1
|
Ma M, Garza AG, Lemon DJ, Caro EA, Ritchie L, Ryan C, Spearing VM, Murphy KA, Welch RD. Identifying the Gene Regulatory Network of the Starvation-Induced Transcriptional Activator Nla28. J Bacteriol 2022; 204:e0026522. [PMID: 36448789 PMCID: PMC9765219 DOI: 10.1128/jb.00265-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
Myxococcus xanthus copes with starvation by producing fruiting bodies filled with dormant and stress-resistant spores. Here, we aimed to better define the gene regulatory network associated with Nla28, a transcriptional activator/enhancer binding protein (EBP) and a key regulator of the early starvation response. Previous work showed that Nla28 directly regulates EBP genes that are important for fruiting body development. However, the Nla28 regulatory network is likely to be much larger because hundreds of starvation-induced genes are downregulated in a nla28 mutant strain. To identify candidates for direct Nla28-mediated transcription, we analyzed the downregulated genes using a bioinformatics approach. Nine potential Nla28 target promoters (29 genes) were discovered. The results of in vitro promoter binding assays, coupled with in vitro and in vivo mutational analyses, suggested that the nine promoters along with three previously identified EBP gene promoters were indeed in vivo targets of Nla28. These results also suggested that Nla28 used tandem, imperfect repeats of an 8-bp sequence for promoter binding. Interestingly, eight of the new Nla28 target promoters were predicted to be intragenic. Based on mutational analyses, the newly identified Nla28 target loci contained at least one gene that was important for starvation-induced development. Most of these loci contained genes predicted to be involved in metabolic or defense-related functions. Using the consensus Nla28 binding sequence, bioinformatics, and expression profiling, 58 additional promoters and 102 genes were tagged as potential Nla28 targets. Among these putative Nla28 targets, functions, such as regulatory, metabolic, and cell envelope biogenesis, were assigned to many genes. IMPORTANCE In bacteria, starvation leads to profound changes in behavior and physiology. Some of these changes have economic and health implications because the starvation response has been linked to the formation of biofilms, virulence, and antibiotic resistance. To better understand how starvation contributes to changes in bacterial physiology and resistance, we identified the putative starvation-induced gene regulatory network associated with Nla28, a transcriptional activator from the bacterium Myxoccocus xanthus. We determined the mechanism by which starvation-responsive genes were activated by Nla28 and showed that several of the genes were important for the formation of a highly resistant cell type.
Collapse
Affiliation(s)
- Muqing Ma
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Anthony G. Garza
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - David J. Lemon
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Eduardo A. Caro
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Linnea Ritchie
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Charles Ryan
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | | | | | - Roy D. Welch
- Department of Biology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
2
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
3
|
Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus. BMC Genomics 2014; 15:1123. [PMID: 25515642 PMCID: PMC4320627 DOI: 10.1186/1471-2164-15-1123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes. Results Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases. Conclusions We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1123) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Yan J, Bradley MD, Friedman J, Welch RD. Phenotypic profiling of ABC transporter coding genes in Myxococcus xanthus. Front Microbiol 2014; 5:352. [PMID: 25101061 PMCID: PMC4103005 DOI: 10.3389/fmicb.2014.00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
Information about a gene sometimes can be deduced by examining the impact of its mutation on phenotype. However, the genome-scale utility of the method is limited because, for nearly all model organisms, the majority of mutations result in little or no observable phenotypic impact. The cause of this is often attributed to robustness or redundancy within the genome, but that is only one plausible hypothesis. We examined a standard set of phenotypic traits, and applied statistical methods commonly used in the study of natural variants to an engineered mutant strain collection representing disruptions in 180 of the 192 ABC transporters within the bacterium Myxococcus xanthus. These strains display continuous variation in their phenotypic distributions, with a small number of “outlier” strains at both phenotypic extremes, and the majority within a confidence interval about the mean that always includes wild type. Correlation analysis reveals substantial pleiotropy, indicating that the traits do not represent independent variables. The traits measured in this study co-cluster with expression profiles, thereby demonstrating that these changes in phenotype correspond to changes at the molecular level, and therefore can be indirectly connected to changes in the genome. However, the continuous distributions, the pleiotropy, and the placement of wild type always within the confidence interval all indicate that this standard set of M. xanthus phenotypic assays is measuring a narrow range of partially overlapping traits that do not directly reflect fitness. This is likely a significant cause of the observed small phenotypic impact from mutation, and is unrelated to robustness and redundancy.
Collapse
Affiliation(s)
- Jinyuan Yan
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | - Roy D Welch
- Department of Biology, Syracuse University Syracuse, NY, USA
| |
Collapse
|
5
|
Bhat S, Boynton TO, Pham D, Shimkets LJ. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation. PLoS One 2014; 9:e99622. [PMID: 24906161 PMCID: PMC4048283 DOI: 10.1371/journal.pone.0099622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/18/2014] [Indexed: 12/23/2022] Open
Abstract
Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.
Collapse
Affiliation(s)
- Swapna Bhat
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Tye O. Boynton
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Dan Pham
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lawrence J. Shimkets
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Dziewanowska K, Settles M, Hunter S, Linquist I, Schilkey F, Hartzell PL. Phase variation in Myxococcus xanthus yields cells specialized for iron sequestration. PLoS One 2014; 9:e95189. [PMID: 24733297 PMCID: PMC3986340 DOI: 10.1371/journal.pone.0095189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/25/2014] [Indexed: 01/30/2023] Open
Abstract
Myxococcus xanthus undergoes phase variation during growth to produce predominantly two colony phenotypes. The majority are yellow colonies containing swarm-proficient cells and a minority are tan colonies containing swarm-deficient cells. Comparison of the transcriptomes of a yellow variant, a tan variant, and three tan mutants led to the identification of differentially-regulated genes that define key segments of the phase variation pathway. For example, expression of genes for the yellow pigment DKxanthene and the antibiotic myxovirescin was increased significantly in yellow variants. In contrast, expression of the siderophore myxochelin, hemin binding proteins, and iron transport proteins was increased specifically in tan strains. Thus, a consequence of phase variation is that yellow cells shift from producing antibiotic and pigment to producing components involved in acquisition of iron, which may increase fitness during periods of iron limitation. Multiple protein kinases and HTH-Xre DNA-binding proteins identified in this study may be involved in the regulatory hierarchy that governs phase variation.
Collapse
Affiliation(s)
- Katarzyna Dziewanowska
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Matthew Settles
- The Institute for Bioinformatics and Evolutionary Science, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel Hunter
- Bioinformatics and Computational Biology, University of Idaho, Moscow, Idaho, United States of America
| | - Ingrid Linquist
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Patricia L. Hartzell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
7
|
Kimura Y, Kawasaki S, Tuchimoto R, Tanaka N. Trehalose biosynthesis in Myxococcus xanthus under osmotic stress and during spore formation. J Biochem 2013; 155:17-24. [PMID: 24098011 DOI: 10.1093/jb/mvt091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Myxococcus xanthus, trehalose is synthesized in response to osmotic stress and during spore formation. Genome data analysis indicated that M. xanthus has five related enzymes involved in four trehalose synthesis pathways (OtsAB, TreYZ, TreT and TreS). Under osmotic conditions, the amount of trehalose in wild-type cells was increased quickly by the OtsAB pathway, and the otsAB mutant began to synthesize trehalose using the TreYZ pathway. Also, in comparison with the wild-type strain, the otsAB and treZ mutants showed ∼65% and 40% reductions in the levels of intracellular trehalose accumulation, respectively, after 42 h of treatment with NaCl. In starvation-induced development of the wild-type strain, OtsAB activity was detected at middle and late stages of fruiting body development, and TreYZ activity was also detected at a late stage of development. Accumulation levels of trehalose in otsAB and treZ mutants were ∼30% and 65% of that of the wild-type strain after 7 days of development, respectively. Wild-type and mutant strains did not show TreT and TreS activities under osmotic stress and development conditions. These results suggested that the OtsAB pathway may play a major role in trehalose biosynthesis in M. xanthus cells, with the TreYZ pathway playing an auxiliary role.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | |
Collapse
|
8
|
Pathak DT, Wei X, Wall D. Myxobacterial tools for social interactions. Res Microbiol 2012; 163:579-91. [PMID: 23123306 DOI: 10.1016/j.resmic.2012.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Myxobacteria exhibit complex social traits during which large populations of cells coordinate their behaviors. An iconic example is their response to starvation: thousands of cells move by gliding motility to build a fruiting body in which vegetative cells differentiate into spores. Here we review mechanisms that the model species Myxococcus xanthus uses for cell-cell interactions, with a focus on developmental signaling and social gliding motility. We also discuss a newly discovered cell-cell interaction whereby myxobacteria exchange their outer membrane (OM) proteins and lipids. The mechanism of OM transfer requires physical contact between aligned cells on a hard surface and is apparently mediated by OM fusion. The TraA and TraB proteins are required in both donor and recipient cells for transfer, suggesting bidirectional exchange, and TraA is thought to serve as a cell surface adhesin. OM exchange results in phenotypic changes that can alter gliding motility and development and is proposed to represent a novel microbial interacting platform to coordinate multicellular activities.
Collapse
Affiliation(s)
- Darshankumar T Pathak
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA.
| | | | | |
Collapse
|
9
|
Konovalova A, Wegener-Feldbrügge S, Søgaard-Andersen L. Two intercellular signals required for fruiting body formation in Myxococcus xanthus act sequentially but non-hierarchically. Mol Microbiol 2012; 86:65-81. [PMID: 22834948 DOI: 10.1111/j.1365-2958.2012.08173.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starvation-induced fruiting body formation in Myxococcus xanthus depends on intercellular signalling. A-signal functions after 2 h of starvation and its synthesis depends on the asg genes. C-signal functions after 6 h of starvation and is generated by proteolytic cleavage of a precursor by the protease PopC. Previous gene expression studies suggested that the A- and C-signal lie on a hierarchical pathway. Here we explored the causal relationship between the A- and C-signal. The asgA and asgB mutants have reduced popC expression, PopC accumulation and C-signal accumulation. popC expression was shown not to depend on A-signal but on the AsgA and AsgB proteins. Restored popC expression in the two mutants rescued PopC and C-signal accumulation as well as C-signalling and the developmental defects of the two mutants without restoring A-signalling. Based on these results we suggest that A- and C-signal do not lie on a hierarchical, dependent pathway. Instead the A- and C-signal act sequentially and without a causal relationship suggesting that they are linked by a shared timing mechanism, which ensures the early and late onset of A-signalling and C-signalling, respectively, during starvation. This pathway topology represents a novel architecture for bacterial intercellular signalling systems involving more than one signal.
Collapse
Affiliation(s)
- Anna Konovalova
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | |
Collapse
|
10
|
A Myxococcus xanthus bacterial tyrosine kinase, BtkA, is required for the formation of mature spores. J Bacteriol 2011; 193:5853-7. [PMID: 21840977 DOI: 10.1128/jb.05750-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Myxococcus xanthus cytoplasmic bacterial tyrosine kinase, BtkA, showed phosphorylation activity in the presence of Exo. Phosphorylated BtkA was expressed late after starvation induction and early after glycerol induction. The btkA mutant was unable to complete maturation to heat- and sonication-resistant spores under both starvation- and glycerol-induced developmental conditions.
Collapse
|
11
|
Abstract
Myxococcus xanthus can vary its phenotype or 'phase' to produce colonies that contain predominantly yellow or tan cells that differ greatly in their abilities to swarm, survive and develop. Yellow variants are proficient at swarming (++) and tend to lyse in liquid during stationary phase. In contrast, tan variants are deficient in swarming (+) and persist beyond stationary phase. The phenotypes and transcriptomes of yellow and tan variants were compared with mutants affected in phase variation. Thirty-seven genes were upregulated specifically in yellow variants including those for production of the yellow pigment, DKxanthene. A mutant in DKxanthene synthesis produced non-pigmented (tan) colonies but still phase varied for swarming suggesting that pigmentation is not the cause of phase variation. Disruption of a gene encoding a HTH-Xre-like regulator, highly expressed in yellow variants, abolished pigment production and blocked the ability of cells to switch from a swarm ++ to a swarm (+) phenotype, showing that HTH-Xre regulates phase variation. Among the four genes whose expression was increased in tan variants was pkn14, which encodes a serine-threonine kinase that regulates programmed cell death in Myxococcus via the MrpC-MazF toxin-antitoxin complex. High levels of phosphorylated Pkn14 may explain why tan cells enjoy enhanced survival.
Collapse
Affiliation(s)
- Gou Furusawa
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
| | | | - Hannah Stone
- Program in Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052
| | - Matthew Settles
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
| | - Patricia Hartzell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
- Program in Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052
| |
Collapse
|
12
|
Enzymatic and mutational analyses of a class II 3',5'-cyclic nucleotide phosphodiesterase, PdeE, from Myxococcus xanthus. J Bacteriol 2011; 193:2053-7. [PMID: 21317337 DOI: 10.1128/jb.01250-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus PdeE, an enzyme homologous to class II 3',5'-cyclic nucleotide phosphodiesterases, hydrolyzed cyclic AMP (cAMP) and cGMP with K(m) values of 12 μM and 25 μM, respectively. A pdeE mutant exhibited delays in fruiting body and spore formation compared with the wild type when cultured on starvation medium.
Collapse
|
13
|
Heterologous expression of the oxytetracycline biosynthetic pathway in Myxococcus xanthus. Appl Environ Microbiol 2010; 76:2681-3. [PMID: 20208031 DOI: 10.1128/aem.02841-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New natural products for drug discovery may be accessed by heterologous expression of bacterial biosynthetic pathways in metagenomic DNA libraries. However, a "universal" host is needed for this experiment. Herein, we show that Myxococcus xanthus is a potential "universal" host for heterologous expression of polyketide biosynthetic gene clusters.
Collapse
|
14
|
Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. J Bacteriol 2009; 192:1467-70. [PMID: 20023011 DOI: 10.1128/jb.01118-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycine sarcosine methyltransferase (Gsm) and sarcosine dimethylglycine methyltransferase (Sdm) catalyze glycine betaine synthesis from glycine. Disruption of the M. xanthus gsmA (MXAN 7068) or sdmA (MXAN 3190) gene, encoding Gsm or Sdm homologue proteins, respectively, generated mutants that exhibited a longer lag period of growth and delayed spore germination under osmostress.
Collapse
|
15
|
Abstract
We have characterized and quantified a form of bacterial chemotaxis that manifests only as an emergent property by measuring symmetry breaking in a swarm of Myxococcus xanthus exposed to a two-dimensional nutrient gradient from within an agar substrate. M. xanthus chemotaxis requires cell-cell contact and coordinated motility, as individual motile cells exhibit only nonvectorial movement in the presence of a nutrient gradient. Genes that specifically affect M. xanthus chemotaxis include at least 10 of the 53 that express enhancer binding proteins of the NtrC-like class, an indication that this behavior is controlled through transcription, most likely by a complex signal transduction network.
Collapse
|
16
|
Diodati ME, Ossa F, Caberoy NB, Jose IR, Hiraiwa W, Igo MM, Singer M, Garza AG. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J Bacteriol 2006; 188:1733-43. [PMID: 16484184 PMCID: PMC1426557 DOI: 10.1128/jb.188.5.1733-1743.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NtrC-like activators regulate the transcription of a wide variety of adaptive genes in bacteria. Previously, we demonstrated that a mutation in the ntrC-like activator gene nla18 causes defects in fruiting body development in Myxococcus xanthus. In this report, we describe the effect that nla18 inactivation has on gene expression patterns during development and vegetative growth. Gene expression in nla18 mutant cells is altered in the early stages of fruiting body development. Furthermore, nla18 mutant cells are defective for two of the earliest events in development, production of the intracellular starvation signal ppGpp and production of A-signal. Taken together, these results indicate that the developmental program in nla18 mutant cells goes awry very early. Inactivation of nla18 also causes a dramatic decrease in the vegetative growth rate of M. xanthus cells. DNA microarray analysis revealed that the vegetative expression patterns of more than 700 genes are altered in nla18 mutant cells. Genes coding for putative membrane and membrane-associated proteins are among the largest classes of genes whose expression is altered by nla18 inactivation. This result is supported by our findings that the profiles of membrane proteins isolated from vegetative nla18 mutant and wild-type cells are noticeably different. In addition to genes that code for putative membrane proteins, nla18 inactivation affects the expression of many genes that are likely to be important for protein synthesis and gene regulation. Our data are consistent with a model in which Nla18 controls vegetative growth and development by activating the expression of genes involved in gene regulation, translation, and membrane structure.
Collapse
Affiliation(s)
- Michelle E Diodati
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kimura Y, Nakatuma H, Sato N, Ohtani M. Contribution of the cyclic nucleotide phosphodiesterases PdeA and PdeB to adaptation of Myxococcus xanthus cells to osmotic or high-temperature stress. J Bacteriol 2006; 188:823-8. [PMID: 16385075 PMCID: PMC1347295 DOI: 10.1128/jb.188.2.823-828.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tBLASTn search of the Myxococcus xanthus genome database at The Institute for Genomic Research (TIGR) identified three genes (pdeA, pdeB, and pdeC) that encode proteins homologous to 3',5'-cyclic nucleotide phosphodiesterase. pdeA, pdeB, and pdeC mutants, constructed by replacing a part of the gene with the kanamycin or tetracycline resistance gene, showed normal growth, development, and germination under nonstress conditions. However, the spores of mutants, especially the pdeA and pdeB mutants, placed under osmotic stress germinated earlier than the wild-type spores. The phenotype was the opposite of that of the receptor-type adenylyl cyclase (cyaA or cyaB) mutant. Also, pdeA and pdeB mutants were found to have impaired growth under the condition of high-temperature stress. Intracellular cyclic AMP (cAMP) levels of pdeA or pdeB mutant cells under these stressful conditions were about 1.3-fold to 2.0-fold higher than those of wild-type cells. These results suggest that PdeA and PdeB may be involved in osmotic adaptation during spore germination and temperature adaptation during vegetative growth through the regulation of cAMP levels.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan 761-0795.
| | | | | | | |
Collapse
|
18
|
Pham VD, Shebelut CW, Mukherjee B, Singer M. RasA is required for Myxococcus xanthus development and social motility. J Bacteriol 2005; 187:6845-8. [PMID: 16166548 PMCID: PMC1251574 DOI: 10.1128/jb.187.19.6845-6848.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An insertion in the rasA gene entirely blocked developmental aggregation and sporulation in Myxococcus xanthus while also reducing swarm expansion on a 0.3% agar surface. Data presented here demonstrate that rasA is required for extracellular fibril formation and social gliding motility.
Collapse
Affiliation(s)
- Vinh D Pham
- Section of Microbiology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
19
|
Kimura Y, Ohtani M, Takegawa K. An adenylyl cyclase, CyaB, acts as an osmosensor in Myxococcus xanthus. J Bacteriol 2005; 187:3593-8. [PMID: 15866951 PMCID: PMC1112002 DOI: 10.1128/jb.187.10.3593-3598.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan 761-0795.
| | | | | |
Collapse
|
20
|
Kimura Y, Nakato H, Ishibashi K, Kobayashi S. A Myxococcus xanthus CbpB containing two cAMP-binding domains is involved in temperature and osmotic tolerances. FEMS Microbiol Lett 2005; 244:75-83. [PMID: 15727824 DOI: 10.1016/j.femsle.2005.01.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 11/23/2022] Open
Abstract
Our previous data indicated that a Myxococcus xanthus sensor-type adenylyl cyclase (CyaA) functions in signal transduction during osmotic stress. However, the cAMP-mediated signal transduction pathway in this bacterium was unknown. Here, we isolated a clone from a M. xanthus genomic DNA library using oligonucleotide probes designed based on the conserved cAMP-binding domains of the cAMP-dependent protein kinase (PKA) regulatory subunits. The clone contained two open-reading frames (ORFs), cbpA and cbpB, encoding hydrophilic proteins with one and two cAMP-binding domains, respectively. The CbpB exhibited partial primary structural similarity to PKA regulatory subunits. cbpA and cbpB mutants, generated by gene disruption, showed normal growth, development and spore germination. However, the cbpB mutant cultured under high- or low-temperature conditions exhibited a marked reduction in growth. cbpB mutant cells were also more sensitive to osmotic stress than wild-type cells. The cbpA mutant possessed normal resistance to such stress. The phenotype of cbpB mutant was similar to those of PKA regulatory subunit mutants of some eukaryotic microorganisms.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | |
Collapse
|
21
|
Abstract
Myxobacteria use soluble and cell-contact signals during their starvation-induced formation of fruiting bodies. These signals coordinate developmental gene expression with the cell movements that build fruiting bodies. Early in development, the quorum-sensing A-signal in Myxococcus xanthus helps to assess starvation and induce the first stage of aggregation. Later, the morphogenetic C-signal helps to pattern cell movement and shape the fruiting body. C-signal is a 17-kDa cell surface protein that signals by contact between the ends of two cells. The number of C-signal molecules per cell rises 100-fold from the beginning of fruiting body development to the end, when spores are formed. Traveling waves, streams, and sporulation have increasing thresholds for C-signal activity, and this progression ensures that spores form inside fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
22
|
Nielsen M, Rasmussen AA, Ellehauge E, Treuner-Lange A, Søgaard-Andersen L. HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus. MICROBIOLOGY-SGM 2004; 150:2171-2183. [PMID: 15256560 DOI: 10.1099/mic.0.27151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In response to starvation, Myxococcus xanthus initiates a developmental programme that results in the formation of spore-filled multicellular fruiting bodies. Fruiting body formation depends on the temporal and spatial coordination of aggregation and sporulation and involves temporally and spatially coordinated changes in gene expression. This paper reports the identification of two genes, hthA and hthB, that are important for fruiting body formation. hthA and hthB are co-transcribed, and transcription of the two genes decreases strongly during development. Loss of HthA and HthB function results in delayed aggregation, a reduction in the level of sporulation, and abnormal developmental gene expression. Extracellular complementation experiments showed that the developmental defects caused by loss of HthA and HthB function are not due to the inability to synthesize an intercellular signal required for fruiting body formation. HthA, independent of HthB, is required for aggregation. HthB, alone or in combination with HthA, is required for sporulation. HthA is predicted to contain a C-terminal helix-turn-helix DNA-binding domain. Intriguingly, the N-terminal part of HthA does not exhibit significant amino acid similarity to proteins in the databases. The HthB protein lacks homologues in the databases. The results suggest that HthA is a novel DNA-binding protein, which regulates transcription of genes important for aggregation, and that HthB, alone or in combination with HthA, stimulates sporulation.
Collapse
Affiliation(s)
- Mette Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Anders Aa Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Eva Ellehauge
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Anke Treuner-Lange
- Institut für Mikrobiologie und Molekularbiologie, Interdisziplinäres Forschungszentrum der Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Lotte Søgaard-Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
23
|
Brenner M, Garza AG, Singer M. nsd, a locus that affects the Myxococcus xanthus cellular response to nutrient concentration. J Bacteriol 2004; 186:3461-71. [PMID: 15150233 PMCID: PMC415774 DOI: 10.1128/jb.186.11.3461-3471.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the previously reported Tn5lac Omega4469 insertion in Myxococcus xanthus cells is regulated by the starvation response. Interested in learning more about the starvation response, we cloned and sequenced the region containing the insertion. Our analysis shows that the gene fusion is located in an open reading frame that we have designated nsd (nutrient sensing/utilizing defective) and that its expression is driven by a sigma70-like promoter. Sequence analysis of the nsd gene product provides no information on the potential structure or function of the encoded protein. In a further effort to learn about the role of nsd in the starvation response, we closely examined the phenotype of cells carrying the nsd::Tn5lac Omega4469 mutation. Our analysis showed that these cells initiate development on medium that contains nutrients sufficient to sustain vegetative growth of wild-type cells. Furthermore, in liquid media these same nutrient concentrations elicit a severe impairment of growth of nsd cells. The data suggest that the nsd cells launch a starvation response when there are enough nutrients to prevent one. In support of this hypothesis, we found that, when grown in these nutrient concentrations, nsd cells accumulate guanosine tetraphosphate, the cellular starvation signal. Therefore, we propose that nsd is used by cells to respond to available nutrient levels.
Collapse
Affiliation(s)
- Margaret Brenner
- Section of Microbiology and Center for Genetics and Development, The University of California, Davis, Davis, California 95616, USA
| | | | | |
Collapse
|
24
|
Abstract
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M. xanthus social behaviors.
Collapse
Affiliation(s)
- Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, 1.765 JFB, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Caberoy NB, Welch RD, Jakobsen JS, Slater SC, Garza AG. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 2003; 185:6083-94. [PMID: 14526020 PMCID: PMC225022 DOI: 10.1128/jb.185.20.6083-6094.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Accepted: 07/18/2003] [Indexed: 11/20/2022] Open
Abstract
The multicellular developmental cycle of Myxococcus xanthus requires large-scale changes in gene transcription, and recent findings indicate that NtrC-like activators play a prominent role in regulating these changes. In this study, we made insertions in 28 uncharacterized ntrC-like activator (nla) genes and found that eight of these insertions cause developmental defects. Hence, these results are consistent with the idea that M. xanthus uses a series of different NtrC-like activators during fruiting body development. Four of the eight developmental mutants we identified have motility defects. The nla1, nla19, and nla23 mutants show S-motility defects, while the nla24 mutant shows defects in both S-motility and A-motility. During development, aggregation of the nla1, nla19, and nla23 mutants is delayed slightly and the nla24 mutant shows no signs of aggregation or sporulation. The nla4, nla6, nla18, and nla28 mutants have no appreciable loss in motility, but they fail to aggregate and to sporulate normally. The nla18 mutant belongs to a special class of developmental mutants whose defects can be rescued when they are codeveloped with wild-type cells, suggesting that nla18 fails to produce a cell-cell signal required for development. The three remaining activator mutants, nla4, nla6, and nla28, appear to have complex developmental phenotypes that include deficiencies in cell-cell developmental signals.
Collapse
Affiliation(s)
- Nora B Caberoy
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4234, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Cell-bound C-signal guides the building of a fruiting body and triggers the differentiation of myxospores. Earlier work has shown that transcription of the csgA gene, which encodes the C-signal, is directed by four genes of the act operon. To see how expression of the genes encoding components of the aggregation and sporulation processes depends on C-signaling, mutants with loss-of-function mutations in each of the act genes were investigated. These mutations were found to have no effect on genes that are normally expressed up to 3 h into development and are C-signal independent. Neither the time of first expression nor the rate of expression increase was changed in actA, actB, actC, or actD mutant strains. Also, there was no effect on A-signal production, which normally starts before 3 h. By contrast, the null act mutants have striking defects in C-signal production. These mutations changed the expression of four gene reporters that are related to aggregation and sporulation and are expressed at 6 h or later in development. The actA and actB null mutations substantially decreased the expression of all these reporters. The other act null mutations caused either premature expression to wild-type levels (actC) or delayed expression (actD), which ultimately rose to wild-type levels. The pattern of effects on these reporters shows how the C-signal differentially regulates the steps that together build a fruiting body and differentiate spores within it.
Collapse
Affiliation(s)
- Thomas M A Gronewold
- Departments of Biochemistry and of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- Stephen C Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
28
|
Abstract
Quorum sensing is the regulation of gene expression in response to fluctuations in cell-population density. Quorum sensing bacteria produce and release chemical signal molecules called autoinducers that increase in concentration as a function of cell density. The detection of a minimal threshold stimulatory concentration of an autoinducer leads to an alteration in gene expression. Gram-positive and Gram-negative bacteria use quorum sensing communication circuits to regulate a diverse array of physiological activities. These processes include symbiosis, virulence, competence, conjugation, antibiotic production, motility, sporulation, and biofilm formation. In general, Gram-negative bacteria use acylated homoserine lactones as autoinducers, and Gram-positive bacteria use processed oligo-peptides to communicate. Recent advances in the field indicate that cell-cell communication via autoinducers occurs both within and between bacterial species. Furthermore, there is mounting data suggesting that bacterial autoinducers elicit specific responses from host organisms. Although the nature of the chemical signals, the signal relay mechanisms, and the target genes controlled by bacterial quorum sensing systems differ, in every case the ability to communicate with one another allows bacteria to coordinate the gene expression, and therefore the behavior, of the entire community. Presumably, this process bestows upon bacteria some of the qualities of higher organisms. The evolution of quorum sensing systems in bacteria could, therefore, have been one of the early steps in the development of multicellularity.
Collapse
Affiliation(s)
- M B Miller
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA.
| | | |
Collapse
|
29
|
Garza AG, Harris BZ, Greenberg BM, Singer M. Control of asgE expression during growth and development of Myxococcus xanthus. J Bacteriol 2000; 182:6622-9. [PMID: 11073904 PMCID: PMC111402 DOI: 10.1128/jb.182.23.6622-6629.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the earliest events in the Myxococcus xanthus developmental cycle is production of an extracellular cell density signal called A-signal (or A-factor). Previously, we showed that cells carrying an insertion in the asgE gene fail to produce normal levels of this cell-cell signal. In this study we found that expression of asgE is growth phase regulated and developmentally regulated. Several lines of evidence indicate that asgE is cotranscribed with an upstream gene during development. Using primer extension analyses, we identified two 5' ends for this developmental transcript. The DNA sequence upstream of one 5' end has similarity to the promoter regions of several genes that are A-signal dependent, whereas sequences located upstream of the second 5' end show similarity to promoter elements identified for genes that are C-signal dependent. Consistent with this result is our finding that mutants failing to produce A-signal or C-signal are defective for developmental expression of asgE. In contrast to developing cells, the large majority of the asgE transcript found in vegetative cells appears to be monocistronic. This finding suggests that asgE uses different promoters for expression during vegetative growth and development. Growth phase regulation of asgE is abolished in a relA mutant, indicating that this vegetative promoter is induced by starvation. The data presented here, in combination with our previous results, indicate that the level of AsgE in vegetative cells is sufficient for this protein to carry out its function during development.
Collapse
Affiliation(s)
- A G Garza
- Section of Microbiology, University of California, Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
30
|
Guo D, Wu Y, Kaplan HB. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J Bacteriol 2000; 182:4564-71. [PMID: 10913090 PMCID: PMC94628 DOI: 10.1128/jb.182.16.4564-4571.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Omega4521 fusion are Lac(+). One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac(-) TnV. AS transposon insertion mutants were isolated from a screen of 18,000 Lac(+) LPS O-antigen mutants containing Tn5 lac Omega4521 (Tc(r)). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development.
Collapse
Affiliation(s)
- D Guo
- Department of Microbiology and Molecular Genetics, The University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
31
|
Garza AG, Harris BZ, Pollack JS, Singer M. The asgE locus is required for cell-cell signalling during Myxococcus xanthus development. Mol Microbiol 2000; 35:812-24. [PMID: 10692158 DOI: 10.1046/j.1365-2958.2000.01753.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In response to starvation, Myxococcus xanthus undergoes a multicellular developmental process that produces a dome-shaped fruiting body structure filled with differentiated cells called myxospores. Two insertion mutants that block the final stages of fruiting body morphogenesis and reduce sporulation efficiency were isolated and characterized. DNA sequence analysis revealed that the chromosomal insertions are located in open reading frames ORF2 and asgE, which are separated by 68 bp. The sporulation defect of cells carrying the asgE insertion can be rescued phenotypically when co-developed with wild-type cells, whereas the sporulation efficiency of cells carrying the ORF2 insertion was not improved when mixed with wild-type cells. Thus, the asgE insertion mutant appears to belong to a class of developmental mutants that are unable to produce cell-cell signals required for M. xanthus development, but they retain the ability to respond to them when they are provided by wild-type cells. Several lines of evidence indicate that asgE cells fail to produce normal levels of A-factor, a cell density signal. A-factor consists of a mixture of heat-stable amino acids and peptides, and at least two heat-labile extracellular proteases. The asgE mutant yielded about 10-fold less heat-labile A-factor and about twofold less heat-stable A-factor than wild-type cells, suggesting that the primary defect of asgE cells is in the production or release of heat-labile A-factor.
Collapse
Affiliation(s)
- A G Garza
- Section of Microbiology, One Shields Avenue, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The myxobacterium Myxococcus xanthus has a life cycle that is dominated by social behavior. During vegetative growth, cells prey on other bacteria in large groups that have been likened to wolf packs. When faced with starvation, cells form a macroscopic fruiting body containing thousands of spores. The social systems that guide fruiting body development have been examined through the isolation of conditional developmental mutants that can be stimulated to develop in the presence of wild-type cells. Extracellular complementation is due to the transfer of soluble and cell contact-dependent intercellular signals. This review describes the current state of knowledge concerning cell-cell signaling during development.
Collapse
Affiliation(s)
- L J Shimkets
- Department of Microbiology, University of Georgia, Athens 30602, USA
| |
Collapse
|
33
|
Cho K, Zusman DR. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol Microbiol 1999; 34:268-81. [PMID: 10564471 DOI: 10.1046/j.1365-2958.1999.01594.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxococcus xanthus has a complex life cycle that includes fruiting body formation. One of the first stages in development has been called A-signalling. The asg (A-signalling) mutants have been proposed to be deficient in producing A-signal, resulting in development arresting at an early stage. In this paper, we report the identification of a new asg locus asgD. This locus appears to be involved in both environmental sensing and intercellular signalling. Expression of asgD was undetected during vegetative growth, but increased dramatically within 1 h of starvation. The AsgD protein is predicted to contain 773 amino acids and to be part of a two-component regulatory system because it has a receiver domain located at the N-terminus and a histidine protein kinase at the C-terminus. An asgD null mutant was defective in fruiting body formation and sporulation on CF medium. However, the defects of the mutant were complemented extracellularly when cells were mixed with wild-type strains or with bsgA, csgA, dsgA or esgA mutants, but were not complemented extracellularly by asgA, asgB or asgC mutants. In addition, the mutant was rescued by a subset of A-factor amino acids. Surprisingly, when the mutant was plated on stringent starvation medium rather than CF, cells were able to form fruiting bodies. Thus, it appears that AsgD is directly or indirectly involved in sensing nutritionally limiting conditions. The discovery of the asgD locus provides an important sensory transduction component of early development in M. xanthus.
Collapse
Affiliation(s)
- K Cho
- Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, CA 94720-3204, USA
| | | |
Collapse
|
34
|
|
35
|
Xu D, Yang C, Kaplan HB. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth. J Bacteriol 1998; 180:6215-23. [PMID: 9829930 PMCID: PMC107706 DOI: 10.1128/jb.180.23.6215-6223.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1998] [Accepted: 10/01/1998] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Omega4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.
Collapse
Affiliation(s)
- D Xu
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
36
|
Garza AG, Pollack JS, Harris BZ, Lee A, Keseler IM, Licking EF, Singer M. SdeK is required for early fruiting body development in Myxococcus xanthus. J Bacteriol 1998; 180:4628-37. [PMID: 9721305 PMCID: PMC107477 DOI: 10.1128/jb.180.17.4628-4637.1998] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/1997] [Accepted: 06/16/1998] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus cells carrying the Omega4408 Tn5lac insertion at the sde locus show defects in fruiting body development and sporulation. Our analysis of sde expression patterns showed that this locus is induced early in the developmental program (0 to 2 h) and that expression increases approximately fivefold after 12 h of development. Further studies showed that expression of sde is induced as growing cells enter stationary phase, suggesting that activation of the sde locus is not limited to the developmental process. Because the peak levels of sde expression in both an sde+ and an sde mutant background were similar, we conclude that the sde locus is not autoregulated. Characterization of the sde locus by DNA sequence analysis indicated that the Omega4408 insertion occurred within the sdeK gene. Primer extension analyses localized the 5' end of sde transcript to a guanine nucleotide 307 bp upstream of the proposed start for the SdeK coding sequence. The DNA sequence in the -12 and -24 regions upstream of the sde transcriptional start site shows similarity to the sigma54 family of promoters. The results of complementation studies suggest that the defects in development and sporulation caused by the Omega4408 insertion are due to an inactivation of sdeK. The predicted amino acid sequence of SdeK was found to have similarity to the sequences of the histidine protein kinases of two-component regulatory systems. Based on our results, we propose that SdeK may be part of a signal transduction pathway required for the activation and propagation of the early developmental program.
Collapse
Affiliation(s)
- A G Garza
- Section of Microbiology, University of California, Davis, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bensmail L, Quillet L, Petit F, Barray S, Guespin-Michel JF. Regulation of the expression of a gene encoding beta-endoglucanase secreted by Myxococcus xanthus during growth: role of genes involved in developmental regulation. Res Microbiol 1998; 149:319-26. [PMID: 9766232 DOI: 10.1016/s0923-2508(98)80437-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An endoglucanase, CelA, is secreted by Myxococcus xanthus only during exponential growth. The production of this enzyme is decreased by mutations in 5 different genes (Exc +/- phenotype), three of which correspond to asg genes which regulate the production of an early cell-to-cell signal in development. Transcription of celA is decreased in two of these Exc +/- mutants, whereas a post-transcriptional step is affected in two other Exc- mutants. Thus, asg genes, in addition to regulating the onset of development, also regulate a gene (celA) that is expressed during exponential growth and that is not involved in development.
Collapse
Affiliation(s)
- L Bensmail
- Laboratoire de Microbiologie du Froid, IFR 61 CNRS, INSERM, Université de Rouen, Mt. St Aignan, France
| | | | | | | | | |
Collapse
|
38
|
Yang C, Kaplan HB. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J Bacteriol 1997; 179:7759-67. [PMID: 9401035 PMCID: PMC179739 DOI: 10.1128/jb.179.24.7759-7767.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of Myxococcus xanthus multicellular development requires integration of information concerning the cells' nutrient status and density. A gain-of-function mutation, sasB7, that bypasses both the starvation and high cell density requirements for developmental expression of the 4521 reporter gene, maps to the sasS gene. The wild-type sasS gene was cloned and sequenced. This gene is predicted to encode a sensor histidine protein kinase that appears to be a key element in the transduction of starvation and cell density inputs. The sasS null mutants express 4521 at a basal level, form defective fruiting bodies, and exhibit reduced sporulation efficiencies. These data indicate that the wild-type sasS gene product functions as a positive regulator of 4521 expression and participates in M. xanthus development. The N terminus of SasS is predicted to contain two transmembrane domains that would locate the protein to the cytoplasmic membrane. The sasB7 mutation, an E139K missense mutation, maps to the predicted N-terminal periplasmic region. The C terminus of SasS contains all of the conserved residues typical of the sensor histidine protein kinases. SasS is predicted to be the sensor protein in a two-component system that integrates information required for M. xanthus developmental gene expression.
Collapse
Affiliation(s)
- C Yang
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 77030, USA
| | | |
Collapse
|
39
|
Bowden MG, Kaplan HB. The Myxococcus xanthus developmentally expressed asgB-dependent genes can be targets of the A signal-generating or A signal-responding pathway. J Bacteriol 1996; 178:6628-31. [PMID: 8932321 PMCID: PMC178551 DOI: 10.1128/jb.178.22.6628-6631.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Functional Myxococcus xanthus A signal-generating and A signal-responding pathways are required for the progression through early multicellular development. To identify genes responsive to these pathways, the expression of eight early developmental genes was analyzed. This examination identified one gene as a target of the A signal-generating pathway and four genes as targets of the A signal-responding pathway.
Collapse
Affiliation(s)
- M G Bowden
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
40
|
Kaplan HB, Plamann L. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol Lett 1996; 139:89-95. [PMID: 8674994 DOI: 10.1111/j.1574-6968.1996.tb08185.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Progression through early Myxococcus xanthus multicellular fruiting body development requires the generation of and response to extracellular A signal. Extracellular A signal is a specific set of amino acids at an extracellular concentration greater than 10 muM. It functions as a cell density signal during starvation that allows the cells to sense that a minimal cell density has been reached and development can proceed. The generation of extracellular A signal requires the products of three asg genes. They have recently been identified as AsgA, a fused two-component histidine protein kinase and response regulator; AsgB, a putative DNA-binding protein; and AsgC, the M, xanthus major sigma factor. Other elements of the A signaling pathway map to the sasB locus and appear to be A signal transducers. These elements are regulators of the earliest A signal-dependent gene, whose promoter is a member of the sigma-54 family. Continued study of the A signaling pathway is expected to identify additional components of this network required for the complex behavioural response of fruiting body formation.
Collapse
Affiliation(s)
- H B Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston 77030, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- M Dworkin
- Department of Microbiology, University of Minnesota, Minneapolis 55455-0312, USA.
| |
Collapse
|
42
|
Guo D, Bowden MG, Pershad R, Kaplan HB. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J Bacteriol 1996; 178:1631-9. [PMID: 8626291 PMCID: PMC177848 DOI: 10.1128/jb.178.6.1631-1639.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A wild-type sasA locus is critical for Myxococcus xanthus multicellular development. Mutations in the sasA locus cause defective fruiting body formation, reduce sporulation, and restore developmental expression of the early A-signal-dependent gene 4521 in the absence of A signal. The wild-type sasA locus has been located on a 14-kb cloned fragment of the M. xanthus chromosome. The nucleotide sequence of a 7-kb region containing the complete sasA locus was determined. Three open reading frames encoded by the genes, designated rfbA, B and C were identified. The deduced amino acid sequences of rfbA and rfbB show identity to the integral membrane domains and ATPase domains, respectively, of the ATP-binding cassette (ABC) transporter family. The highest identities are to a set of predicted ABC transporters required for the biosynthesis of lipopolysaccharide O-antigen in certain gram-negative bacteria. The rfbC gene encodes a predicted protein of 1,276 amino acids. This predicted protein contains a region of 358 amino acids that is 33.8% identical to the Yersinia enterocolitica O3 rfbH gene product, which is also required for O-antigen biosynthesis. Immunoblot analysis revealed that the sasA1 mutant, which was found to encode a nonsense codon in the beginning of rfbA, produced less O-antigen than sasA+ strains. These data indicate that the sasA locus is required for the biosynthesis of O-antigen and, when mutated, results in A-signal-independent expression of 4521.
Collapse
Affiliation(s)
- D Guo
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- R C Roberts
- Department of Developmental Biology, Stanford University School of Medicine, California 94305, USA
| | | | | |
Collapse
|
44
|
Hartzell PL, Youderian P. Genetics of gliding motility and development in Myxococcus xanthus. Arch Microbiol 1995; 164:309-23. [PMID: 8572884 DOI: 10.1007/bf02529977] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Successful development in multicellular eukaryotes requires cell-cell communication and the coordinated spatial and temporal movements of cells. The complex array of networks required to bring eukaryotic development to fruition can be modeled by the development of the simpler prokaryote Myxococcus xanthus. As part of its life cycle, M. xanthus forms multicellular fruiting bodies containing differentiated cells. Analysis of the genes essential for M. xanthus development is possible because strains with mutations that block development can be maintained in the vegetative state. Development in M. xanthus is induced by starvation, and early events in development suggest that signaling stages have evolved to monitor the metabolic state of the developing cell. In the absence of these signals, which include amino acids, alpha-keto acids, and other intermediary metabolites, the ability of cells to differentiate into myxospores is impaired. Mutations that block genes controlling gliding motility disrupt the morphogenesis of fruiting bodies and sporogenesis in surprising ways. In this review, we present data that encourage future genetic and biochemical studies of the relationships between motility, cell-cell signaling, and development in M. xanthus.
Collapse
Affiliation(s)
- P L Hartzell
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow 83844-3052, USA
| | | |
Collapse
|
45
|
Gulati P, Xu D, Kaplan HB. Identification of the minimum regulatory region of a Myxococcus xanthus A-signal-dependent developmental gene. J Bacteriol 1995; 177:4645-51. [PMID: 7642490 PMCID: PMC177228 DOI: 10.1128/jb.177.16.4645-4651.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Developmental expression of the Myxococcus xanthus gene 4521 requires extracellular A-signal. This signal is generated in response to nutrient limitation and functions in cell density sensing. To identify the upstream limit of the minimum region required in vivo for A-signal-dependent 4521 expression, a 5' deletion analysis of the 4521 regulatory region was performed. A new vector, pHBK280, was designed to facilitate this analysis. This vector creates tandem copies of the 4521 gene in the M. xanthus chromosome, such that the regulatory region to be tested is upstream of a single copy of the lacZ reporter gene. The 5' deletion analysis revealed that at most, 146 bp of DNA upstream of the transcription start site (TSS) was required for full developmental expression of 4521. Basal expression levels were observed with constructions containing 90 bp of DNA upstream of the TSS. In vitro gel retardation assays revealed that DNA fragments with 5' ends of 146 and 125 bp upstream of the TSS and a common 3' end of +24 bp were retarded in their mobility after incubation with all of the M. xanthus developmental crude cell extracts tested. In contrast, a fragment starting at 90 bp upstream of the TSS and ending at +24 bp was not retarded in its mobility after incubation with the same cell extracts. These in vivo and in vitro data suggest that cis-acting elements located between 146 and 90 bp upstream of the TSS serve as binding sites for one or more trans-acting regulatory factors required for 4521 developmental expression.
Collapse
Affiliation(s)
- P Gulati
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
46
|
Plamann L, Li Y, Cantwell B, Mayor J. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J Bacteriol 1995; 177:2014-20. [PMID: 7721694 PMCID: PMC176844 DOI: 10.1128/jb.177.8.2014-2020.1995] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Myxococcus xanthus asgA gene is one of three known genes necessary for the production of extracellular A-signal, a cell density signal required early in fruiting body development. We determined the DNA sequence of asgA. The deduced 385-amino-acid sequence of AsgA was found to contain two domains: one homologous to the receiver domain of response regulators and the other homologous to the transmitter domain of histidine protein kinases. A kanamycin resistance (Kmr) gene was inserted at various positions within or near the asgA gene to determine the null phenotype. Those strains with the Kmr gene inserted upstream or downstream of asgA are able to form fruiting bodies, while strains containing the Kmr gene inserted within asgA fail to develop. The nature and location of the asgA476 mutation were determined. This mutation causes a leucine-to-proline substitution within a conserved stretch of hydrophobic residues in the N-terminal receiver domain. Cells containing the insertion within asgA and cells containing the asgA476 substitution have similar phenotypes with respect to development, colony color, and expression of an asg-dependent gene. An analysis of expression of a translational asgA-lacZ fusion confirms that asgA is expressed during growth and early development. Finally, we propose that AsgA functions within a signal transduction pathway that is required to sense starvation and to respond with the production of extracellular A-signal.
Collapse
Affiliation(s)
- L Plamann
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | | | |
Collapse
|