1
|
Khan E, Rückert-Reed C, Dahiya G, Tietze L, Fages-Lartaud M, Busche T, Kalinowski J, Shingler V, Lale R. High-resolution mapping of sigma factor DNA-binding sequences using artificial promoters, RNA aptamers, and deep sequencing. Nucleic Acids Res 2025; 53:gkaf306. [PMID: 40239990 PMCID: PMC11997794 DOI: 10.1093/nar/gkaf306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/07/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The variable sigma (σ) subunit of the bacterial RNA polymerase holoenzyme determines promoter specificity and facilitates open complex formation during transcription initiation. Understanding σ-factor binding sequences is therefore crucial for deciphering bacterial gene regulation. Here, we present a data-driven high-throughput approach that utilizes an extensive library of 1.54 million DNA templates providing artificial promoters and 5' untranslated region sequences for σ-factor DNA-binding motif discovery. This method combines the generation of extensive DNA libraries, in vitro transcription, RNA aptamer, and deep DNA and RNA sequencing. It allows direct assessment of promoter activity, identification of transcription start sites, and quantification of promoter strength based on mRNA production levels. We applied this approach to map σ54 DNA-binding sequences in Pseudomonas putida. Deep sequencing of the enriched RNA pool revealed 64 966 distinct σ54 binding motifs, significantly expanding the known repertoire. This data-driven approach surpasses traditional methods by directly evaluating promoter function and avoiding selection bias based solely on binding affinity. This comprehensive dataset enhances our understanding of σ-factor binding sequences and their regulatory roles, opening avenues for new research in biology and biotechnology.
Collapse
Affiliation(s)
- Essa Ahsan Khan
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Christian Rückert-Reed
- Bielefeld University, Center for Biotechnology (CeBiTec), Technology Platform Genomics, Bielefeld 33615, Germany
- Bielefeld University, Medical School OWL, Bielefeld 33615, Germany
| | | | - Lisa Tietze
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Maxime Fages-Lartaud
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Tobias Busche
- Bielefeld University, Center for Biotechnology (CeBiTec), Technology Platform Genomics, Bielefeld 33615, Germany
- Bielefeld University, Medical School OWL, Bielefeld 33615, Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology (CeBiTec), Technology Platform Genomics, Bielefeld 33615, Germany
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Rahmi Lale
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Syngens AS, Trondheim 7089, Norway
| |
Collapse
|
2
|
Moreno R, Yuste L, Rojo F. The acetoin assimilation pathway of Pseudomonas putida KT2440 is regulated by overlapping global regulatory elements that respond to nutritional cues. Environ Microbiol 2023; 25:515-531. [PMID: 36482024 PMCID: PMC10107126 DOI: 10.1111/1462-2920.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Many microorganisms produce and excrete acetoin (3-hydroxy-2-butanone) when growing in environments that contain glucose or other fermentable carbon sources. This excreted compound can then be assimilated by other bacterial species such as pseudomonads. This work shows that acetoin is not a preferred carbon source of Pseudomonas putida, and that the induction of genes required for its assimilation is down-modulated by different, independent, global regulatory systems when succinate, glucose or components of the LB medium are also present. The expression of the acetoin degradation genes was found to rely on the RpoN alternative sigma factor and to be modulated by the Crc/Hfq, Cyo and PTSNtr regulatory elements, with the impact of the latter three varying according to the carbon source present in addition to acetoin. Pyruvate, a poor carbon source for P. putida, did not repress acetoin assimilation. Indeed, the presence of acetoin significantly improved growth on pyruvate, revealing these compounds to have a synergistic effect. This would provide a clear competitive advantage to P. putida when growing in environments in which all the preferred carbon sources have been depleted and pyruvate and acetoin remain as leftovers from the fermentation of sugars by other microorganisms.
Collapse
Affiliation(s)
- Renata Moreno
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Luis Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | - Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| |
Collapse
|
3
|
Seibt H, Aung KM, Ishikawa T, Sjöström A, Gullberg M, Atkinson GC, Wai SN, Shingler V. Elevated levels of VCA0117 (VasH) in response to external signals activate the type VI secretion system of Vibrio cholerae O1 El Tor A1552. Environ Microbiol 2020; 22:4409-4423. [PMID: 32592280 DOI: 10.1111/1462-2920.15141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
The type VI nanomachine is critical for Vibrio cholerae to establish infections and to thrive in niches co-occupied by competing bacteria. The genes for the type VI structural proteins are encoded in one large and two small auxiliary gene clusters. VCA0117 (VasH) - a σ54 -transcriptional activator - is strictly required for functionality of the type VI secretion system since it controls production of the structural protein Hcp. While some strains constitutively produce a functional system, others do not and require specific growth conditions of low temperature and high osmolarity for expression of the type VI machinery. Here, we trace integration of these regulatory signals to the promoter activity of the large gene cluster in which many components of the machinery and VCA0117 itself are encoded. Using in vivo and in vitro assays and variants of VCA0117, we show that activation of the σ54 -promoters of the auxiliary gene clusters by elevated VCA0117 levels are all that is required to overcome the need for specialized growth conditions. We propose a model in which signal integration via the large operon promoter directs otherwise restrictive levels of VCA0117 that ultimately dictates a sufficient supply of Hcp for completion of a functional type VI secretion system.
Collapse
Affiliation(s)
- Henrik Seibt
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| | - Kyaw Min Aung
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SE-901 87, Sweden
| | - Takahiko Ishikawa
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SE-901 87, Sweden
| | - Annika Sjöström
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| | - Martin Gullberg
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| | - Gemma Catherine Atkinson
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SE-901 87, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, SE-901 87, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
4
|
Acclimation of bacterial cell state for high-throughput enzyme engineering using a DmpR-dependent transcriptional activation system. Sci Rep 2020; 10:6091. [PMID: 32269250 PMCID: PMC7142073 DOI: 10.1038/s41598-020-62892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic circuit-based biosensors have emerged as an effective analytical tool in synthetic biology; these biosensors can be applied to high-throughput screening of new biocatalysts and metabolic pathways. Sigma 54 (σ54)-dependent transcription factor (TF) can be a valuable component of these biosensors owing to its intrinsic silent property compared to most of the housekeeping sigma 70 (σ70) TFs. Here, we show that these unique characteristics of σ54-dependent TFs can be used to control the host cell state to be more appropriate for high-throughput screening. The acclimation of cell state was achieved by using guanosine (penta)tetraphosphate ((p)ppGpp)-related genes (relA, spoT) and nutrient conditions, to link the σ54 TF-based reporter expression with the target enzyme activity. By controlling stringent programmed responses and optimizing assay conditions, catalytically improved tyrosine phenol lyase (TPL) enzymes were successfully obtained using a σ54-dependent DmpR as the TF component, demonstrating the practical feasibility of this biosensor. This combinatorial strategy of biosensors using σ factor-dependent TFs will allow for more effective high-throughput enzyme engineering with broad applicability.
Collapse
|
5
|
Seibt H, Sauer UH, Shingler V. The Y233 gatekeeper of DmpR modulates effector-responsive transcriptional control of σ 54 -RNA polymerase. Environ Microbiol 2019; 21:1321-1330. [PMID: 30773776 DOI: 10.1111/1462-2920.14567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
DmpR is the obligate transcriptional activator of genes involved in (methyl)phenol catabolism by Pseudomonas putida. DmpR belongs to the AAA+ class of mechano-transcriptional regulators that employ ATP-hydrolysis to engage and remodel σ54 -RNA polymerase to allow transcriptional initiation. Previous work has established that binding of phenolic effectors by DmpR is a prerequisite to relieve interdomain repression and allow ATP-binding to trigger transition to its active multimeric conformation, and further that a structured interdomain linker between the effector- and ATP-binding domains is involved in coupling these processes. Here, we present evidence from ATPase and in vivo and in vitro transcription assays that a tyrosine residue of the interdomain linker (Y233) serves as a gatekeeper to constrain ATP-hydrolysis and aromatic effector-responsive transcriptional activation by DmpR. An alanine substitution of Y233A results in both increased ATPase activity and enhanced sensitivity to aromatic effectors. We propose a model in which effector-binding relocates Y233 to synchronize signal-reception with multimerisation to provide physiologically appropriate sensitivity of the transcriptional response. Given that Y233 counterparts are present in many ligand-responsive mechano-transcriptional regulators, the model is likely to be pertinent for numerous members of this family and has implications for development of enhanced sensitivity of biosensor used to detect pollutants.
Collapse
Affiliation(s)
- Henrik Seibt
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Uwe H Sauer
- Deparment of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
6
|
Wirebrand L, Madhushani AWK, Irie Y, Shingler V. Multiple Hfq-Crc target sites are required to impose catabolite repression on (methyl)phenol metabolism in Pseudomonas putida CF600. Environ Microbiol 2017; 20:186-199. [PMID: 29076626 DOI: 10.1111/1462-2920.13966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
The dmp-system encoded on the IncP-2 pVI150 plasmid of Pseudomonas putida CF600 confers the ability to assimilate (methyl)phenols. Regulation of the dmp-genes is subject to sophisticated control, which includes global regulatory input to subvert expression of the pathway in the presence of preferred carbon sources. Previously we have shown that in P. putida, translational inhibition exerted by the carbon repression control protein Crc operates hand-in-hand with the RNA chaperon protein Hfq to reduce translation of the DmpR regulator of the Dmp-pathway. Here, we show that Crc and Hfq co-target four additional sites to form riboprotein complexes within the proximity of the translational initiation sites of genes encoding the first two steps of the Dmp-pathway to mediate two-layered control in the face of selection of preferred substrates. Furthermore, we present evidence that Crc plays a hitherto unsuspected role in maintaining the pVI150 plasmid within a bacterial population, which has implications for (methyl)phenol degradation and a wide variety of other physiological processes encoded by the IncP-2 group of Pseudomonas-specific mega-plasmids.
Collapse
Affiliation(s)
- Lisa Wirebrand
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| | | | - Yasuhiko Irie
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| |
Collapse
|
7
|
Chong H, Ching CB. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR. ACS Synth Biol 2016; 5:1290-1298. [PMID: 27346389 DOI: 10.1021/acssynbio.6b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is useful for whole-cell biosensors to be based on colorimetric detection because the output signal can be easily visualized. However, colorimetric-based whole-cell biosensors suffer higher detection limits as compared to bioluminescence- or fluorescence-based biosensors. In this work, we attempt to reduce the detection limit for a colorimetric-based whole-cell biosensor by applying directed evolution techniques on a transcription regulator, DmpR, to alter the expression level of its cognate promoter, which was fused to mRFP1 to output red coloration in the presence of organophosphate pesticides containing a phenolic group. We selected the two best-performing mutants, DM01 and DM12, which were able to develop red coloration in the presence of parathion as low as 10 μM after just 6 h of induction at 30 °C. This suggests that engineering of the transcription regulator in the sensing domain is useful for improving various properties of whole-cell biosensors, such as reducing the detection limit for simple colorimetric detection of organophosphate pesticides.
Collapse
Affiliation(s)
- Huiqing Chong
- Temasek Laboratories, National University of Singapore 117411, Singapore
| | - Chi Bun Ching
- Temasek Laboratories, National University of Singapore 117411, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585, Singapore
| |
Collapse
|
8
|
Del Peso Santos T, Shingler V. Inter-sigmulon communication through topological promoter coupling. Nucleic Acids Res 2016; 44:9638-9649. [PMID: 27422872 PMCID: PMC5175336 DOI: 10.1093/nar/gkw639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/03/2022] Open
Abstract
Divergent transcription from within bacterial intergenic regions frequently involves promoters dependent on alternative σ-factors. This is the case for the non-overlapping σ70- and σ54-dependent promoters that control production of the substrate-responsive regulator and enzymes for (methyl)phenol catabolism. Here, using an array of in vivo and in vitro assays, we identify transcription-driven supercoiling arising from the σ54-promoter as the mechanism underlying inter-promoter communication that results in stimulation of the activity of the σ70-promoter. The non-overlapping 'back-to-back' configuration of a powerful σ54-promoter and weak σ70-promoter within this system offers a previously unknown means of inter-sigmulon communication that renders the σ70-promoter subservient to signals that elicit σ54-dependent transcription without it possessing a cognate binding site for the σ54-RNA polymerase holoenzyme. This mode of control has the potential to be a prevalent, but hitherto unappreciated, mechanism by which bacteria adjust promoter activity to gain appropriate transcriptional control.
Collapse
Affiliation(s)
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| |
Collapse
|
9
|
Madhushani A, del Peso-Santos T, Moreno R, Rojo F, Shingler V. Transcriptional and translational control through the 5′-leader region of thedmpRmaster regulatory gene of phenol metabolism. Environ Microbiol 2014; 17:119-33. [DOI: 10.1111/1462-2920.12511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Madhushani
- Department of Molecular Biology; Umeå University; Umeå SE 90187 Sweden
| | | | - Renata Moreno
- Departamento de Biotecnologia Microbiana; Centro Nacional de Biotecnologia; CSIC; Madrid Spain
| | - Fernando Rojo
- Departamento de Biotecnologia Microbiana; Centro Nacional de Biotecnologia; CSIC; Madrid Spain
| | - Victoria Shingler
- Department of Molecular Biology; Umeå University; Umeå SE 90187 Sweden
| |
Collapse
|
10
|
Jiménez JI, Pérez-Pantoja D, Chavarría M, Díaz E, de Lorenzo V. A second chromosomal copy of thecatAgene endowsPseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environ Microbiol 2014; 16:1767-78. [DOI: 10.1111/1462-2920.12361] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 12/10/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Jose I. Jiménez
- Centro de Investigaciones Biológicas; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Danilo Pérez-Pantoja
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Max Chavarría
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Eduardo Díaz
- Centro de Investigaciones Biológicas; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| | - Víctor de Lorenzo
- Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas; 28049 Madrid Spain
| |
Collapse
|
11
|
Stec-Dziedzic E, Lyżeń R, Skärfstad E, Shingler V, Szalewska-Pałasz A. Characterization of the transcriptional stimulatory properties of the Pseudomonas putida RapA protein. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012. [PMID: 23207688 DOI: 10.1016/j.bbagrm.2012.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA polymerase-associated factors can significantly affect its performance at specific promoters. Here we identified a Pseudomonas putida RNA polymerases-associated protein as a homolog of Escherichia coli RapA. We found that P. putida RapA stimulates the transcription from promoters dependent on a variety of σ-factors (σ(70), σ(S), σ(54), σ(32), σ(E)) in vitro. The level of stimulation varied from 2- to 10-fold, with the maximal effect observed with the σ(E)-dependent PhtrA promoter. Stimulation by RapA was apparent in the multi-round reactions and was modulated by salt concentration in vitro. However, in contrast to findings with E. coli RapA, P. putida RapA-mediated stimulation of transcription was also evident using linear templates. These properties of P. putida RapA were apparent using either E. coli- or P. putida-derived RNA polymerases. Analysis of individual steps of transcription revealed that P. putida RapA enhances the stability of competitor-resistant open-complexes formed by RNA polymerase at promoters. In vivo, P. putida RapA can complement the inhibitory effect of high salt on growth of an E. coli RapA null strain. However, a P. putida RapA null mutant was not sensitive to high salt. The in vivo effects of lack of RapA were only detectable for the σ(E)-PhtrA promoter where the RapA-deficiency resulted in lower activity. The presented characteristics of P. putida RapA indicate that its functions may extend beyond a role in facilitating RNA polymerase recycling to include a role in transcription initiation efficiency.
Collapse
Affiliation(s)
- Ewa Stec-Dziedzic
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | | | | | | |
Collapse
|
12
|
Rojo F. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010; 34:658-84. [PMID: 20412307 DOI: 10.1111/j.1574-6976.2010.00218.x] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metabolically versatile free-living bacteria have global regulation systems that allow cells to selectively assimilate a preferred compound among a mixture of several potential carbon sources. This process is known as carbon catabolite repression (CCR). CCR optimizes metabolism, improving the ability of bacteria to compete in their natural habitats. This review summarizes the regulatory mechanisms responsible for CCR in the bacteria of the genus Pseudomonas, which can live in many different habitats. Although the information available is still limited, the molecular mechanisms responsible for CCR in Pseudomonas are clearly different from those of Enterobacteriaceae or Firmicutes. An understanding of the molecular mechanisms underlying CCR is important to know how metabolism is regulated and how bacteria degrade compounds in the environment. This is particularly relevant for compounds that are degraded slowly and accumulate, creating environmental problems. CCR has a major impact on the genes involved in the transport and metabolism of nonpreferred carbon sources, but also affects the expression of virulence factors in several bacterial species, genes that are frequently directed to allow the bacterium to gain access to new sources of nutrients. Finally, CCR has implications in the optimization of biotechnological processes such as biotransformations or bioremediation strategies.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
13
|
Bernardo LMD, Johansson LUM, Skärfstad E, Shingler V. sigma54-promoter discrimination and regulation by ppGpp and DksA. J Biol Chem 2008; 284:828-38. [PMID: 19008221 DOI: 10.1074/jbc.m807707200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54)-factor controls expression of a variety of genes in response to environmental cues. Much previous work has implicated the nucleotide alarmone ppGpp and its co-factor DksA in control of sigma(54)-dependent transcription in the gut commensal Escherichia coli, which has evolved to live under very different environmental conditions than Pseudomonas putida. Here we compared ppGpp/DksA mediated control of sigma(54)-dependent transcription in these two organisms. Our in vivo experiments employed P. putida mutants and manipulations of factors implicated in ppGpp/DksA mediated control of sigma(54)-dependent transcription in combination with a series of sigma(54)-promoters with graded affinities for sigma(54)-RNA polymerase. For in vitro analysis we used a P. putida-based reconstituted sigma(54)-transcription assay system in conjunction with DNA-binding plasmon resonance analysis of native and heterologous sigma(54)-RNA polymerase holoenzymes. In comparison with E. coli, ppGpp/DksA responsive sigma(54)-transcription in the environmentally adaptable P. putida was found to be more robust under low energy conditions that occur upon nutrient depletion. The mechanism behind this difference can be traced to reduced promoter discrimination of low affinity sigma(54)-promoters that is conferred by the strong DNA binding properties of the P. putida sigma(54)-RNA polymerase holoenzyme.
Collapse
|
14
|
Galán B, Manso I, Kolb A, García JL, Prieto MA. The role of FIS protein in the physiological control of the expression of the Escherichia coli meta-hpa operon. MICROBIOLOGY-SGM 2008; 154:2151-2160. [PMID: 18599842 DOI: 10.1099/mic.0.2007/015578-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression from the Escherichia coli W meta-hpa operon promoter (Pg) is under a strict catabolic repression control mediated by the cAMP-catabolite repression protein (CRP) complex in a glucose-containing medium. The Pg promoter is also activated by the integration host factor (IHF) and repressed by the specific transcriptional regulator HpaR when 4-hydroxyphenylacetate (4HPA) is not present in the medium. Expression from the hpa promoter is also repressed in undefined rich medium such as LB, but the molecular basis of this mechanism is not understood. We present in vitro and in vivo studies to demonstrate the involvement of FIS protein in this catabolic repression. DNase I footprinting experiments show that FIS binds to multiple sites within the Pg promoter. FIS-site I overlaps the CRP-binding site. By using an electromobility shift assay, we demonstrated that FIS efficiently competes with CRP for binding to the Pg promoter, suggesting an antagonist/competitive mechanism. RT-PCR showed that the Pg repression effect is relieved in a FIS deleted strain. The repression role of FIS at Pg was further demonstrated by in vitro transcription assays. These results suggest that FIS contributes to silencing the Pg promoter in the exponential phase of growth in an undefined rich medium when FIS is predominantly expressed.
Collapse
Affiliation(s)
- Beatriz Galán
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Isabel Manso
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Annie Kolb
- Unité de Génétique Moléculaire-URA 2172, Institut Pasteur, Paris, France
| | - José Luis García
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - María A Prieto
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| |
Collapse
|
15
|
Johansson LUM, Solera D, Bernardo LMD, Moscoso JA, Shingler V. sigma54-RNA polymerase controls sigma70-dependent transcription from a non-overlapping divergent promoter. Mol Microbiol 2008; 70:709-23. [PMID: 18786144 DOI: 10.1111/j.1365-2958.2008.06440.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Divergent transcription of a regulatory gene and a cognate promoter under its control is a common theme in bacterial regulatory circuits. This genetic organization is found for the dmpR gene that encodes the substrate-responsive specific regulator of the sigma(54)-dependent Po promoter, which controls (methyl)phenol catabolism. Here we identify the Pr promoter of dmpR as a sigma(70)-dependent promoter that is regulated by a novel mechanism in which sigma(54)-RNA polymerase occupancy of the non-overlapping sigma(54)-Po promoter stimulates sigma(70)-Pr output. In addition, we show that DmpR stimulates its own production through Po activity both in vivo and in vitro. Hence, the demonstrated regulatory circuit reveals a novel role for sigma(54)-RNA polymerase, namely regulation of a sigma(70)-dependent promoter, and a new mechanism that places a single promoter under dual control of two alternative forms of RNA polymerase. We present a model in which guanosine tetra-phosphate plays a major role in the interplay between sigma(54)- and sigma(70)-dependent transcription to ensure metabolic integration to couple sigma(70)-Pr output to both low-energy conditions and the presence of substrate.
Collapse
|
16
|
Sarand I, Osterberg S, Holmqvist S, Holmfeldt P, Skärfstad E, Parales RE, Shingler V. Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 2008; 10:1320-34. [PMID: 18279347 DOI: 10.1111/j.1462-2920.2007.01546.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Comparatively little is known about directed motility of environmental bacteria to common aromatic pollutants. Here, by expressing different parts of a (methyl)phenol-degradative pathway and the use of specific mutants, we show that taxis of Pseudomonas putida towards (methyl)phenols is dictated by its ability to catabolize the aromatic compound. Thus, in contrast to previously described chemoreceptor-mediated chemotaxis mechanisms towards benzoate, naphthalene and toluene, taxis in response to (methyl)phenols is mediated by metabolism-dependent behaviour. Here we show that P. putida differentially expresses three Aer-like receptors that are all polar-localized through interactions with CheA, and that inactivation of the most abundant Aer2 protein significantly decreases taxis towards phenolics. In addition, the participation of a sensory signal transduction protein composed of a PAS, a GGDEF and an EAL domain in motility towards these compounds is demonstrated. The results are discussed in the context of the versatility of metabolism-dependent coupling and the necessity for P. putida to integrate diverse metabolic signals from its native heterogeneous soil and water environments.
Collapse
Affiliation(s)
- Inga Sarand
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
Szalewska-Palasz A, Johansson LUM, Bernardo LMD, Skärfstad E, Stec E, Brännström K, Shingler V. Properties of RNA Polymerase Bypass Mutants. J Biol Chem 2007; 282:18046-18056. [PMID: 17456470 DOI: 10.1074/jbc.m610181200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial nutritional and stress alarmone ppGpp and its co-factor DksA directly bind RNA polymerase to regulate its activity at certain sigma70-dependent promoters. A number of promoters that are dependent on alternative sigma-factors function poorly in the absence of ppGpp. These include the Pseudomonas-derived sigma54-dependent Po promoter and several other sigma54-promoters, the transcription from which is essentially abolished in Escherichia coli devoid of ppGpp and DksA. However, ppGpp and DksA have no apparent effect on reconstituted in vitro sigma54-transcription, which suggests an indirect mechanism of control. Here we report analysis of five hyper-suppressor mutants within the beta- and beta'-subunits of core RNA polymerase that allow high levels of transcription from the sigma54-Po promoter in the absence of ppGpp. Using in vitro transcription and competition assays, we present evidence that these core RNA polymerase mutants are defective in one or both of two properties that could combine to explain their hyper-suppressor phenotypes: (i) modulation of competitive association with sigma-factors to favor sigma54-holoenzyme formation over that with sigma70, and (ii) reduced innate stability of RNA polymerase-promoter complexes, which mimics the essential effects of ppGpp and DksA for negative regulation of stringent sigma70-promoters. Both these properties of the mutant holoenzymes support a recently proposed mechanism for regulation of sigma54-transcription that depends on the potent negative effects of ppGpp and DksA on transcription from powerful stringent sigma70-promoters, and suggests that stringent regulation is a key mechanism by which the activity of alternative sigma-factors is controlled to meet cellular requirements.
Collapse
Affiliation(s)
- Agnieszka Szalewska-Palasz
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; Department of Molecular Biology, University of Gdansk, 80822 Gdansk, Poland
| | | | | | - Eleonore Skärfstad
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ewa Stec
- Department of Molecular Biology, University of Gdansk, 80822 Gdansk, Poland
| | | | - Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
18
|
Putrinš M, Tover A, Tegova R, Saks Ü, Kivisaar M. Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology (Reading) 2007; 153:1860-1871. [PMID: 17526843 DOI: 10.1099/mic.0.2006/003681-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription of the plasmid-borne phenol catabolic operon pheBA in Pseudomonas putida is activated by the LysR-family regulator CatR in the presence of the effector molecule cis,cis-muconate (CCM), which is an intermediate of the phenol degradation pathway. In addition to the positive control of the operon, several factors negatively affect transcription initiation from the pheBA promoter. First, the activation of the pheBA operon depends on the extracellular concentration of phenol. The pheBA promoter is rapidly activated in the presence of micromolar concentrations of phenol in minimal growth medium, but the initiation of transcription from this promoter is severely delayed after sudden exposure of bacteria to 2.5 mM phenol. Second, the transcriptional activation from this promoter is impeded when the growth medium of bacteria contains amino acids. The negative effects of amino acids can be suppressed either by overproducing CatR or by increasing, the intracellular amount of CCM. However, the intracellular amount of CCM is a major limiting factor for the transcriptional activation of the pheBA operon, as accumulation of CCM in a P. putida catB-defective strain, unable to metabolize CCM (but expressing CatR at a natural level), almost completely relieves the negative effects of amino acids. The intracellular amount of CCM is negatively affected by the catabolite repression control protein via downregulating at the post-transcriptional level the expression of the pheBA-encoded catechol 1,2-dioxygenase and the phenol monooxygenase, the enzymes needed for CCM production.
Collapse
Affiliation(s)
- Marta Putrinš
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Andres Tover
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Radi Tegova
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Ülle Saks
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 51010 Tartu, Estonia
| |
Collapse
|
19
|
Jussila MM, Zhao J, Suominen L, Lindström K. TOL plasmid transfer during bacterial conjugation in vitro and rhizoremediation of oil compounds in vivo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 146:510-24. [PMID: 17000041 DOI: 10.1016/j.envpol.2006.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 05/12/2023]
Abstract
Molecular profiling methods for horizontal transfer of aromatics-degrading plasmids were developed and applied during rhizoremediation in vivo and conjugations in vitro. pWW0 was conjugated from Pseudomonas to Rhizobium. The xylE gene was detected both in Rhizobium galegae bv. officinalis and bv. orientalis, but it was neither stably maintained in orientalis nor functional in officinalis. TOL plasmids were a major group of catabolic plasmids among the bacterial strains isolated from the oil-contaminated rhizosphere of Galega orientalis. A new finding was that some Pseudomonas migulae and Pseudomonas oryzihabitans strains harbored a TOL plasmid with both pWW0- and pDK1-type xylE gene. P. oryzihabitans 29 had received the archetypal TOL plasmid pWW0 from Pseudomonas putida PaW85. As an application for environmental biotechnology, the biodegradation potential of oil-polluted soil and the success of bioremediation could be estimated by monitoring changes not only in the type and amount but also in transfer of degradation plasmids.
Collapse
Affiliation(s)
- Minna M Jussila
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
20
|
Bernardo LMD, Johansson LUM, Solera D, Skärfstad E, Shingler V. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 2006; 60:749-64. [PMID: 16629675 DOI: 10.1111/j.1365-2958.2006.05129.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from sigma70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo sigma54 transcription even though they do not have any major direct effects on sigma54 transcription in reconstituted in vitro transcription and sigma-factor competition assays, (ii) that previously defined mutations rendering the housekeeping sigma70 less effective at competing with sigma54 for limiting amounts of core RNA polymerase similarly suppress the requirement for DksA and ppGpp in vivo and (iii) that the extent to which ppGpp and DksA affect transcription from sigma54 promoters in vivo reflects the innate affinity of the promoters for sigma54-RNA polymerase holoenzyme in vitro. Based on these findings, we propose a passive model for ppGpp/DksA regulation of sigma54-dependent transcription that depends on the potent negative effects of these regulatory molecules on transcription from powerful stringently regulated sigma70 promoters.
Collapse
|
21
|
Guzmán CA, Cebolla A, Beltrametti F, Staender LH, de Lorenzo V. Physiological stress of intracellular Shigella flexneri visualized with a metabolic sensor fused to a surface-reporter system. FEBS Lett 2005; 579:813-8. [PMID: 15670852 PMCID: PMC7094403 DOI: 10.1016/j.febslet.2004.12.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 11/29/2004] [Accepted: 12/23/2004] [Indexed: 11/28/2022]
Abstract
When deleted of its N-terminal signal-reception domain, the broad host range sigma54-dependent transcriptional regulator XylR, along with its cognate promoter Pu, becomes a sensor of the metabolic stress of the carrier bacteria. We have employed a surface reporter system to visualize the physiological status of intracellular Shigella flexneri during infection of Henle 407 cells in culture. To this end, the xylRDeltaA gene has been engineered adjacent to a bicistronic transcriptional fusion of Pu to a lamB variant tagged with a short viral sequence (cor) and beta-galactosidase (lacZ). The accessibility of the cor epitope to the externalmost medium and the expression of Pu in the bacterial population was confirmed, respectively, with immunomagnetic beads and the sorting of Escherichia coli cells treated with a fluorescent antibody. Intracellular Shigella cells expressed the Pu-lamB/cor-lacZ reporter at high levels, suggesting that infectious cells endure a considerable metabolic constraint during the invasion process.
Collapse
Affiliation(s)
- Carlos A. Guzmán
- Division Microbiology, Vaccine Research Group, German Research Centre for Biotechnology (GBF), D-38124 Braunschweig, Germany
| | - Angel Cebolla
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología del CSIC (CNB-CSIC), 28049 Madrid, Spain
- BioMedal SL, Av. Américo Vespucio, 5, 41092 Sevilla, Spain
| | - Fabricio Beltrametti
- Division Microbiology, Vaccine Research Group, German Research Centre for Biotechnology (GBF), D-38124 Braunschweig, Germany
| | - Lothar H. Staender
- Division Microbiology, Vaccine Research Group, German Research Centre for Biotechnology (GBF), D-38124 Braunschweig, Germany
| | - Víctor de Lorenzo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología del CSIC (CNB-CSIC), 28049 Madrid, Spain
| |
Collapse
|
22
|
Carmona M, Fernández S, Rodríguez MJ, de Lorenzo V. m-xylene-responsive Pu-PnifH hybrid sigma54 promoters that overcome physiological control in Pseudomonas putida KT2442. J Bacteriol 2005; 187:125-34. [PMID: 15601696 PMCID: PMC538837 DOI: 10.1128/jb.187.1.125-134.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequences surrounding the -12/-24 motif of the m-xylene-responsive sigma54 promoter Pu of the Pseudomonas putida TOL plasmid pWW0 were replaced by various DNA segments of the same size recruited from PnifH sigma54 promoter variants known to have various degrees of efficacy and affinity for sigma54-RNA polymerase (RNAP). In order to have an accurate comparison of the output in vivo of each of the hybrids, the resulting promoters were recombined at the same location of the chromosome of P. putida KT2442 with a tailored vector system. The promoters included the upstream activation sequence (UAS) for the cognate regulator of the TOL system (XylR) fused to the -12/-24 region of the wild-type PnifH and its higher sigma54-RNAP affinity variants PnifH049 and PnifH319. As a control, the downstream region of the glnAp2 promoter (lacking integration host factor) was fused to the XylR UAS as well. When the induction patterns of the corresponding lacZ fusion strains were compared in vivo, we observed that promoters bearing the RNAP binding site of PnifH049 and PnifH319 were not silenced during exponential growth, as is distinctly the case for the wild-type Pu promoter or for the Pu-PnifH variant. Taken together, our results indicate that the promoter sequence(s) spanning the -12/-24 region of Pu dictates the coupling of promoter output to growth conditions.
Collapse
Affiliation(s)
- Manuel Carmona
- Centro Nacional de Biotecnología del CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Uchiyama T, Abe T, Ikemura T, Watanabe K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 2005; 23:88-93. [PMID: 15608629 DOI: 10.1038/nbt1048] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/18/2004] [Indexed: 11/09/2022]
Abstract
Recent awareness that most microorganisms in the environment are resistant to cultivation has prompted scientists to directly clone useful genes from environmental metagenomes. Two screening methods are currently available for the metagenome approach, namely, nucleotide sequence-based screening and enzyme activity-based screening. Here we have introduced and optimized a third option for the isolation of novel catabolic operons, that is, substrate-induced gene expression screening (SIGEX). This method is based on the knowledge that catabolic-gene expression is generally induced by relevant substrates and, in many cases, controlled by regulatory elements situated proximate to catabolic genes. For SIGEX to be high throughput, we constructed an operon-trap gfp-expression vector available for shotgun cloning that allows for the selection of positive clones in liquid cultures by fluorescence-activated cell sorting. The utility of SIGEX was demonstrated by the cloning of aromatic hydrocarbon-induced genes from a groundwater metagenome library and subsequent genome-informatics analysis.
Collapse
Affiliation(s)
- Taku Uchiyama
- Laboratory of Applied Microbiology, Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | | | |
Collapse
|
24
|
Prieto MA, Galán B, Torres B, Ferrández A, Fernández C, Miñambres B, García JL, Díaz E. Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli. FEMS Microbiol Rev 2004; 28:503-18. [PMID: 15374664 DOI: 10.1016/j.femsre.2004.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/13/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022] Open
Abstract
The current knowledge on the genetics and biochemistry of the catabolism of aromatic compounds in Escherichia coli settles the basis to consider these pathways as a model system to study the complex molecular mechanisms that control the expression of the genes involved in the metabolism of less-preferred carbon sources in this paradigmatic organism. Two different levels of regulation are reviewed: (i) the specific regulatory mechanisms that drive the expression of the catabolic genes when the cognate inducer, i.e., the substrate of the pathway or an intermediate metabolite, is available, and (ii) the global or superimposed regulation that adjust the expression of the catabolic clusters to the general physiological status of the cell.
Collapse
Affiliation(s)
- María A Prieto
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Solera D, Arenghi FLG, Woelk T, Galli E, Barbieri P. TouR-mediated effector-independent growth phase-dependent activation of the sigma54 Ptou promoter of Pseudomonas stutzeri OX1. J Bacteriol 2004; 186:7353-63. [PMID: 15489447 PMCID: PMC523194 DOI: 10.1128/jb.186.21.7353-7363.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the catabolic touABCDEF operon, encoding the toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1, is driven by the sigma(54)-dependent Ptou promoter, whose activity is controlled by the phenol-responsive NtrC-like activator TouR. In this paper we describe for the first time a peculiar characteristic of this system, namely, that Ptou transcription is activated in a growth phase-dependent manner in the absence of genuine effectors of the cognate TouR regulator. This phenomenon, which we named gratuitous activation, was observed in the native strain P. stutzeri OX1, as well as in a Pseudomonas putida PaW340 host harboring the reconstructed tou regulatory circuit. Regulator-promoter swapping experiments demonstrated that the presence of TouR is necessary and sufficient for imposing gratuitous activation on the Ptou promoter, as well as on other sigma(54)-dependent catabolic promoters, whereas the highly similar phenol-responsive activator DmpR is unable to activate the Ptou promoter in the absence of effectors. We show that this phenomenon is specifically triggered by carbon source exhaustion but not by nitrogen starvation. An updated model of the tou regulatory circuit is presented.
Collapse
Affiliation(s)
- Dafne Solera
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
26
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
27
|
Van Dien SJ, de Lorenzo V. Deciphering environmental signal integration in sigma54-dependent promoters with a simple mathematical model. J Theor Biol 2003; 224:437-49. [PMID: 12957116 DOI: 10.1016/s0022-5193(03)00191-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A mathematical model was developed to describe the physiological co-regulation of two Pseudomonas sigma54-dependent promoter/regulator systems, Pu/XylR and Po/DmpR of Pseudomonas strains mt2 and CF600, respectively. Five ordinary differential equations and six algebraic equations were developed to describe the following processes of transcription initiation: binding of the activator protein to the upstream activating sequence, union of the sigma factor with the core polymerase, formation of the open complex, and escape of the transcription machinery from the promoter region. In addition, growth-phase control of the integration host factor (IHF), sigma-70 regulation during stationary phase, and the contribution of (p)ppGpp to both sigma factor selectivity and promoter escape were hypothesized. By including any three of these four effects, the model predicted that expression from both promoters is repressed during exponential growth and sharply increases as the cells enter stationary phase. The difference in behavior of the two systems during overexpression of either sigma54 or (p)ppGpp could be explained by different values of two model parameters. To accurately represent the behavior of both promoters in (p)ppGpp null strains, an additional parameter must be varied. Although numerical data available for this system is scarce, the model has proved useful for helping to interpret the experimental observations and to evaluate four hypotheses that have been proposed to explain the phenomenon of exponential silencing.
Collapse
Affiliation(s)
- Stephen J Van Dien
- Centro Nacional de Biotecnología, Campus Universidad Autónoma, 28049 Madrid, Spain.
| | | |
Collapse
|
28
|
Laurie AD, Bernardo LMD, Sze CC, Skarfstad E, Szalewska-Palasz A, Nyström T, Shingler V. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 2003; 278:1494-503. [PMID: 12421818 DOI: 10.1074/jbc.m209268200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some promoters, including the DmpR-controlled sigma(N)-dependent Po promoter, are effectively rendered silent in cells lacking the nutritional alarmone (p)ppGpp. Here we demonstrate that four mutations within the housekeeping sigma(D)-factor can restore sigma(N)-dependent Po transcription in the absence of (p)ppGpp. Using both in vitro and in vivo transcription competition assays, we show that all the four sigma(D) mutant proteins are defective in their ability to compete with sigma(N) for available core RNA polymerase and that the magnitude of the defect reflects the hierarchy of restoration of transcription from Po in (p)ppGpp-deficient cells. Consistently, underproduction of sigma(D) or overproduction of the anti-sigma(D) protein Rsd were also found to allow (p)ppGpp-independent transcription from the sigma(N)-Po promoter. Together with data from the direct effects of (p)ppGpp on sigma(N)-dependent Po transcription and sigma-factor competition, the results support a model in which (p)ppGpp serves as a master global regulator of transcription by differentially modulating alternative sigma-factor competition to adapt to changing cellular nutritional demands.
Collapse
Affiliation(s)
- Andrew D Laurie
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
29
|
Petruschka L, Adolf K, Burchhardt G, Dernedde J, Jürgensen J, Herrmann H. Analysis of the zwf-pgl-eda-operon in Pseudomonas putida strains H and KT2440. FEMS Microbiol Lett 2002; 215:89-95. [PMID: 12393206 DOI: 10.1111/j.1574-6968.2002.tb11375.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A 3.9-kb fragment of the genome of Pseudomonas putida H, containing the complete zwf-pgl-eda-operon, encoding glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase and 2-keto-3-deoxy-6-phosphogluconate-aldolase, respectively, and part of the divergently transcribed regulatory gene, hexR, was cloned and analyzed. The nucleotide sequences of these genes showed high similarities to the corresponding DNA sequences of P. putida KT2440 and also to sequences of Pseudomonas aeruginosa PAO1. Derivatives of strains H and KT2440, containing transcriptional lacZ fusions to P(zwf) were generated and used to study the expression of these operons. In both strains, this operon was induced by carbohydrates such as glucose, gluconate, fructose and glycerol. The transcription rate of the zwf-pgl-eda-operon was found to be about three times higher in the KT2440 background than in strain H. In both strains the induction of the zwf-pgl-eda-operon by carbohydrates during growth on carboxylic acids was not affected by carbon catabolite repression.
Collapse
Affiliation(s)
- Lothar Petruschka
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Lehrstuhl für Genetik, 17487, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Dinamarca MA, Ruiz-Manzano A, Rojo F. Inactivation of cytochrome o ubiquinol oxidase relieves catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 2002; 184:3785-93. [PMID: 12081947 PMCID: PMC135178 DOI: 10.1128/jb.184.14.3785-3793.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Expression of the alkane degradation pathway encoded by the OCT plasmid of Pseudomonas putida GPo1 is regulated by two control systems. One relies on the transcriptional regulator AlkS, which activates expression of the pathway in the presence of alkanes. The other, which is a dominant global regulation control, represses the expression of the pathway genes when a preferred carbon source is present in the growth medium in addition to alkanes. This catabolite repression control occurs through a poorly characterized mechanism that ultimately regulates transcription from the two AlkS-activated promoters of the pathway. To identify the factors involved, a screening method was developed to isolate mutants without this control. Several isolates were obtained, all of which contained mutations that mapped to genes encoding cytochrome o ubiquinol oxidase, the main terminal oxidase of the electron transport chain under highly aerobic conditions. Elimination of this terminal oxidase led to a decrease in the catabolic repression observed both in rich Luria-Bertani medium and in a defined medium containing lactate or succinate as the carbon source. This suggests that catabolic repression could monitor the physiological or metabolic status by using information from the electron transport chain or from the redox state of the cell. Since inactivation of the crc gene also reduces catabolic repression in rich medium (although not that observed in a defined medium), a strain was generated lacking both the Crc function and the cytochrome o terminal oxidase. The two mutations had an additive effect in relieving catabolic repression in rich medium. This suggests that crc and cyo belong to different regulation pathways, both contributing to catabolic repression.
Collapse
Affiliation(s)
- M Alejandro Dinamarca
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
31
|
Santos PM, Mignogna G, Heipieper HJ, Zennaro E. Occurrence and properties of glutathione S-transferases in phenol-degrading Pseudomonas strains. Res Microbiol 2002; 153:89-98. [PMID: 11900268 DOI: 10.1016/s0923-2508(01)01293-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudomonas sp. strains, able to degrade aromatic compounds such as phenol, were chosen to investigate the occurrence and characteristics of glutathione S-transferases (GSTs). Affinity chromatography purification showed the presence of at least one GST in each studied strain. The purified proteins exhibited a great variety in the N-terminal sequences and different enzyme activities with the standard GST substrates tested. Two Pseudomonas strains, M1 and CF600, were chosen to investigate the GST activities under different growth conditions. Therefore, cells were grown either on phenol or on different nonaromatic carbon sources in the presence and absence of increasing phenol concentrations. In strain M1 a strong correlation between the activities of the catechol 1,2-dioxygenase and GST was observed in all the tested conditions. Moreover, growth on different organic acids also affected GST activity levels, with a negative correlation with the specific growth rate determined by each substrate. These results suggest a possible function of GST as a response to specific metabolic conditions determined by phenol toxicity and/or catabolism and the metabolic status of the cells. The same experiments performed with the CF600 strain did not show induction of GST activity in any of the tested conditions, indicating that GST_CF600 probably has a different role in cell metabolism. Native gel electrophoresis gave indications that GST dimerization could be an important process in the modulation of GST activity.
Collapse
|
32
|
Sze CC, Bernardo LMD, Shingler V. Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: a common phenotype by different mechanisms. J Bacteriol 2002; 184:760-70. [PMID: 11790746 PMCID: PMC139538 DOI: 10.1128/jb.184.3.760-770.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related sigma(54)-dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding sigma(54) RNA polymerase, the integration host factor, and the regulator. These common properties allow cross-regulation of Pu and Po by DmpR and XylR in response to appropriate aromatic effectors. In vivo, transcription of both the DmpR/Po and XylR/Pu regulatory circuits is subject to dominant global regulation, which results in repression of transcription during growth in rich media. Here, we comparatively assess the contribution of (p)ppGpp, the FtsH protease, and a component of an alternative phosphoenolpyruvate-sugar phosphotransferase system, which have been independently implicated in mediating this level of regulation. Further, by exploiting the cross-regulatory abilities of these two circuits, we identify the target component(s) that are intercepted in each case. The results show that (i) contrary to previous speculation, FtsH is not universally required for transcription of sigma(54)-dependent systems; (ii) the two factors found to impact the XylR/Pu regulatory circuit do not intercept the DmpR/Po circuit; and (iii) (p)ppGpp impacts the DmpR/Po system to a greater extent than the XylR/Pu system in both the native Pseudomonas putida and a heterologous Escherichia coli host. The data demonstrate that, despite the similarities of the specific regulatory circuits, the host global regulatory network latches onto and dominates over these specific circuits by exploiting their different properties. The mechanistic implications of how each of the host factors exerts its action are discussed.
Collapse
Affiliation(s)
- Chun Chau Sze
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
33
|
Valls M, Buckle M, de Lorenzo V. In vivo UV laser footprinting of the Pseudomonas putidasigma 54Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J Biol Chem 2002; 277:2169-75. [PMID: 11694511 DOI: 10.1074/jbc.m108162200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The occupation of the final sigma(54)-dependent Pu promoter of Pseudomonas putida by the integration host factor (IHF) under different growth conditions has been monitored in its native state and stoichiometry (i.e. monocopy) with UV laser footprinting technology. We present evidence that an abrupt change in intracellular IHF concentrations occurs when P. putida cells enter stationary phase. This change results in enhanced binding of the factor to the promoter and in the ensuing bending of the target DNA. Since Pu activity depends rigorously on DNA bending, promoter occupation is in turn translated into a much higher transcriptional output when cells leave exponential growth. Inspection of the residual activity of Pu in an IHF(-) strain reveals that IHF predominantly locks the capacity of the promoter to specific growth stages and also that additional physiological signals are entered in the system through final sigma(54)-RNA polymerase. The results substantiate the notion that final sigma(54) promoters process metabolic co-regulation signals through factor-induced changes in the architecture of the cognate DNA region. Further, they validate UV laser technology as a suitable tool to visualize nondisruptive alterations of DNA shape in vivo.
Collapse
Affiliation(s)
- Marc Valls
- Department of Microbial Biotechnology, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
34
|
Wikström P, O'Neill E, Ng LC, Shingler V. The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation. J Mol Biol 2001; 314:971-84. [PMID: 11743715 DOI: 10.1006/jmbi.2000.5212] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional promoting activity of DmpR is under the strict control of its aromatic effector ligands that are bound by its regulatory N-terminal domain. The positive control function of DmpR resides within the central C-domain that is highly conserved among activators of sigma(54)-RNA polymerase. The C-domain mediates ATP hydrolysis and interaction with sigma(54)-RNA polymerase that are essential for open-complex formation and thus initiation of transcription. Wild-type and loss-of-function derivatives of DmpR, which are defective in distinct steps in nucleotide catalysis, were used to address the consequences of nucleotide binding and hydrolysis with respect to the multimeric state of DmpR and its ability to promote in vitro transcription. Here, we show that DmpR derivatives deleted of the regulatory N-terminal domain undergo an aromatic-effector independent ATP-binding triggered multimerisation as detected by cross-linking. In the intact protein, however, aromatic effector activation is required before ATP-binding can trigger an apparent dimer-to-hexamer switch in subunit conformation. The data suggest a model in which the N-terminal domain controls the transcriptional promoting property of DmpR by constraining ATP-mediated changes in its oligomeric state. The results are discussed in the light of recent mechanistic insights from the AAA(+) superfamily of ATPases that utilise nucleotide hydrolysis to restructure their substrates.
Collapse
Affiliation(s)
- P Wikström
- Institute for Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
35
|
Yuste L, Rojo F. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 2001; 183:6197-206. [PMID: 11591662 PMCID: PMC100097 DOI: 10.1128/jb.183.21.6197-6206.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Accepted: 07/25/2001] [Indexed: 11/20/2022] Open
Abstract
Expression of the alkane degradation pathway encoded in the OCT plasmid of Pseudomonas putida GPo1 is induced in the presence of alkanes by the AlkS regulator, and it is down-regulated by catabolic repression. The catabolic repression effect reduces the expression of the two AlkS-activated promoters of the pathway, named PalkB and PalkS2. The P. putida Crc protein participates in catabolic repression of some metabolic pathways for sugars and nitrogenated compounds. Here, we show that Crc has an important role in the catabolic repression exerted on the P. putida GPo1 alkane degradation pathway when cells grow exponentially in a rich medium. Interestingly, Crc plays little or no role on the catabolic repression exerted by some organic acids in a defined medium, which shows that these two types of catabolic repression can be genetically distinguished. Disruption of the crc gene led to a six- to sevenfold increase in the levels of the mRNAs arising from the AlkS-activated PalkB and PalkS2 promoters in cells growing exponentially in rich medium. This was not due to an increase in the half-lives of these mRNAs. Since AlkS activates the expression of its own gene and seems to be present in limiting amounts, the higher mRNA levels observed in the absence of Crc could arise from an increase in either transcription initiation or in the translation efficiency of the alkS mRNA. Both alternatives would lead to increased AlkS levels and hence to elevated expression of PalkB and PalkS2. High expression of alkS from a heterologous promoter eliminated catabolic repression. Our results indicate that catabolic repression in rich medium is directed to down-regulate the levels of the AlkS activator. Crc would thus modulate, directly or indirectly, the levels of AlkS.
Collapse
Affiliation(s)
- L Yuste
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
36
|
Koch B, Worm J, Jensen LE, Højberg O, Nybroe O. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 2001; 67:3363-70. [PMID: 11472905 PMCID: PMC93029 DOI: 10.1128/aem.67.8.3363-3370.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies employing reporter gene technology indicate that the availabilities of the major nutrients nitrogen, phosphate, and iron to Pseudomonas are not severely limited in bulk soil. Indirect evidence has pointed to carbon limitation as a severe nutritional stress in this environment. We show that a plasmid (pGM115)-borne transcriptional fusion between the sigma(S)-dependent Escherichia coli promoter P(fic) and lacZ functions as a reliable reporter for carbon availability in Pseudomonas fluorescens. When P. fluorescens strain DF57(pGM115) was introduced into bulk soil, carbon-limiting conditions were indicated by citrate-repressible induction of beta-galactosidase activity. To address carbon availability at the single-cell level, we developed an immunofluorescence double-staining procedure for individual DF57 cells expressing beta-galactosidase from P(fic). Changes in cell size and expression of beta-galactosidase were analyzed by flow cytometry. Cells extracted from soil microcosms reduced their size less than carbon-starved cells in pure culture and showed an increased tendency to aggregate. The single-cell analysis revealed that for cells residing in soil, the expression of beta-galactosidase became heterogeneous and only a DF57 subpopulation appeared to be carbon limited. In soil amended with barley straw, limited nitrogen availability has been determined by use of the bioluminescent reporter strain P. fluorescens DF57-N3. We used strain DF57-N3(pGM115) as a double reporter for carbon and nitrogen limitation that allowed us to study the dynamics of carbon and nitrogen availabilities in more detail. In straw-amended soil beta-galactosidase activity remained low, while nitrogen limitation-dependent bioluminescence appeared after a few days. Hence, nitrogen became limited under conditions where carbon resources were not completely exhausted.
Collapse
Affiliation(s)
- B Koch
- Section of Genetics and Microbiology, Department of Ecology, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
37
|
Tover A, Ojangu EL, Kivisaar M. Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2149-2156. [PMID: 11495992 DOI: 10.1099/00221287-147-8-2149] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Expression of the phenol degradation pathway in Pseudomonas putida strain PaW85 requires coordinated transcription of the plasmid-borne pheBA operon encoding catechol 1,2-dioxygenase and phenol monooxygenase, respectively, and the chromosomally encoded catechol degradation catBCA operon. Transcriptional activation from the pheBA and catBCA promoters is regulated by CatR and the catechol degradation pathway intermediate cis,cis-muconate. Here it is shown that physiological control mechanisms are superimposed on this regulatory system. Transcriptional activation from the pheBA and catBCA promoters is growth-phase-regulated in P. putida cells grown on rich medium (LB medium). CatR-mediated transcription from these promoters is silenced on rich medium until the transition from exponential to stationary phase. A slight positive effect (threefold) of stationary-phase-specific sigma factor sigma(S) on transcription from the pheBA promoter was observed. Expression of the catBCA promoter was not influenced by the activity of this sigma factor. In contrast to rich growth medium, transcription from the pheBA and catBCA promoters in minimal medium containing a mixture of glucose and sodium benzoate was rapidly induced in exponential culture. It was shown that the presence of amino acids in the culture medium causes exponential silencing of the pheBA and catBCA promoters. The possibility that a hypothetical repressor protein could be involved in physiological control of transcription from the pheBA and catBCA promoters is discussed.
Collapse
Affiliation(s)
- Andres Tover
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, Riia 23, 51010 Tartu, Estonia1
| | - Eve-Ly Ojangu
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, Riia 23, 51010 Tartu, Estonia1
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Estonian Biocentre and Tartu University, Riia 23, 51010 Tartu, Estonia1
| |
Collapse
|
38
|
Teramoto M, Harayama S, Watanabe K. PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5. J Bacteriol 2001; 183:4227-34. [PMID: 11418563 PMCID: PMC95312 DOI: 10.1128/jb.183.14.4227-4234.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified an open reading frame, designated phcS, downstream of the transcriptional activator gene (phcR) for the expression of multicomponent phenol hydroxylase (mPH) in Comamonas testosteroni R5. The deduced product of phcS was homologous to AphS of C. testosteroni TA441, which belongs to the GntR family of transcriptional regulators. The transformation of Pseudomonas aeruginosa PAO1c (phenol negative, catechol positive) with pROR502 containing phcR and the mPH genes conferred the ability to grow on phenol, while transformation with pROR504 containing phcS, phcR, and mPH genes did not confer this ability. The disruption of phcS in strain R5 had no effect on its phenol-oxygenating activity in a chemostat culture with phenol. The phenol-oxygenating activity was not expressed in strain R5 grown in a chemostat with acetate. In contrast, the phenol-oxygenating activity in the strain with a knockout phcS gene when grown in a chemostat with acetate as the limiting growth factor was 66% of that obtained in phenol-grown cells of the strain with a knockout in the phcS gene. The disruption of phcS and/or phcR and the complementation in trans of these defects confirm that PhcS is a trans-acting repressor and that the unfavorable expression of mPH in the phcS knockout cells grown on acetate requires PhcR. These results show that the PhcS protein repressed the gratuitous expression of phenol-metabolizing enzymes in the absence of the genuine substrate and that strain R5 acted by an unknown mechanism in which the PhcS-mediated repression was overcome in the presence of the pathway substrate.
Collapse
Affiliation(s)
- M Teramoto
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026-0001, Japan
| | | | | |
Collapse
|
39
|
Marín MM, Smits TH, van Beilen JB, Rojo F. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J Bacteriol 2001; 183:4202-9. [PMID: 11418560 PMCID: PMC95309 DOI: 10.1128/jb.183.14.4202-4209.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many microorganisms the first step for alkane degradation is the terminal oxidation of the molecule by an alkane hydroxylase. We report the characterization of a gene coding for an alkane hydroxylase in a Burkholderia cepacia strain isolated from an oil-contaminated site. The protein encoded showed similarity to other known or predicted bacterial alkane hydroxylases, although it clustered on a separate branch together with the predicted alkane hydroxylase of a Mycobacterium tuberculosis strain. Introduction of the cloned B. cepacia gene into an alkane hydroxylase knockout mutant of Pseudomonas fluorescens CHAO restored its ability to grow on alkanes, which confirms that the gene analyzed encodes a functional alkane hydroxylase. The gene, which was named alkB, is not linked to other genes of the alkane oxidation pathway. Its promoter was identified, and its expression was analyzed under different growth conditions. Transcription was induced by alkanes of chain lengths containing 12 to at least 30 carbon atoms as well as by alkanols. Although the gene was efficiently expressed during exponential growth, transcription increased about fivefold when cells approached stationary phase, a characteristic not shared by the few alkane degraders whose regulation has been studied. Expression of the alkB gene was under carbon catabolite repression when cells were cultured in the presence of several organic acids and sugars or in a complex (rich) medium. The catabolic repression process showed several characteristics that are clearly different from what has been observed in other alkane degradation pathways.
Collapse
Affiliation(s)
- M M Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Sze CC, Laurie AD, Shingler V. In vivo and in vitro effects of integration host factor at the DmpR-regulated sigma(54)-dependent Po promoter. J Bacteriol 2001; 183:2842-51. [PMID: 11292804 PMCID: PMC99501 DOI: 10.1128/jb.183.9.2842-2851.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription from the Pseudomonas CF600-derived sigma(54)-dependent promoter Po is controlled by the aromatic-responsive activator DmpR. Here we examine the mechanism(s) by which integration host factor (IHF) stimulates DmpR-activated transcriptional output of the Po promoter both in vivo and in vitro. In vivo, the Po promoter exhibits characteristics that typify many sigma(54)-dependent promoters, namely, a phasing-dependent tolerance with respect to the distance from the regulator binding sites to the distally located RNA polymerase binding site, and a strong dependence on IHF for optimal promoter output. IHF is shown to affect transcription via structural repercussions mediated through binding to a single DNA signature located between the regulator and RNA polymerase binding sites. In vitro, using DNA templates that lack the regulator binding sites and thus bypass a role of IHF in facilitating physical interaction between the regulator and the transcriptional apparatus, IHF still mediates a DNA binding-dependent stimulation of Po transcription. This stimulatory effect is shown to be independent of previously described mechanisms for the effects of IHF at sigma(54) promoters such as aiding binding of the regulator or recruitment of sigma(54)-RNA polymerase via UP element-like DNA. The effect of IHF could be traced to promotion and/or stabilization of open complexes within the nucleoprotein complex that may involve an A+T-rich region of the IHF binding site and promoter-upstream DNA. Mechanistic implications are discussed in the context of a model in which IHF binding results in transduction of DNA instability from an A+T-rich region to the melt region of the promoter.
Collapse
Affiliation(s)
- C C Sze
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
41
|
Cases I, de Lorenzo V. The limits to genomic predictions: role of sigma(N) in environmental stress survival of Pseudomonas putida. FEMS Microbiol Ecol 2001; 35:217-221. [PMID: 11295461 DOI: 10.1111/j.1574-6941.2001.tb00806.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Based on genomic data and on the phenotypes of an FlhF mutant of Pseudomonas putida, the alternative sigma factor sigma(N) (sigma(54)) has been proposed to play a key role in survival to various nutritional and environmental stresses in this bacterium. Quite in contrast, we show that unlike sigma(S) (sigma(38)) the loss of sigma(N) does not impair to any significant extent the ability of P. putida to survive long-term starvation. rpoN mutants (lacking sigma(N)) are indistinguishable from the wild-type with respect to solvent tolerance, resistance to heat shock or sensitivity to hydrogen peroxide. These data suggest that while sigma(N) is a key component of expression of alternative biodegradative pathways for unusual carbon sources (i.e. m-xylene or dimethylphenols), its loss does not compromise bacterial endurance to gross types of environmental stress. Moreover, these results point out the limitations, if not the deception, of genomic predictions when confronted with experimental data.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049, Madrid, Spain
| | | |
Collapse
|
42
|
O’Neill E, Wikström P, Shingler V. An active role for a structured B-linker in effector control of the sigma54-dependent regulator DmpR. EMBO J 2001; 20:819-27. [PMID: 11179226 PMCID: PMC145425 DOI: 10.1093/emboj/20.4.819] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The activities of many prokaryotic sigma54-dependent transcriptional activators are controlled by the N-terminal A-domain of the protein, which is linked to the central transcriptional activation domain via a short B-linker. It used to be thought that these B-linkers simply serve as flexible tethers. Here we show that the B-linker of the aromatic-responsive regulator DmpR and many other regulators of the family contain signature heptad repeats with regularly spaced hydrophobic amino acids. Mutant analysis of this region of DmpR demonstrates that B-linker function is dependent on the heptad repeats and is critical for activation of the protein by aromatic effectors. The phenotypes of DmpR mutants refute the existing model that the level of ATPase activity directly controls the level of transcription it promotes. The mutant analysis also shows that the B-linker is involved in repression of ATPase activity and that allosteric changes upon effector binding are transduced to alleviate both B-linker repression of ATP hydrolysis and A-domain repression of transcriptional activation. The mechanistic implications of these findings for DmpR and other family members are discussed.
Collapse
Affiliation(s)
| | | | - Victoria Shingler
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
Corresponding author e-mail:
| |
Collapse
|
43
|
Cases I, de Lorenzo V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 2001; 20:1-11. [PMID: 11226149 PMCID: PMC140184 DOI: 10.1093/emboj/20.1.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 10/30/2000] [Accepted: 11/08/2000] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Víctor de Lorenzo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|
44
|
Sarand I, Skärfstad E, Forsman M, Romantschuk M, Shingler V. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Appl Environ Microbiol 2001; 67:162-71. [PMID: 11133441 PMCID: PMC92538 DOI: 10.1128/aem.67.1.162-171.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2000] [Accepted: 10/17/2000] [Indexed: 11/20/2022] Open
Abstract
Pathway substrates and some structural analogues directly activate the regulatory protein DmpR to promote transcription of the dmp operon genes encoding the (methyl)phenol degradative pathway of Pseudomonas sp. strain CF600. While a wide range of phenols can activate DmpR, the location and nature of substituents on the basic phenolic ring can limit the level of activation and thus utilization of some compounds as assessed by growth on plates. Here we address the role of the aromatic effector response of DmpR in determining degradative properties in two soil matrices that provide different nutritional conditions. Using the wild-type system and an isogenic counterpart containing a DmpR mutant with enhanced ability to respond to para-substituted phenols, we demonstrate (i) that the enhanced in vitro biodegradative capacity of the regulator mutant strain is manifested in the two different soil types and (ii) that exposure of the wild-type strain to 4-methylphenol-contaminated soil led to rapid selection of a subpopulation exhibiting enhanced capacities to degrade the compound. Genetic and functional analyses of 10 of these derivatives demonstrated that all harbored a single mutation in the sensory domain of DmpR that mediated the phenotype in each case. These findings establish a dominating role for the aromatic effector response of DmpR in determining degradation properties. Moreover, the results indicate that the ability to rapidly adapt regulator properties to different profiles of polluting compounds may underlie the evolutionary success of DmpR-like regulators in controlling aromatic catabolic pathways.
Collapse
Affiliation(s)
- I Sarand
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
45
|
Jaspers MC, Schmid A, Sturme MH, Goslings DA, Kohler HP, Roelof Van Der Meer J. Transcriptional organization and dynamic expression of the hbpCAD genes, which encode the first three enzymes for 2-hydroxybiphenyl degradation in Pseudomonas azelaica HBP1. J Bacteriol 2001; 183:270-9. [PMID: 11114926 PMCID: PMC94875 DOI: 10.1128/jb.183-1.270-279.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas azelaica HBP1 degrades the toxic substance 2-hydroxybiphenyl (2-HBP) by means of three enzymes that are encoded by structural genes hbpC, hbpA, and hbpD. These three genes form a small noncontiguous cluster. Their expression is activated by the product of regulatory gene hbpR, which is located directly upstream of the hbpCAD genes. The HbpR protein is a transcription activator and belongs to the so-called XylR/DmpR subclass within the NtrC family of transcriptional activators. Transcriptional fusions between the different hbp intergenic regions and the luxAB genes of Vibrio harveyi in P. azelaica and in Escherichia coli revealed the existence of two HbpR-regulated promoters; one is located in front of hbpC, and the other one is located in front of hbpD. Northern analysis confirmed that the hbpC and hbpA genes are cotranscribed, whereas the hbpD gene is transcribed separately. No transcripts comprising the entire hbpCAD cluster were detected, indicating that transcription from P(hbpC) is terminated after the hbpA gene. E. coli mutant strains lacking the structural genes for the RNA polymerase sigma(54) subunit or for the integration host factor failed to express bioluminescence from P(hbpC)- and P(hbpD)-luxAB fusions when a functional hbpR gene was provided in trans. This pointed to the active role of sigma(54) and integration host factor in transcriptional activation from these promoters. Primer extension analysis revealed that both P(hbpC) and P(hbpD) contain the typical motifs at position -24 (GG) and -12 (GC) found in sigma(54)-dependent promoters. Analysis of changes in the synthesis of the hbp mRNAs, in activities of the 2-HBP pathway enzymes, and in concentrations of 2-HBP intermediates during the first 4 h after induction of continuously grown P. azelaica cells with 2-HBP demonstrated that the specific transcriptional organization of the hbp genes ensured smooth pathway expression.
Collapse
Affiliation(s)
- M C Jaspers
- Swiss Federal Institute for Environmental Science and Technology and Swiss Federal Institute of Technology, CH-8600 Dübendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Carmona M, Rodríguez MJ, Martínez-Costa O, De Lorenzo V. In vivo and in vitro effects of (p)ppGpp on the sigma(54) promoter Pu of the TOL plasmid of Pseudomonas putida. J Bacteriol 2000; 182:4711-8. [PMID: 10940009 PMCID: PMC111345 DOI: 10.1128/jb.182.17.4711-4718.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The connection between the physiological control of the sigma(54)-dependent Pu promoter of the TOL plasmid pWW0 of Pseudomonas putida and the stringent response mediated by the alarmone (p)ppGpp has been examined in vivo an in vitro. To this end, the key regulatory elements of the system were faithfully reproduced in an Escherichia coli strain and assayed as lacZ fusions in various genetic backgrounds lacking (p)ppGpp or overexpressing relA. Neither the responsiveness of Pu to 3-methyl benzylalcohol mediated by its cognate activator XylR nor the down-regulation of the promoter by rapid growth were affected in relA/spoT strains to an extent which could account for the known physiological control that governs this promoter. Overexpression of the relA gene [predicted to increase intracellullar (p)ppGpp levels] did, however, cause a significant gain in Pu activity. Since such a gain might be the result of indirect effects, we resorted to an in vitro transcription system to assay directly the effect of ppGpp on the transcriptional machinery. Although we did observe a significant increase in Pu performance through a range of sigma(54)-RNAP concentrations, such an increase never exceeded twofold. The difference between these results and the behavior of the related Po promoter of the phenol degradation plasmid pVI150 could be traced to the different promoter sequences, which may dictate the type of metabolic signals recruited for the physiological control of sigma(54)-systems.
Collapse
Affiliation(s)
- M Carmona
- Department of Environment, Universidad Europea CEES, Villaviciosa de Odón, 28670 Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Kahng HY, Byrne AM, Olsen RH, Kukor JJ. Characterization and role of tbuX in utilization of toluene by Ralstonia pickettii PKO1. J Bacteriol 2000; 182:1232-42. [PMID: 10671442 PMCID: PMC94407 DOI: 10.1128/jb.182.5.1232-1242.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tbu regulon of Ralstonia pickettii PKO1 encodes enzymes involved in the catabolism of toluene, benzene, and related alkylaromatic hydrocarbons. The first operon in this regulon contains genes that encode the tbu pathway's initial catabolic enzyme, toluene-3-monooxygenase, as well as TbuT, the NtrC-like transcriptional activator for the entire regulon. It has been previously shown that the organization of tbuT, which is located immediately downstream of tbuA1UBVA2C, and the associated promoter (PtbuA1) is unique in that it results in a cascade type of up-regulation of tbuT in response to a variety of effector compounds. In our efforts to further characterize this unusual mode of gene regulation, we discovered another open reading frame, encoded on the strand opposite that of tbuT, 63 bp downstream of the tbuT stop codon. The 1,374-bp open reading frame, encoding a 458-amino-acid peptide, was designated tbuX. The predicted amino acid sequence of TbuX exhibited significant similarity to several putative outer membrane proteins from aromatic hydrocarbon-degrading bacteria, as well as to FadL, an outer membrane protein needed for uptake of long-chain fatty acids in Escherichia coli. Based on sequence analysis, transcriptional and expression studies, and deletion analysis, TbuX seems to play an important role in the catabolism of toluene in R. pickettii PKO1. In addition, the expression of tbuX appears to be regulated in a manner such that low levels of TbuX are always present within the cell, whereas upon toluene exposure these levels dramatically increase, even more than those of toluene-3-monooxygenase. This expression pattern may relate to the possible role of TbuX as a facilitator of toluene entry into the cell.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Base Sequence
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Gram-Negative Aerobic Rods and Cocci/chemistry
- Gram-Negative Aerobic Rods and Cocci/genetics
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid
- Regulon/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Toluene/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- H Y Kahng
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | | | | | |
Collapse
|
48
|
Cases I, de Lorenzo V. Genetic evidence of distinct physiological regulation mechanisms in the sigma(54) Pu promoter of Pseudomonas putida. J Bacteriol 2000; 182:956-60. [PMID: 10648520 PMCID: PMC94370 DOI: 10.1128/jb.182.4.956-960.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of the toluene-responsive sigma(54) Pu promoter of the pWW0 TOL plasmid of Pseudomonas putida is down-regulated in vivo during exponential growth in rich medium and also by the presence of glucose in the culture. Although the Pu promoter already performs poorly during log growth in minimal medium when amended with casamino acids, the addition of glucose further decreased by two- to threefold the accumulation of beta-galactosidase in a Pu-lacZ reporter P. putida strain. Since Pu was still down-regulated during exponential growth regardless of glucose addition, it appeared that the carbohydrate separately influenced promoter activity. This notion was supported by the growth-dependent induction pattern of Pu in a ptsN mutant of P. putida, the loss of which makes Pu no longer responsive to repression by glucose. On the other hand, overexpression of the sigma factor sigma(54), known to partially alleviate the exponential silencing of the promoter, did not affect glucose inhibition of Pu. These data indicated that exponential silencing and carbon source-dependent repression are two overlapping but genetically distinguishable mechanisms that adapt Pu to the physiological status of the cells and nutrient availability.
Collapse
Affiliation(s)
- I Cases
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | |
Collapse
|
49
|
Wise AA, Kuske CR. Generation of novel bacterial regulatory proteins that detect priority pollutant phenols. Appl Environ Microbiol 2000; 66:163-9. [PMID: 10618218 PMCID: PMC91800 DOI: 10.1128/aem.66.1.163-169.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic systems of bacteria that have the ability to use organic pollutants as carbon and energy sources can be adapted to create bacterial biosensors for the detection of industrial pollution. The creation of bacterial biosensors is hampered by a lack of information about the genetic systems that control production of bacterial enzymes that metabolize pollutants. We have attempted to overcome this problem through modification of DmpR, a regulatory protein for the phenol degradation pathway of Pseudomonas sp. strain CF600. The phenol detection capacity of DmpR was altered by using mutagenic PCR targeted to the DmpR sensor domain. DmpR mutants were identified that both increased sensitivity to the phenolic effectors of wild-type DmpR and increased the range of molecules detected. The phenol detection characteristics of seven DmpR mutants were demonstrated through their ability to activate transcription of a lacZ reporter gene. Effectors of the DmpR derivatives included phenol, 2-chlorophenol, 2,4-dichlorophenol, 4-chloro-3-methylphenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-nitrophenol.
Collapse
Affiliation(s)
- A A Wise
- Environmental Molecular Biology Group, Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
50
|
O'Neill E, Sze CC, Shingler V. Novel effector control through modulation of a preexisting binding site of the aromatic-responsive sigma(54)-dependent regulator DmpR. J Biol Chem 1999; 274:32425-32. [PMID: 10542286 DOI: 10.1074/jbc.274.45.32425] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pseudomonas derived sigma(54)-dependent DmpR activator regulates transcription of the (methyl)phenol catabolic dmp-operon. DmpR is constitutively expressed, but its transcriptional promoting activity is positively controlled in direct response to the presence of multiple aromatic effectors. Previous work has led to a model in which effector binding by the amino-terminal region of the protein relieves repression of an intrinsic ATPase activity essential for its transcriptional promoting property. Here, we address whether the observed differences in the potencies of the multiple effectors (i) reside at the level of different aromatic binding sites, or (ii) are mediated through differential binding affinities; furthermore, we address whether binding of distinct aromatic effectors has different functional consequences for DmpR activity. These questions were addressed by comparing wild type and an effector specificity mutant of DmpR with respect to effector binding characteristics and the ability of aromatics to elicit ATPase activity and transcription. The results demonstrate that six test aromatics all share a common binding site on DmpR and that binding affinities determine the concentration at which DmpR responds to the presence of the effector, but not the magnitude of the responses. Interestingly, this analysis reveals that the novel abilities of the effector specificity mutant are not primarily due to acquisition of new binding abilities, but rather, they reside in being able to productively couple ATPase activity to transcriptional activation. The mechanistic implications of these findings in terms of aromatic control of DmpR activity are discussed.
Collapse
Affiliation(s)
- E O'Neill
- Department of Cell and Molecular Biology, Umeâ University, S-901 87 Umeâ, Sweden
| | | | | |
Collapse
|