we have shown that in P. putida, translational inhibition exerted by the carbon repression control protein Crc operates hand-in-hand with the RNA chaperon protein Hfq to reduce translation of the DmpR regulator of the Dmp-pathway. Here, we show that Crc and Hfq co-target four additional sites to form riboprotein complexes within the proximity of the translational initiation sites of genes encoding the first two steps of the Dmp-pathway to mediate two-layered control in the face of selection of preferred substrates. Furthermore, we present evidence that Crc plays a hitherto unsuspected role in maintaining the pVI150 plasmid within a bacterial population, which has implications for (methyl)phenol degradation and a wide variety of other physiological processes encoded by the IncP-2 group of Pseudomonas-specific mega-plasmids.
Collapse
Affiliation(s)
- Lisa Wirebrand
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| | | | - Yasuhiko Irie
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| |
Collapse
|
7
|
Oesterle S, Wuethrich I, Panke S. Toward Genome-Based Metabolic Engineering in Bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:49-82. [PMID: 29050667 DOI: 10.1016/bs.aambs.2017.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prokaryotes modified stably on the genome are of great importance for production of fine and commodity chemicals. Traditional methods for genome engineering have long suffered from imprecision and low efficiencies, making construction of suitable high-producer strains laborious. Here, we review the recent advances in discovery and refinement of molecular precision engineering tools for genome-based metabolic engineering in bacteria for chemical production, with focus on the λ-Red recombineering and the clustered regularly interspaced short palindromic repeats/Cas9 nuclease systems. In conjunction, they enable the integration of in vitro-synthesized DNA segments into specified locations on the chromosome and allow for enrichment of rare mutants by elimination of unmodified wild-type cells. Combination with concurrently developing improvements in important accessory technologies such as DNA synthesis, high-throughput screening methods, regulatory element design, and metabolic pathway optimization tools has resulted in novel efficient microbial producer strains and given access to new metabolic products. These new tools have made and will likely continue to make a big impact on the bioengineering strategies that transform the chemical industry.
Collapse
|
8
|
Patil VV, Park KH, Lee SG, Woo E. Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR. Structure 2016; 24:624-630. [PMID: 27050690 DOI: 10.1016/j.str.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022]
Abstract
Positive phenol-degradative gene regulator (PoxR) is a σ(54)-dependent AAA+ ATPase transcription activator that regulates the catabolism of phenols. The PoxR sensory domain detects phenols and relays signals for the activation of transcription. Here we report the first structure of the phenol sensory domain bound to phenol and five derivatives. It exists as a tightly intertwined homodimer with a phenol-binding pocket buried inside, placing two C termini on the same side of the dimer. His102 and Trp130 interact with the hydroxyl group of the phenol in a cavity surrounded by rigid hydrophobic residues on one side and a flexible region on the other. Each monomer has a V4R fold with a unique zinc-binding site. A shift at the C-terminal helix suggests that there is a possible conformational change upon ligand binding. The results provide a structural basis of chemical effector binding for transcriptional regulation with broad implications for protein engineering.
Collapse
Affiliation(s)
- Vinod Vikas Patil
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Kwang-Hyun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-333, Korea
| | - Euijeon Woo
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea.
| |
Collapse
|
9
|
Chong H, Ching CB. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR. ACS Synth Biol 2016; 5:1290-1298. [PMID: 27346389 DOI: 10.1021/acssynbio.6b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is useful for whole-cell biosensors to be based on colorimetric detection because the output signal can be easily visualized. However, colorimetric-based whole-cell biosensors suffer higher detection limits as compared to bioluminescence- or fluorescence-based biosensors. In this work, we attempt to reduce the detection limit for a colorimetric-based whole-cell biosensor by applying directed evolution techniques on a transcription regulator, DmpR, to alter the expression level of its cognate promoter, which was fused to mRFP1 to output red coloration in the presence of organophosphate pesticides containing a phenolic group. We selected the two best-performing mutants, DM01 and DM12, which were able to develop red coloration in the presence of parathion as low as 10 μM after just 6 h of induction at 30 °C. This suggests that engineering of the transcription regulator in the sensing domain is useful for improving various properties of whole-cell biosensors, such as reducing the detection limit for simple colorimetric detection of organophosphate pesticides.
Collapse
Affiliation(s)
- Huiqing Chong
- Temasek Laboratories, National University of Singapore 117411, Singapore
| | - Chi Bun Ching
- Temasek Laboratories, National University of Singapore 117411, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585, Singapore
| |
Collapse
|
10
|
Mumm K, Ainsaar K, Kasvandik S, Tenson T, Hõrak R. Responses of Pseudomonas putida to Zinc Excess Determined at the Proteome Level: Pathways Dependent and Independent of ColRS. J Proteome Res 2016; 15:4349-4368. [DOI: 10.1021/acs.jproteome.6b00420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Karl Mumm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Kadi Ainsaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| |
Collapse
|
11
|
LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida. PLoS One 2016; 11:e0166078. [PMID: 27812186 PMCID: PMC5094663 DOI: 10.1371/journal.pone.0166078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/21/2016] [Indexed: 11/19/2022] Open
Abstract
The ability of bacteria to regulate cell surface hydrophobicity is important for the adaptation to different environmental conditions. The hydrophobicity of cell surface can be determined by several factors, including outer membrane and surface proteins. In this study, we report that an adhesin LapF influences cell surface hydrophobicity of Pseudomonas putida. Cells lacking LapF are less hydrophobic than wild-type cells in stationary growth phase. Moreover, the overexpression of the global regulator Fis decreases surface hydrophobicity by repressing the expression of lapF. Flow cytometry analysis revealed that bacteria producing LapF are more viable when confronted with methanol (a hydrophilic compound) but are more susceptible to 1-octanol (a hydrophobic compound). Thus, these results revealed that LapF is the hydrophobicity factor for the cell surface of P. putida.
Collapse
|
12
|
Ray S, Gunzburg MJ, Wilce M, Panjikar S, Anand R. Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator. ACS Chem Biol 2016; 11:2357-65. [PMID: 27362503 DOI: 10.1021/acschembio.6b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenol and its derivatives are common pollutants that are present in industrial discharge and are major xenobiotics that lead to water pollution. To monitor as well as improve water quality, attempts have been made in the past to engineer bacterial in vivo biosensors. However, due to the paucity of structural information, there is insufficiency in gauging the factors that lead to high sensitivity and selectivity, thereby impeding development. Here, we present the crystal structure of the sensor domain of MopR (MopR(AB)) from Acinetobacter calcoaceticus in complex with phenol and its derivatives to a maximum resolution of 2.5 Å. The structure reveals that the N-terminal residues 21-47 possess a unique fold, which are involved in stabilization of the biological dimer, and the central ligand binding domain belongs to the "nitric oxide signaling and golgi transport" fold, commonly present in eukaryotic proteins that bind long-chain fatty acids. In addition, MopR(AB) nests a zinc atom within a novel zinc binding motif, crucial for maintaining structural integrity. We propose that this motif is crucial for orchestrated motions associated with the formation of the effector binding pocket. Our studies reveal that residues W134 and H106 play an important role in ligand binding and are the key selectivity determinants. Furthermore, comparative analysis of MopR with XylR and DmpR sensor domains enabled the design of a MopR binding pocket that is competent in binding DmpR-specific ligands. Collectively, these findings pave way towards development of specific/broad based biosensors, which can act as useful tools for detection of this class of pollutants.
Collapse
Affiliation(s)
- Shamayeeta Ray
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Menachem J. Gunzburg
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew Wilce
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Santosh Panjikar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Wadhwani
Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
13
|
Heinaru E, Naanuri E, Grünbach M, Jõesaar M, Heinaru A. Functional redundancy in phenol and toluene degradation in Pseudomonas stutzeri strains isolated from the Baltic Sea. Gene 2016; 589:90-98. [PMID: 27185632 DOI: 10.1016/j.gene.2016.05.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
In the present study we describe functional redundancy of bacterial multicomponent monooxygenases (toluene monooxygenase (TMO) and toluene/xylene monooxygenase (XylAM) of TOL pathway) and cooperative genetic regulation at the expression of the respective catabolic operons by touR and xylR encoded regulatory circuits in five phenol- and toluene-degrading Pseudomonas stutzeri strains. In these strains both toluene degradation pathways (TMO and Xyl) are active and induced by toluene and phenol. The whole genome sequence of the representative strain 2A20 revealed the presence of complete TMO- and Xyl-upper pathway operons together with two sets of lower catechol meta pathway operons, as well as phenol-degrading operon in a single 292,430bp contig. The much lower GC content and analysis of the predicted ORFs refer to the plasmid origin of the approximately 130kb region of this contig, containing the xyl, phe and tou genes. The deduced amino acid sequences of the TMO, XylA and the large subunit of phenol monooxygenase (LmPH) show 98-100% identity with the respective gene products of the strain Pseudomonas sp. OX1. In both strains 2A20 and OX1 the meta-cleavage pathways for catechol degradation are coded by two redundant operons (phe and xyl). We show that in the strain 2A20 TouR and XylR are activated by different effector molecules, phenol and toluene, respectively, and they both control transcription of the xyl upper, tou (TMO) and phe catabolic operons. Although the growth parameters of redundant strains did not show advantage at toluene biodegradation, the functional redundancy could provide better flexibility to the bacteria in environmental conditions.
Collapse
Affiliation(s)
- Eeva Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Eve Naanuri
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia.
| | - Maarja Grünbach
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Ain Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
14
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
15
|
|
16
|
Büsing I, Kant M, Dörries M, Wöhlbrand L, Rabus R. The predicted σ(54)-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in "Aromatoleum aromaticum" EbN1. BMC Microbiol 2015; 15:251. [PMID: 26526497 PMCID: PMC4630880 DOI: 10.1186/s12866-015-0571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
Background The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 anaerobically utilizes a multitude of aromatic compounds via specific peripheral degradation routes. Compound-specific formation of these catabolic modules is assumed to be mediated by specific transcriptional activators. In case of the recently elucidated p-ethylphenol/p-hydroxyacetophenone pathway, the highly substrate-specific regulation was implicated to involve the predicted σ54-dependent, NtrC-type regulator EbA324. The latter was suggested to control the expression of the two neighboring gene clusters encoding the catabolic enzymes as well as a corresponding putative solvent efflux system. In the present study, a molecular genetic approach was used to study the predicted function of EbA324. Results An unmarked in frame ΔebA324 (here renamed as ΔetpR; p-ethylphenol regulator) deletion mutation was generated. The ΔetpR mutant was unable to grow anaerobically with either p-ethylphenol or p-hydroxyacetophenone. Growth similar to the wild type was restored in the ΔetpR mutant background by in trans expression of plasmid-born etpR. Furthermore, expression of the "p-ethylphenol" gene clusters as well as corresponding protein formation was shown to depend on the presence of both, EtpR and either p-ethylphenol or p-hydroxyacetophenone. In the wild type, the etpR gene appears to be constitutively expressed and its expression level not to be modulated upon effector presence. Comparison with the regulatory domains of known phenol- and alkylbenzene-responsive NtrC-type regulators of Pseudomonas spp. and Thauera aromatica allowed identifying >60 amino acid residues in the regulatory domain (in particular positions 149 to 192 of EtpR) that may contribute to the effector specificity viz. presumptively restricted effector spectrum of EtpR. Conclusions This study provides experimental evidence for the genome predicted σ54-dependent regulator EtpR (formerly EbA324) of "A. aromaticum" EbN1 to be responsive to p-ethylphenol, as well as its degradation intermediate p-hydroxyacetophenone, and to control the expression of genes involved in the anaerobic degradation of these two aromatic growth substrates. Overall, the presented results advance our understanding on the regulation of anaerobic aromatic compound catabolism, foremost based on the sensory discrimination of structurally similar substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0571-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Imke Büsing
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Mirjam Kant
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
17
|
Paris Ü, Mikkel K, Tavita K, Saumaa S, Teras R, Kivisaar M. NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair (Amst) 2015; 31:11-8. [PMID: 25942369 DOI: 10.1016/j.dnarep.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Under growth-restricting conditions bacterial populations can rapidly evolve by a process known as stationary-phase mutagenesis. Bacterial nonhomologous end-joining (NHEJ) system which consists of the DNA-end-binding enzyme Ku and the multifunctional DNA ligase LigD has been shown to be important for survival of bacteria especially during quiescent states, such as late stationary-phase populations or sporulation. In this study we provide genetic evidence that NHEJ enzymes participate in stationary-phase mutagenesis in a population of carbon-starved Pseudomonas putida. Both the absence of LigD or Ku resulted in characteristic spectra of stationary-phase mutations that differed from each other and also from the wild-type spectrum. This indicates that LigD and Ku may participate also in mutagenic pathways that are independent from each other. Our results also imply that both phosphoesterase (PE) and polymerase (POL) domains of the LigD protein are involved in the occurrence of mutations in starving P. putida. The participation of both Ku and LigD in the occurrence of stationary-phase mutations was further supported by the results of the analysis of mutation spectra in stationary-phase sigma factor RpoS-minus background. The spectra of mutations identified in the RpoS-minus background were also distinct if LigD or Ku was absent. Interestingly, the effects of the presence of these enzymes on the frequency of occurrence of certain types of mutations were different or even opposite in the RpoS-proficient and deficient backgrounds. These results imply that RpoS affects performance of mutagenic pathways in starving P. putida that utilize LigD and/or Ku.
Collapse
Affiliation(s)
- Ülvi Paris
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Katren Mikkel
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Kairi Tavita
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia.
| |
Collapse
|
18
|
Madhushani A, del Peso-Santos T, Moreno R, Rojo F, Shingler V. Transcriptional and translational control through the 5′-leader region of thedmpRmaster regulatory gene of phenol metabolism. Environ Microbiol 2014; 17:119-33. [DOI: 10.1111/1462-2920.12511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Madhushani
- Department of Molecular Biology; Umeå University; Umeå SE 90187 Sweden
| | | | - Renata Moreno
- Departamento de Biotecnologia Microbiana; Centro Nacional de Biotecnologia; CSIC; Madrid Spain
| | - Fernando Rojo
- Departamento de Biotecnologia Microbiana; Centro Nacional de Biotecnologia; CSIC; Madrid Spain
| | - Victoria Shingler
- Department of Molecular Biology; Umeå University; Umeå SE 90187 Sweden
| |
Collapse
|
19
|
Hynninen A, Virta M. Whole-cell bioreporters for the detection of bioavailable metals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 118:31-63. [PMID: 19543702 DOI: 10.1007/10_2009_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.
Collapse
Affiliation(s)
- Anu Hynninen
- Department of Applied Chemistry and Microbiology, University of Helsinki, 56, 00014, Helsinki, Finland
| | | |
Collapse
|
20
|
Pérez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V. The differential response of thePbenpromoter ofPseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts inm-xylene biodegradation. Environ Microbiol 2014; 17:64-75. [DOI: 10.1111/1462-2920.12443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Juhyun Kim
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| |
Collapse
|
21
|
Choi SL, Rha E, Lee SJ, Kim H, Kwon K, Jeong YS, Rhee YH, Song JJ, Kim HS, Lee SG. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits. ACS Synth Biol 2014; 3:163-71. [PMID: 24295047 DOI: 10.1021/sb400112u] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.
Collapse
Affiliation(s)
- Su-Lim Choi
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
- Department
of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Eugene Rha
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Sang Jun Lee
- Infection
and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Haseong Kim
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Kilkoang Kwon
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
| | - Young-Su Jeong
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Young Ha Rhee
- Department
of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jae Jun Song
- Applied
Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 lpsin-gil, Jeongeup-si, South Korea
| | - Hak-Sung Kim
- Department
of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea
| | - Seung-Goo Lee
- Biochemicals
and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu,
Daejeon, South Korea
- Biosystems
and Bioengineering Program, University of Science and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
22
|
Laasik E, Põllumaa L, Pasanen M, Mattinen L, Pirhonen M, Mäe A. Expression of nipP.w of Pectobacterium wasabiae is dependent on functional flgKL flagellar genes. MICROBIOLOGY (READING, ENGLAND) 2014; 160:179-186. [PMID: 24173527 DOI: 10.1099/mic.0.071092-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While flagellum-driven motility is hypothesized to play a role in the virulence of Pectobacterium species, there is no direct evidence that genes involved in flagellum assembly regulate the synthesis of virulence factors. The purpose of this study was to identify genes that affect the production or secretion of necrosis-inducing protein (Nip) in the strain SCC3193. Transposon mutagenesis of an RpoS strain overexpressing NipP.w was performed, and a mutant associated with decreased necrosis of tobacco leaves was detected. The mutant contained a transposon in the regulatory region upstream of the flagellar genes flgK and flgL. Additional mutants were generated related to the flagellar genes fliC and fliA. The mutation in flgKL, but not those in fliC and fliA, inhibited nipP.w transcription. Moreover, the regulatory effect of the flgKL mutation on nipP.w transcription was partially dependent on the Rcs phosphorelay. Secretion of NipP.w was also dependent on a type II secretion mechanism. Overall, the results of this study indicate that the flgKL mutation is responsible for reduced motility and lower levels of nipP.w expression.
Collapse
Affiliation(s)
- Eve Laasik
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Lee Põllumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Miia Pasanen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Finland
| | - Laura Mattinen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, PO Box 27, 00014 University of Helsinki, Finland
| | - Andres Mäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
23
|
Mielecki D, Saumaa S, Wrzesiński M, Maciejewska AM, Żuchniewicz K, Sikora A, Piwowarski J, Nieminuszczy J, Kivisaar M, Grzesiuk E. Pseudomonas putida AlkA and AlkB proteins comprise different defense systems for the repair of alkylation damage to DNA - in vivo, in vitro, and in silico studies. PLoS One 2013; 8:e76198. [PMID: 24098441 PMCID: PMC3788762 DOI: 10.1371/journal.pone.0076198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022] Open
Abstract
Alkylating agents introduce cytotoxic and/or mutagenic lesions to DNA bases leading to induction of adaptive (Ada) response, a mechanism protecting cells against deleterious effects of environmental chemicals. In Escherichia coli, the Ada response involves expression of four genes: ada, alkA, alkB, and aidB. In Pseudomonas putida, the organization of Ada regulon is different, raising questions regarding regulation of Ada gene expression. The aim of the presented studies was to analyze the role of AlkA glycosylase and AlkB dioxygenase in protecting P. putida cells against damage to DNA caused by alkylating agents. The results of bioinformatic analysis, of survival and mutagenesis of methyl methanesulfonate (MMS) or N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treated P. putida mutants in ada, alkA and alkB genes as well as assay of promoter activity revealed diverse roles of Ada, AlkA and AlkB proteins in protecting cellular DNA against alkylating agents. We found AlkA protein crucial to abolish the cytotoxic but not the mutagenic effects of alkylans since: (i) the mutation in the alkA gene was the most deleterious for MMS/MNNG treated P. putida cells, (ii) the activity of the alkA promoter was Ada-dependent and the highest among the tested genes. P. putida AlkB (PpAlkB), characterized by optimal conditions for in vitro repair of specific substrates, complementation assay, and M13/MS2 survival test, allowed to establish conservation of enzymatic function of P. putida and E. coli AlkB protein. We found that the organization of P. putida Ada regulon differs from that of E. coli. AlkA protein induced within the Ada response is crucial for protecting P. putida against cytotoxicity, whereas Ada prevents the mutagenic action of alkylating agents. In contrast to E. coli AlkB (EcAlkB), PpAlkB remains beyond the Ada regulon and is expressed constitutively. It probably creates a backup system that protects P. putida strains defective in other DNA repair systems against alkylating agents of exo- and endogenous origin.
Collapse
Affiliation(s)
- Damian Mielecki
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Michał Wrzesiński
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka M. Maciejewska
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Żuchniewicz
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sikora
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Piwowarski
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jadwiga Nieminuszczy
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail: (EG); (MK)
| | - Elżbieta Grzesiuk
- Department of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (EG); (MK)
| |
Collapse
|
24
|
Jutkina J, Hansen LH, Li L, Heinaru E, Vedler E, Jõesaar M, Heinaru A. Complete nucleotide sequence of the self-transmissible TOL plasmid pD2RT provides new insight into arrangement of toluene catabolic plasmids. Plasmid 2013; 70:393-405. [PMID: 24095800 DOI: 10.1016/j.plasmid.2013.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 08/27/2013] [Accepted: 09/20/2013] [Indexed: 01/21/2023]
Abstract
In the present study we report the complete nucleotide sequence of the toluene catabolic plasmid pD2RT of Pseudomonas migulae strain D2RT isolated from Baltic Sea water. The pD2RT is 129,894 base pairs in size with an average G+C content of 53.75%. A total of 135 open reading frames (ORFs) were predicted to encode proteins, among them genes for catabolism of toluene, plasmid replication, maintenance and conjugative transfer. ORFs encoding proteins with putative functions in stress response, transposition and site-specific recombination were also predicted. Analysis of the organization and nucleotide sequence of pD2RT backbone region revealed high degree of similarity to the draft genome sequence data of the plant-pathogenic pseudomonad Pseudomonas syringae pv. glycinea strain B076, exhibiting relatedness to pPT23A plasmid family. The pD2RT backbone is also closely related to that of pGRT1 of Pseudomonas putida strain DOT-T1E and pBVIE04 of Burkholderia vietnamiensis strain G4, both plasmids are associated with resistance to toluene. The ability of pD2RT to self-transfer by conjugation to P. putida recipient strain PaW340 was experimentally determined. Genetic organization of toluene-degrading (xyl) genes and flanking DNA segments resembles the structure of Tn1721-related class II transposon Tn4656 of TOL plasmid pWW53 of P. putida strain MT53. The complete sequence of the plasmid pD2RT extends the known range of xyl genes carriers, being the first completely sequenced TOL plasmid, which is not related to well-studied IncP plasmid groups. We also verified the functionality of the catabolic route encoded by pD2RT by monitoring the expression of the xylE gene in pD2RT bearing hosts along with bacterial strains containing TOL plasmid of IncP-9 group. The growth kinetics of plasmid-bearing strains was found to be affected by particular TOL plasmid.
Collapse
Affiliation(s)
- Jekaterina Jutkina
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23a, 51010 Tartu, Estonia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Stec-Dziedzic E, Lyżeń R, Skärfstad E, Shingler V, Szalewska-Pałasz A. Characterization of the transcriptional stimulatory properties of the Pseudomonas putida RapA protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23207688 DOI: 10.1016/j.bbagrm.2012.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA polymerase-associated factors can significantly affect its performance at specific promoters. Here we identified a Pseudomonas putida RNA polymerases-associated protein as a homolog of Escherichia coli RapA. We found that P. putida RapA stimulates the transcription from promoters dependent on a variety of σ-factors (σ(70), σ(S), σ(54), σ(32), σ(E)) in vitro. The level of stimulation varied from 2- to 10-fold, with the maximal effect observed with the σ(E)-dependent PhtrA promoter. Stimulation by RapA was apparent in the multi-round reactions and was modulated by salt concentration in vitro. However, in contrast to findings with E. coli RapA, P. putida RapA-mediated stimulation of transcription was also evident using linear templates. These properties of P. putida RapA were apparent using either E. coli- or P. putida-derived RNA polymerases. Analysis of individual steps of transcription revealed that P. putida RapA enhances the stability of competitor-resistant open-complexes formed by RNA polymerase at promoters. In vivo, P. putida RapA can complement the inhibitory effect of high salt on growth of an E. coli RapA null strain. However, a P. putida RapA null mutant was not sensitive to high salt. The in vivo effects of lack of RapA were only detectable for the σ(E)-PhtrA promoter where the RapA-deficiency resulted in lower activity. The presented characteristics of P. putida RapA indicate that its functions may extend beyond a role in facilitating RNA polymerase recycling to include a role in transcription initiation efficiency.
Collapse
Affiliation(s)
- Ewa Stec-Dziedzic
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
26
|
Jeong YS, Choi SL, Kyeong HH, Kim JH, Kim EJ, Pan JG, Rha E, Song JJ, Lee SG, Kim HS. High-throughput screening system based on phenolics-responsive transcription activator for directed evolution of organophosphate-degrading enzymes. Protein Eng Des Sel 2012; 25:725-31. [DOI: 10.1093/protein/gzs071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Jakovleva J, Teppo A, Velts A, Saumaa S, Moor H, Kivisaar M, Teras R. Fis regulates the competitiveness of Pseudomonas putida on barley roots by inducing biofilm formation. MICROBIOLOGY-SGM 2012; 158:708-720. [PMID: 22222498 DOI: 10.1099/mic.0.053355-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An important link between the environment and the physiological state of bacteria is the regulation of the transcription of a large number of genes by global transcription factors. One of the global regulators, Fis (factor for inversion stimulation), is well studied in Escherichia coli, but the role of this protein in pseudomonads has only been examined briefly. According to studies in Enterobacteriaceae, Fis regulates positively the flagellar movement of bacteria. In pseudomonads, flagellar movement is an important trait for the colonization of plant roots. Therefore we were interested in the role of the Fis protein in Pseudomonas putida, especially the possible regulation of the colonization of plant roots. We observed that Fis reduced the migration of P. putida onto the apices of barley roots and thereby the competitiveness of bacteria on the roots. Moreover, we observed that overexpression of Fis drastically reduced swimming motility and facilitated P. putida biofilm formation, which could be the reason for the decreased migration of bacteria onto the root apices. It is possible that the elevated expression of Fis is important in the adaptation of P. putida during colonization of plant roots by promoting biofilm formation when the migration of bacteria is no longer favoured.
Collapse
Affiliation(s)
- Julia Jakovleva
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Annika Teppo
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Anna Velts
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Hanna Moor
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Riho Teras
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
28
|
Sidorenko J, Jatsenko T, Saumaa S, Teras R, Tark-Dame M, Hõrak R, Kivisaar M. Involvement of specialized DNA polymerases Pol II, Pol IV and DnaE2 in DNA replication in the absence of Pol I in Pseudomonas putida. Mutat Res 2011; 714:63-77. [PMID: 21763330 DOI: 10.1016/j.mrfmmm.2011.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/15/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
The majority of bacteria possess a different set of specialized DNA polymerases than those identified in the most common model organism Escherichia coli. Here, we have studied the ability of specialized DNA polymerases to substitute Pol I in DNA replication in Pseudomonas putida. Our results revealed that P. putida Pol I-deficient cells have severe growth defects in LB medium, which is accompanied by filamentous cell morphology. However, growth of Pol I-deficient bacteria on solid rich medium can be restored by reduction of reactive oxygen species in cells. Also, mutants with improved growth emerge rapidly. Similarly to the initial Pol I-deficient P. putida, its adapted derivatives express a moderate mutator phenotype, which indicates that DNA replication carried out in the absence of Pol I is erroneous both in the original Pol I-deficient bacteria and the adapted derivatives. Analysis of the spectra of spontaneous Rif(r) mutations in P. putida strains lacking different DNA polymerases revealed that the presence of specialized DNA polymerases Pol II and Pol IV influences the frequency of certain base substitutions in Pol I-proficient and Pol I-deficient backgrounds in opposite ways. Involvement of another specialized DNA polymerase DnaE2 in DNA replication in Pol I-deficient bacteria is stimulated by UV irradiation of bacteria, implying that DnaE2-provided translesion synthesis partially substitutes the absence of Pol I in cells containing heavily damaged DNA.
Collapse
Affiliation(s)
- Julia Sidorenko
- Department of Genetics, Tartu University and Estonian Biocentre, Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
29
|
Garmendia J, de las Heras A, Galvão TC, de Lorenzo V. Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 2011; 1:236-46. [PMID: 21261843 PMCID: PMC3815885 DOI: 10.1111/j.1751-7915.2008.00027.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although different biological approaches for detection of anti-personnel mines and other unexploded ordnance (UXO) have been entertained, none of them has been rigorously documented thus far in the scientific literature. The industrial 2,4,6 trinitrotoluene (TNT) habitually employed in the manufacturing of mines is at all times tainted with a small but significant proportion of the more volatile 2,4 dinitrotoluene (2,4 DNT) and other nitroaromatic compounds. By using mutation-prone PCR and DNA sequence shuffling we have evolved in vitro and selected in vivo variants of the effector recognition domain of the toluene-responsive XylR regulator of the soil bacterium Pseudomonas putida that responds to mono-, bi- and trinitro substituted toluenes. Re-introduction of such variants in P. putida settled the transcriptional activity of the cognate promoters (Po and Pu) as a function of the presence of nitrotoluenes in the medium. When strains bearing transcriptional fusions to reporters with an optical output (luxAB, GFP) were spread on soil spotted with nitrotoluenes, the signal triggered by promoter activation allowed localization of the target compounds on the soil surface. Our data provide a proof of concept that non-natural transcription factors evolved to respond to nitroaromatics can be engineered in soil bacteria and inoculated on a target site to pinpoint the presence of explosives. This approach thus opens new ways to tackle this gigantic humanitarian problem.
Collapse
Affiliation(s)
- Junkal Garmendia
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
30
|
Vogne C, Bisht H, Arias S, Fraile S, Lal R, van der Meer JR. Characterisation of the putative effector interaction site of the regulatory HbpR protein from Pseudomonas azelaica by site-directed mutagenesis. PLoS One 2011; 6:e16539. [PMID: 21379585 PMCID: PMC3040749 DOI: 10.1371/journal.pone.0016539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C) promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.
Collapse
Affiliation(s)
- Christelle Vogne
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Hansi Bisht
- Department of Zoology, University of Delhi, Delhi, India
| | - Sagrario Arias
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sofia Fraile
- National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
31
|
Abstract
Alternative σ-factors of bacteria bind core RNA polymerase to program the specific promoter selectivity of the holoenzyme. Signal-responsive changes in the availability of different σ-factors redistribute the RNA polymerase among the distinct promoter classes in the genome for appropriate adaptive, developmental and survival responses. The σ(54) -factor is structurally and functionally distinct from all other σ-factors. Consequently, binding of σ(54) to RNA polymerase confers unique features on the cognate holoenzyme, which requires activation by an unusual class of mechano-transcriptional activators, whose activities are highly regulated in response to environmental cues. This review summarizes the current understanding of the mechanisms of transcriptional activation by σ(54) -RNA polymerase and highlights the impact of global regulatory factors on transcriptional efficiency from σ(54) -dependent promoters. These global factors include the DNA-bending proteins IHF and CRP, the nucleotide alarmone ppGpp, and the RNA polymerase-targeting protein DksA.
Collapse
|
32
|
De Las Heras A, Carreño CA, Martínez-García E, De Lorenzo V. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 2010; 34:842-65. [DOI: 10.1111/j.1574-6976.2010.00238.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Dual two-component regulatory systems are involved in aromatic compound degradation in a polychlorinated-biphenyl degrader, Rhodococcus jostii RHA1. J Bacteriol 2010; 192:4741-51. [PMID: 20622058 DOI: 10.1128/jb.00429-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Gram-positive polychlorinated-biphenyl (PCB) degrader, Rhodococcus jostii RHA1, degrades PCBs by cometabolism with biphenyl. A two-component BphS1T1 system encoded by bphS1 and bphT1 (formerly bphS and bphT) is responsible for the transcription induction of the five gene clusters, bphAaAbAcAdC1B1, etbAa1Ab1CbphD1, etbAa2Ab2AcD2, etbAdbphB2, and etbD1, which constitute multiple enzyme systems for biphenyl/PCB degradation. The bphS2 and bphT2 genes, which encode BphS2 and BphT2, virtually identical to BphS1 (92%) and BphT1 (97%), respectively, were characterized. BphS2T2 induced the activation of the bphAa promoter in a host, Rhodococcus erythropolis IAM1399, in the presence of a variety of aromatics, including benzene, toluene, ethylbenzene, xylenes, isopropylbenzene, and chlorinated benzenes, as effectively as BphS1T1. The substrate spectrum of BphS2T2 was the same as that of BphS1T1, except for biphenyl, which is a substrate only for BphS1T1. BphS2T2 activated transcription from the five promoters of biphenyl/PCB degradation enzyme gene clusters as effectively as BphS1T1. The targeted disruptions of the bphS1, bphS2, bphT1, and bphT2 genes indicated that all these genes are involved in the growth of RHA1 on aromatic compounds. The hybrid system with bphS1 and bphT2 and that with bphS2 and bphT1 were constructed, and both systems conducted induced activation of the bphAa promoter, indicating cross-communication. These results indicated that RHA1 employs not only multiple enzyme systems, but also dual regulatory systems for biphenyl/PCB degradation. Comparison of the sequences, including bphS2T2, with the bphS1T1-containing sequences and the corresponding sequences in other rhodococcal degraders suggests that bphS2T2 might have originated from bphS1T1.
Collapse
|
34
|
Selifonova OV, Eaton RW. Use of an ipb-lux Fusion To Study Regulation of the Isopropylbenzene Catabolism Operon of Pseudomonas putida RE204 and To Detect Hydrophobic Pollutants in the Environment. Appl Environ Microbiol 2010; 62:778-83. [PMID: 16535269 PMCID: PMC1388794 DOI: 10.1128/aem.62.3.778-783.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA segment involved in the regulation of the isopropylbenzene (cumene) catabolism operon (ipb) of plasmid pRE4 from Pseudomonas putida RE204 and the Vibrio fischeri luciferase genes, luxCDABE, were used to create an ipbRo/pA(prm1)-luxCDABE reporter fusion plasmid, pOS25. Escherichia coli HMS174(pOS25) produces light in the presence of inducers of the ipb operon. These inducers were shown to be hydrophobic compounds and to include monoalkylbenzenes, substituted benzenes and toluenes, some alkanes and cycloalkanes, chlorinated solvents, and naphthalenes. Complex hydrocarbon mixtures, such as gasoline, diesel fuel, jet fuels (JP-4 and JP-5), and creosote, were also inducers of ipb-lux. Bacteria carrying the ipb-lux reporter may be useful as bioindicators of hydrocarbon pollution in the environment and may be particularly valuable for examining the bioavailability of inducing pollutants.
Collapse
|
35
|
Putrins M, Ilves H, Lilje L, Kivisaar M, Hõrak R. The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiol 2010; 10:110. [PMID: 20398259 PMCID: PMC2865465 DOI: 10.1186/1471-2180-10-110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/14/2010] [Indexed: 11/24/2022] Open
Abstract
Background We have recently found that Pseudomonas putida deficient in ColRS two-component system is sensitive to phenol and displays a serious defect on solid glucose medium where subpopulation of bacteria lyses. The latter phenotype is significantly enhanced by the presence of phenol in growth medium. Here, we focused on identification of factors affecting phenol tolerance of the colR-deficient P. putida. Results By using transposon mutagenesis approach we identified a set of phenol-tolerant derivatives of colR-deficient strain. Surprisingly, half of independent phenol tolerant clones possessed miniTn5 insertion in the ttgABC operon. However, though inactivation of TtgABC efflux pump significantly enhanced phenol tolerance, it did not affect phenol-enhanced autolysis of the colR mutant on glucose medium indicating that phenol- and glucose-caused stresses experienced by the colR-deficient P. putida are not coupled. Inactivation of TtgABC pump significantly increased the phenol tolerance of the wild-type P. putida as well. Comparison of phenol tolerance of growing versus starving bacteria revealed that both ColRS and TtgABC systems affect phenol tolerance only under growth conditions and not under starvation. Flow cytometry analysis showed that phenol strongly inhibited cell division and to some extent also caused cell membrane permeabilization to propidium iodide. Single cell analysis of populations of the ttgC- and colRttgC-deficient strains revealed that their membrane permeabilization by phenol resembles that of the wild-type and the colR mutant, respectively. However, cell division of P. putida with inactivated TtgABC pump seemed to be less sensitive to phenol than that of the parental strain. At the same time, cell division appeared to be more inhibited in the colR-mutant strain than in the wild-type P. putida. Conclusions ColRS signal system and TtgABC efflux pump are involved in the phenol tolerance of P. putida. However, as they affect phenol tolerance of growing bacteria only, this indicates that they participate in the regulation of processes which are active during the growth and/or cell division. Single cell analysis data indicated that the cell division step of cell cycle is particularly sensitive to the toxic effect of phenol and its inhibition can be considered as an adaptive response under conditions of phenol stress.
Collapse
Affiliation(s)
- Marta Putrins
- Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
36
|
Jõesaar M, Heinaru E, Viggor S, Vedler E, Heinaru A. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol Ecol 2010; 72:464-75. [PMID: 20370825 DOI: 10.1111/j.1574-6941.2010.00858.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
p-Cresol methylhydroxylase (PCMH), a key enzyme responsible for the catabolism of p-cresol via the protocatechuate ortho pathway, was used as a tool to characterize catabolic differences between phenol- and p-cresol-degrading Pseudomonas fluore-scens strains PC18 and PC24. Although both strains catabolize p-cresol using PCMH, different whole-cell kinetic parameters for this compound were revealed. Affinity for the substrate and the specific growth rate were higher in PC18, whereas maximum p-cresol tolerance was higher in PC24. In addition, PCMH of strain PC18 was induced during growth on phenol. In both strains, the pchACXF operon, which encodes p-hydroxybenzaldehyde dehydrogenase and PCMH, was sequenced. Transcriptional regulation of these operons by PchR, a putative sigma(54)-dependent regulator, was shown. Although the promoters of these operons resembled sigma(54)-controlled promoters, they differed from the consensus sequence by having T instead of C at position -12. Complementation assays confirmed that the amino acid sequence differences of the PchR regulators between the two strains studied led to different effector-binding capabilities of these proteins: (1) phenol was a more efficient effector for PchR of PC18 than p-cresol, (2) phenol did not activate the regulator of PC24, and (3) both regulators responded similarly to p-cresol.
Collapse
Affiliation(s)
- Merike Jõesaar
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
37
|
Andresen L, Sala E, Kõiv V, Mäe A. A role for the Rcs phosphorelay in regulating expression of plant cell wall degrading enzymes in Pectobacterium carotovorum subsp. carotovorum. MICROBIOLOGY-SGM 2010; 156:1323-1334. [PMID: 20110299 DOI: 10.1099/mic.0.033936-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Rcs phosphorelay is a signal transduction system that influences the virulence phenotype of several pathogenic bacteria. In the plant pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) the response regulator of the Rcs phosphorelay, RcsB, represses expression of plant cell wall degrading enzymes (PCWDE) and motility. The focus of this study was to identify genes directly regulated by the binding of RcsB that also regulate expression of PCWDE genes in Pcc. RcsB-binding sites within the regulatory regions of the flhDC operon and the rprA and rsmB genes were identified using DNase I protection assays, while in vivo studies using flhDC : : gusA, rsmB : : gusA and rprA : : gusA gene fusions revealed gene regulation. These experiments demonstrated that the operon flhDC, a flagellar master regulator, was repressed by RcsB, and transcription of rprA was activated by RcsB. Regulation of the rsmB promoter by RcsB is more complicated. Our results show that RcsB represses rsmB expression mainly through modulating flhDC transcription. Neverthless, direct binding of RcsB on the rsmB promoter region is possible in certain conditions. Using an rprA-negative mutant, it was further demonstrated that RprA RNA is not essential for regulating expression of PCWDE under the conditions tested, whereas overexpression of rprA increased protease expression in wild-type cells. Stationary-phase sigma factor, RpoS, is the only known target gene for RprA RNA in Escherichia coli; however, in Pcc the effect of RprA RNA was found to be rpoS-independent. Overall, our results show that the Rcs phosphorelay negatively affects expression of PCWDE by inhibiting expression of flhDC and rsmB.
Collapse
Affiliation(s)
- Liis Andresen
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Erki Sala
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Viia Kõiv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| | - Andres Mäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Estonian Biocenter, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
38
|
Johansson LUM, Solera D, Bernardo LMD, Moscoso JA, Shingler V. sigma54-RNA polymerase controls sigma70-dependent transcription from a non-overlapping divergent promoter. Mol Microbiol 2008; 70:709-23. [PMID: 18786144 DOI: 10.1111/j.1365-2958.2008.06440.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Divergent transcription of a regulatory gene and a cognate promoter under its control is a common theme in bacterial regulatory circuits. This genetic organization is found for the dmpR gene that encodes the substrate-responsive specific regulator of the sigma(54)-dependent Po promoter, which controls (methyl)phenol catabolism. Here we identify the Pr promoter of dmpR as a sigma(70)-dependent promoter that is regulated by a novel mechanism in which sigma(54)-RNA polymerase occupancy of the non-overlapping sigma(54)-Po promoter stimulates sigma(70)-Pr output. In addition, we show that DmpR stimulates its own production through Po activity both in vivo and in vitro. Hence, the demonstrated regulatory circuit reveals a novel role for sigma(54)-RNA polymerase, namely regulation of a sigma(70)-dependent promoter, and a new mechanism that places a single promoter under dual control of two alternative forms of RNA polymerase. We present a model in which guanosine tetra-phosphate plays a major role in the interplay between sigma(54)- and sigma(70)-dependent transcription to ensure metabolic integration to couple sigma(70)-Pr output to both low-energy conditions and the presence of substrate.
Collapse
|
39
|
Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V. Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 2008; 10:1320-34. [PMID: 18279347 DOI: 10.1111/j.1462-2920.2007.01546.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparatively little is known about directed motility of environmental bacteria to common aromatic pollutants. Here, by expressing different parts of a (methyl)phenol-degradative pathway and the use of specific mutants, we show that taxis of Pseudomonas putida towards (methyl)phenols is dictated by its ability to catabolize the aromatic compound. Thus, in contrast to previously described chemoreceptor-mediated chemotaxis mechanisms towards benzoate, naphthalene and toluene, taxis in response to (methyl)phenols is mediated by metabolism-dependent behaviour. Here we show that P. putida differentially expresses three Aer-like receptors that are all polar-localized through interactions with CheA, and that inactivation of the most abundant Aer2 protein significantly decreases taxis towards phenolics. In addition, the participation of a sensory signal transduction protein composed of a PAS, a GGDEF and an EAL domain in motility towards these compounds is demonstrated. The results are discussed in the context of the versatility of metabolism-dependent coupling and the necessity for P. putida to integrate diverse metabolic signals from its native heterogeneous soil and water environments.
Collapse
Affiliation(s)
- Inga Sarand
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
40
|
Tark M, Tover A, Koorits L, Tegova R, Kivisaar M. Dual role of NER in mutagenesis in Pseudomonas putida. DNA Repair (Amst) 2007; 7:20-30. [PMID: 17720631 DOI: 10.1016/j.dnarep.2007.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/14/2007] [Accepted: 07/16/2007] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most important repair systems which counteracts different forms of DNA damage either induced by various chemicals or irradiation. At the same time, less is known about the functions of NER in repair of DNA that is not exposed to exogenous DNA-damaging agents. We have investigated the role of NER in mutagenesis in Pseudomonas putida. The genome of this organism contains two uvrA genes, uvrA and uvrA2. Genetic studies on the effects of uvrA, uvrA2, uvrB and UvrC in mutagenic processes revealed that all of these genes are responsible for the repair of UV-induced DNA damage in P. putida. However, uvrA plays more important role in this process than uvrA2 since the deletion of uvrA2 gene had an effect on the UV-tolerance of bacteria only in the case when uvrA was also inactivated. Interestingly, the lack of functional uvrB, uvrC or uvrA2 gene reduced the frequency of stationary-phase mutations. The contribution of uvrA2, uvrB and uvrC to the mutagenesis appeared to be most significant in the case of 1-bp deletions whose emergence is dependent on error-prone DNA polymerase Pol IV. These data imply that NER has a dual role in mutagenesis in P. putida-besides functioning in repair of damaged DNA, NER is also important in generation of mutations. We hypothesize that NER enzymes may initiate gratuitous DNA repair and the following DNA repair synthesis might be mutagenic.
Collapse
Affiliation(s)
- Mariliis Tark
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
41
|
Putrinš M, Tover A, Tegova R, Saks Ü, Kivisaar M. Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology (Reading) 2007; 153:1860-1871. [PMID: 17526843 DOI: 10.1099/mic.0.2006/003681-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of the plasmid-borne phenol catabolic operon pheBA in Pseudomonas putida is activated by the LysR-family regulator CatR in the presence of the effector molecule cis,cis-muconate (CCM), which is an intermediate of the phenol degradation pathway. In addition to the positive control of the operon, several factors negatively affect transcription initiation from the pheBA promoter. First, the activation of the pheBA operon depends on the extracellular concentration of phenol. The pheBA promoter is rapidly activated in the presence of micromolar concentrations of phenol in minimal growth medium, but the initiation of transcription from this promoter is severely delayed after sudden exposure of bacteria to 2.5 mM phenol. Second, the transcriptional activation from this promoter is impeded when the growth medium of bacteria contains amino acids. The negative effects of amino acids can be suppressed either by overproducing CatR or by increasing, the intracellular amount of CCM. However, the intracellular amount of CCM is a major limiting factor for the transcriptional activation of the pheBA operon, as accumulation of CCM in a P. putida catB-defective strain, unable to metabolize CCM (but expressing CatR at a natural level), almost completely relieves the negative effects of amino acids. The intracellular amount of CCM is negatively affected by the catabolite repression control protein via downregulating at the post-transcriptional level the expression of the pheBA-encoded catechol 1,2-dioxygenase and the phenol monooxygenase, the enzymes needed for CCM production.
Collapse
Affiliation(s)
- Marta Putrinš
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Andres Tover
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Radi Tegova
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Ülle Saks
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| |
Collapse
|
42
|
Saumaa S, Tover A, Tark M, Tegova R, Kivisaar M. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J Bacteriol 2007; 189:5504-14. [PMID: 17545288 PMCID: PMC1951809 DOI: 10.1128/jb.00518-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oxidative damage of DNA is a source of mutation in living cells. Although all organisms have evolved mechanisms of defense against oxidative damage, little is known about these mechanisms in nonenteric bacteria, including pseudomonads. Here we have studied the involvement of oxidized guanine (GO) repair enzymes and DNA-protecting enzyme Dps in the avoidance of mutations in starving Pseudomonas putida. Additionally, we examined possible connections between the oxidative damage of DNA and involvement of the error-prone DNA polymerase (Pol)V homologue RulAB in stationary-phase mutagenesis in P. putida. Our results demonstrated that the GO repair enzymes MutY, MutM, and MutT are involved in the prevention of base substitution mutations in carbon-starved P. putida. Interestingly, the antimutator effect of MutT was dependent on the growth phase of bacteria. Although the lack of MutT caused a strong mutator phenotype under carbon starvation conditions for bacteria, only a twofold increased effect on the frequency of mutations was observed for growing bacteria. This indicates that MutT has a backup system which efficiently complements the absence of this enzyme in actively growing cells. The knockout of MutM affected only the spectrum of mutations but did not change mutation frequency. Dps is known to protect DNA from oxidative damage. We found that dps-defective P. putida cells were more sensitive to sudden exposure to hydrogen peroxide than wild-type cells. At the same time, the absence of Dps did not affect the accumulation of mutations in populations of starved bacteria. Thus, it is possible that the protective role of Dps becomes essential for genome integrity only when bacteria are exposed to exogenous agents that lead to oxidative DNA damage but not under physiological conditions. Introduction of the Y family DNA polymerase PolV homologue rulAB into P. putida increased the proportion of A-to-C and A-to-G base substitutions among mutations, which occurred under starvation conditions. Since PolV is known to perform translesion synthesis past damaged bases in DNA (e.g., some oxidized forms of adenine), our results may imply that adenine oxidation products are also an important source of mutation in starving bacteria.
Collapse
Affiliation(s)
- Signe Saumaa
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
43
|
Kivistik PA, Kivisaar M, Hõrak R. Target site selection of Pseudomonas putida transposon Tn4652. J Bacteriol 2007; 189:3918-21. [PMID: 17351034 PMCID: PMC1913344 DOI: 10.1128/jb.01863-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the target preferences of a Tn3 family transposon Tn4652. Alignment of 93 different insertion sites revealed a consensus sequence which resembles that of Tn3, indicating that despite a low similarity between Tn4652 and Tn3 transposases, their target site recognition is conserved.
Collapse
Affiliation(s)
- Paula Ann Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | |
Collapse
|
44
|
Koorits L, Tegova R, Tark M, Tarassova K, Tover A, Kivisaar M. Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair (Amst) 2007; 6:863-8. [PMID: 17331811 DOI: 10.1016/j.dnarep.2007.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/17/2007] [Accepted: 01/25/2007] [Indexed: 11/16/2022]
Abstract
Several bacterial species carry in their genomes a so-called "mutagenesis" gene cluster encoding ImuB which is similar to Y-family DNA polymerases, and DnaE2 related to the catalytic subunit DnaE of Pol III. Y-family DNA polymerases are known to be involved in stationary-phase mutagenesis and DnaE2 homologues characterized so far have expressed a mutator phenotype. In this study, we raised a question about the involvement of ImuB and DnaE2 in stationary-phase mutagenesis. Here, we show that Pseudomonas putida ImuB and DnaE2 have antagonistic effects on stationary-phase mutagenesis. ImuB facilitated accumulation of stationary-phase mutants up to two-fold. In contrast to that, DnaE2 had no significant effect on emergence of 1-bp deletion mutants and moreover, it acted as an anti-mutator in accumulation of base substitution mutants in starving bacteria. Similar antagonistic effects of DnaE2 and ImuB on mutagenesis appeared also in UV-mutagenesis study. This data distinguishes the DnaE2 of P. putida from its homologues studied in other organisms.
Collapse
Affiliation(s)
- Lauri Koorits
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Despite the vast surface area of terrestrial plant leaves and the large microbial communities they support, little is known of the ability of leaf-associated microorganisms to access and degrade airborne pollutants. Here, we examined bacterial acquisition and degradation of phenol on leaves by an introduced phenol degrader and by natural phyllosphere communities. Whole-cell gfp-based Pseudomonas fluorescens bioreporter cells detected phenol on leaves that had previously been transiently exposed to gaseous phenol, indicating that leaves accumulated phenol; moreover, they accumulated it in sites that were accessible to epiphytic bacteria and to concentrations that were at least 10-fold higher than those in the air. After inoculated leaves were exposed to gaseous 14C-phenol, leaves harbouring the phenol-degrading Pseudomonas sp. strain CF600 released eight times more 14CO2 than did leaves harbouring a non-degrading mutant, demonstrating that CF600 actively mineralized phenol on leaves. We evaluated phenol degradation by natural microbial communities on green ash leaves that were collected from a field site rich in airborne organic pollutants. We found that significantly more phenol was mineralized by these leaves when the communities were present than by these leaves following surface sterilization. Thus, phenol-degrading organisms were present in these natural communities and were metabolically capable of phenol degradation. Collectively, these results provide the first direct evidence that bacteria on leaves can degrade an organic pollutant from the air, and indicate that bacteria on leaves could potentially contribute to the natural attenuation of organic air pollutants.
Collapse
Affiliation(s)
- Amarjyoti Sandhu
- Department of Plant Pathology and Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011-3211, USA
| | | | | |
Collapse
|
46
|
Kivistik PA, Putrins M, Püvi K, Ilves H, Kivisaar M, Hõrak R. The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol 2006; 188:8109-17. [PMID: 17012397 PMCID: PMC1698186 DOI: 10.1128/jb.01262-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.
Collapse
Affiliation(s)
- Paula Ann Kivistik
- Estonian Biocentre and Institute of Molecular and Cell Biology, Tartu University, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
47
|
Leedjärv A, Ivask A, Virta M, Kahru A. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. CHEMOSPHERE 2006; 64:1910-9. [PMID: 16581105 DOI: 10.1016/j.chemosphere.2006.01.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 01/09/2006] [Accepted: 01/11/2006] [Indexed: 05/08/2023]
Abstract
A whole-cell recombinant bacterial sensor for the detection of phenolic compounds was constructed and used for the analysis of bioavailable phenols in natural samples. The sensor Pseudomonas fluorescens OS8(pDNdmpRlux) contains luxCDABE operon as a reporter under the control of phenol-inducible Po promoter from Pseudomonas sp. CF600. Expression of lux genes from the Po promoter, and thus the production of bioluminescence is controlled by the transcriptional activator DmpR, which initiates transcription in the presence of phenolic compounds. To take into account possible quenching (turbidity, toxicity) and/or stimulating effects of the environmental samples on the bacterial luminescence, control bacteria comparable to the sensors but lacking the phenol recognising elements were constructed and used in parallel in assays. The sensor bacteria were inducible with phenol, methylphenols, 2,3-, 2,4-, 2,6- and 3,4-dimethylphenol, resorcinol and 5-methylresorcinol but not with 2,5-dimethylresorcinol. The detection limits for different phenols varied from 0.03 mg/l (2-methylphenol) to 42.7 mg/l (5-methylresorcinol), being 0.08 mg/l for phenol, the most abundant phenolic contaminant in the environment. Different phenolic compounds had an additive effect on the inducibility of the sensor. The constructed sensor bacteria were applied on groundwaters and semi-coke leachates to estimate the bioavailable fraction of phenols. The sensor-determined amount of phenols in different samples varied from 6% to 95% of total phenol content depending on the nature of the sample. As the phenol-recognising unit in the sensor originates from a natural phenol biodegradation pathway, the sensor-determined amount of phenols corresponds to the biodegradable amount of phenolic pollutants in the samples and therefore this sensor could be used to estimate the natural biodegradation potential of phenolic compounds in the complex environmental mixtures and matrixes.
Collapse
Affiliation(s)
- Anu Leedjärv
- National Institute of Chemical Physics and Biophysics, Laboratory of Molecular Genetics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | | | | | | |
Collapse
|
48
|
Corvini PFX, Schäffer A, Schlosser D. Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl Microbiol Biotechnol 2006; 72:223-43. [PMID: 16826376 DOI: 10.1007/s00253-006-0476-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/11/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Because the endocrine disrupting effects of nonylphenol (NP) and octylphenol became evident, the degradation of long-chain alkylphenols (AP) by microorganisms was intensively studied. Most NP-degrading bacteria belong to the sphingomonads and closely related genera, while NP metabolism is not restricted to defined fungal taxa. Growth on NP and its mineralization was demonstrated for bacterial isolates, whereas ultimate degradation by fungi still remains unclear. While both bacterial and fungal degradation of short-chain AP, such as cresols, and the bacterial degradation of long-chain branched AP involves aromatic ring hydroxylation, alkyl chain oxidation and the formation of phenolic polymers seem to be preferential elimination pathways of long-chain branched AP in fungi, whereby both intracellular and extracellular oxidative enzymes may be involved. The degradation of NP by sphingomonads does not proceed via the common degradation mechanisms reported for short-chain AP, rather, via an unusual ipso-substitution mechanism. This fact underlies the peculiarity of long-chain AP such as NP isomers, which possess highly branched alkyl groups mostly containing a quaternary alpha-carbon. In addition to physicochemical parameters influencing degradation rates, this structural characteristic confers to branched isomers of NP a biodegradability different to that of the widely used linear isomer of NP. Potential biotechnological applications for the removal of AP from contaminated media and the difficulties of analysis and application inherent to the hydrophobic NP, in particular, are also discussed. The combination of bacteria and fungi, attacking NP at both the phenolic and alkylic moiety, represents a promising perspective.
Collapse
Affiliation(s)
- P F X Corvini
- Department of Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | | | | |
Collapse
|
49
|
Bernardo LMD, Johansson LUM, Solera D, Skärfstad E, Shingler V. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 2006; 60:749-64. [PMID: 16629675 DOI: 10.1111/j.1365-2958.2006.05129.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from sigma70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo sigma54 transcription even though they do not have any major direct effects on sigma54 transcription in reconstituted in vitro transcription and sigma-factor competition assays, (ii) that previously defined mutations rendering the housekeeping sigma70 less effective at competing with sigma54 for limiting amounts of core RNA polymerase similarly suppress the requirement for DksA and ppGpp in vivo and (iii) that the extent to which ppGpp and DksA affect transcription from sigma54 promoters in vivo reflects the innate affinity of the promoters for sigma54-RNA polymerase holoenzyme in vitro. Based on these findings, we propose a passive model for ppGpp/DksA regulation of sigma54-dependent transcription that depends on the potent negative effects of these regulatory molecules on transcription from powerful stringently regulated sigma70 promoters.
Collapse
|
50
|
Galvão TC, de Lorenzo V. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 2006; 17:34-42. [PMID: 16359854 DOI: 10.1016/j.copbio.2005.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 11/27/2022]
Abstract
For many regulators of bacterial biodegradation pathways, small molecule/effector binding is the signal for triggering transcriptional activation. Thus, regulation results from a cross-talk between chemicals sensed by transcriptional factors and operon expression status. These features can be utilised in the construction of biosensors for a wide range of target compounds as, in principle, any regulatory protein whose activity is modulated by binding to a small molecule can have its effector/inducer profile artificially altered. The cognate specificities of a number of regulatory proteins have been modified as an astute approach to developing, among others, bacterial biosensors for environmentally relevant compounds.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid 28049, Spain.
| | | |
Collapse
|