1
|
Liakopoulos A, van der Goot J, Bossers A, Betts J, Brouwer MSM, Kant A, Smith H, Ceccarelli D, Mevius D. Genomic and functional characterisation of IncX3 plasmids encoding bla SHV-12 in Escherichia coli from human and animal origin. Sci Rep 2018; 8:7674. [PMID: 29769695 PMCID: PMC5955891 DOI: 10.1038/s41598-018-26073-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/03/2018] [Indexed: 01/09/2023] Open
Abstract
The blaSHV-12 β-lactamase gene is one of the most prevalent genes conferring resistance to extended-spectrum β-lactams in Enterobacteriaceae disseminating within and between reservoirs, mostly via plasmid-mediated horizontal gene transfer. Yet, studies regarding the biology of plasmids encoding blaSHV-12 are very limited. In this study, we revealed the emergence of IncX3 plasmids alongside IncI1α/γ in blaSHV-12 in animal-related Escherichia coli isolates. Four representative blaSHV-12-encoding IncX3 plasmids were selected for genome sequencing and further genetic and functional characterization. We report here the first complete sequences of IncX3 plasmids of animal origin and show that IncX3 plasmids exhibit remarkable synteny in their backbone, while the major differences lie in their blaSHV-12-flanking region. Our findings indicate that plasmids of this subgroup are conjugative and highly stable, while they exert no fitness cost on their bacterial host. These favourable features might have contributed to the emergence of IncX3 amongst SHV-12-producing E. coli in the Netherlands, highlighting the epidemic potential of these plasmids.
Collapse
Affiliation(s)
- Apostolos Liakopoulos
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Institute of Biology, University of Leiden, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Jeanet van der Goot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jonathan Betts
- Department of Bacteriology, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Michael S M Brouwer
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Arie Kant
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Hilde Smith
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Daniela Ceccarelli
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Dik Mevius
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Porse A, Schønning K, Munck C, Sommer MOA. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. Mol Biol Evol 2016; 33:2860-2873. [PMID: 27501945 PMCID: PMC5062321 DOI: 10.1093/molbev/msw163] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid–host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid–host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts.
Collapse
Affiliation(s)
- Andreas Porse
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Kristian Schønning
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Munck
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Morten O A Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
3
|
Dziewit L, Grzesiak J, Ciok A, Nieckarz M, Zdanowski MK, Bartosik D. Sequence determination and analysis of three plasmids of Pseudomonas sp. GLE121, a psychrophile isolated from surface ice of Ecology Glacier (Antarctica). Plasmid 2013; 70:254-62. [PMID: 23721858 DOI: 10.1016/j.plasmid.2013.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/12/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022]
Abstract
Pseudomonas sp. GLE121 (a psychrophilic Antarctic strain) carries three plasmids: pGLE121P1 (6899 bp), pGLE121P2 (8330 bp) and pGLE121P3 (39,583 bp). Plasmids pGLE121P1 and pGLE121P2 show significant sequence similarity to members of the IncP-9 and IncP-7 incompatibility groups, respectively, while the largest replicon, pGLE121P3, is highly related to plasmid pNCPPB880-40 of Pseudomonas syringae pathovar tomato NCPPB880. All three plasmids have a narrow host range, limited to members of the genus Pseudomonas. Plasmid pGLE121P3 encodes a conjugal transfer system, while pGLE121P1 carries only a putative MOB module, conserved in many mobilizable plasmids. Plasmid pGLE121P3 contains an additional load of genetic information, including a pair of genes with homology to the rulAB operon, responsible for ultraviolet radiation (UVR) tolerance. Given the increasing UV exposure in Antarctic regions, the expression of these genes is likely to be an important adaptive response.
Collapse
Affiliation(s)
- Lukasz Dziewit
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
4
|
Complete nucleotide sequences of blaKPC-4- and blaKPC-5-harboring IncN and IncX plasmids from Klebsiella pneumoniae strains isolated in New Jersey. Antimicrob Agents Chemother 2012; 57:269-76. [PMID: 23114770 DOI: 10.1128/aac.01648-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae have emerged as major nosocomial pathogens. bla(KPC), commonly located on Tn4401, is found in Gram-negative bacterial strains, with the two most common variants, bla(KPC-2) and bla(KPC-3), identified in plasmids with diverse genetic backgrounds. In this study, we examined bla(KPC-4)- and bla(KPC-5)-bearing plasmids recovered from two K. pneumoniae strains, which were isolated from a single New Jersey hospital in 2005 and 2006, respectively. IncN plasmid pBK31551 is 84 kb in length and harbors bla(KPC-4), bla(TEM-1), qnrB2, aac(3)-Ib, aph(3')-I, qacF, qacEΔ1, sul1, and dfrA14, which confer resistance to β-lactams, quinolones, aminoglycosides, quaternary ammonium compounds, and co-trimoxazole. The conserved regions within pBK31551 are similar to those of other IncN plasmids. Surprisingly, analysis of the Tn4401 sequence revealed a large IS110- and Tn6901-carrying element (8.3 kb) inserted into the istA gene, encoding glyoxalase/bleomycin resistance, alcohol dehydrogenase, and S-formylglutathione hydrolase. Plasmid pBK31567 is 47 kb in length and harbors bla(KPC-5), dfrA5, qacEΔ1, and sul1. pBK31567 belongs to a novel IncX subgroup (IncX5) and possesses a highly syntenic plasmid backbone like other IncX plasmids; however, sequence similarity at the nucleotide level is divergent. The bla(KPC-5) gene is carried on a Tn4401 element and differs from the genetic environment of bla(KPC-5) described in Pseudomonas aeruginosa strain P28 from Puerto Rico. This study underscores the genetic diversity of multidrug-resistant plasmids involved in the spread of bla(KPC) genes and highlights the mobility and plasticity of Tn4401. Comparative genomic analysis provides new insights into the evolution and dissemination of KPC plasmids belonging to different incompatibility groups.
Collapse
|
5
|
Eikmeyer F, Hadiati A, Szczepanowski R, Wibberg D, Schneiker-Bekel S, Rogers LM, Brown CJ, Top EM, Pühler A, Schlüter A. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid 2012; 68:13-24. [PMID: 22326849 DOI: 10.1016/j.plasmid.2012.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/16/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans.
Collapse
Affiliation(s)
- Felix Eikmeyer
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
García-Fernández A, Villa L, Moodley A, Hasman H, Miriagou V, Guardabassi L, Carattoli A. Multilocus sequence typing of IncN plasmids. J Antimicrob Chemother 2011; 66:1987-91. [DOI: 10.1093/jac/dkr225] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
7
|
Doyle M, Fookes M, Ivens A, Mangan MW, Wain J, Dorman CJ. An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science 2007; 315:251-2. [PMID: 17218529 DOI: 10.1126/science.1137550] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Sfh protein is encoded by self-transmissible plasmids involved in human typhoid and is closely related to the global regulator H-NS. We have found that Sfh provides a stealth function that allows the plasmids to be transmitted to new bacterial hosts with minimal effects on their fitness. Introducing the plasmid without the sfh gene imposes a mild H-NS(-) phenotype and a severe loss of fitness due to titration of the cellular pool of H-NS by the A+T-rich plasmid. This stealth strategy seems to be used widely to aid horizontal DNA transmission and has important implications for bacterial evolution.
Collapse
Affiliation(s)
- Marie Doyle
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | | | | | | | | | | |
Collapse
|
8
|
de Paz HD, Sangari FJ, Bolland S, García-Lobo JM, Dehio C, de la Cruz F, Llosa M. Functional interactions between type IV secretion systems involved in DNA transfer and virulence. MICROBIOLOGY-SGM 2005; 151:3505-3516. [PMID: 16272374 DOI: 10.1099/mic.0.28410-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reports an analysis of the functional interactions between type IV secretion systems (T4SS) that are part of the conjugative machinery for horizontal DNA transfer (cT4SS), and T4SS involved in bacterial pathogenicity (pT4SS). The authors' previous work showed that a conjugative coupling protein (T4CP) interacts with the VirB10-type component of the T4SS in order to recruit the protein-DNA complex to the transporter for conjugative DNA transfer. This study now shows by two-hybrid analysis that conjugative T4CPs also interact with the VirB10 element of the pT4SS of Agrobacterium tumefaciens (At), Bartonella tribocorum (Bt) and Brucella suis (Bs). Moreover, the VirB10 component of a cT4SS (protein TrwE of plasmid R388) could be partially substituted by that of a pT4SS (protein TrwE of Bt) for conjugation. This result opens the way for the construction of hybrid T4SS that deliver DNA into animal cells. Interestingly, in the presence of part of the Bs T4SS the R388 T4SS protein levels were decreased and R388 conjugation was strongly inhibited. Complementation assays between the Trw systems of R388 and Bt showed that only individual components from the so-called 'core complex' could be exchanged, supporting the concept that this core is the common scaffold for the transport apparatus while the other 'peripheral components' are largely system-specific.
Collapse
Affiliation(s)
- Héctor D de Paz
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Félix J Sangari
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Silvia Bolland
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Juan M García-Lobo
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Christoph Dehio
- Division of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Fernando de la Cruz
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | - Matxalen Llosa
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
9
|
Lambertsen LM, Molin S, Kroer N, Thomas CM. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440. Plasmid 2005; 52:169-81. [PMID: 15518874 DOI: 10.1016/j.plasmid.2004.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 06/01/2004] [Indexed: 11/26/2022]
Abstract
The conjugative IncP-9 plasmid pWW0 (TOL) carries transfer genes, many of whose functions can be predicted from sequence similarities to the well-studied IncW and IncP-1 plasmids, and that are clustered with the replication and maintenance genes of the plasmid core. In this study we show that the IncP-9 transfer genes are transcribed from at least three promoter regions. The promoters for traA and traD act divergently from the region found to encode the origin of transfer, oriT. These promoters regulate expression of traA, B, and perhaps traC in one direction and traD in the other, all of whose gene products are predicted to be involved in relaxasome formation and DNA processing during transfer, and they are repressed by TraA. The third promoter region, upstream of mpfR, is responsible for transcription of mpfR and mpfA to mpfJ, encoding proteins involved in mating pair formation. Transcription from this region is negatively autoregulated by MpfR. Thus the pWW0 transfer genes, like those of the IncP-1 plasmids, are expressed at all times, but kept in control by a negative feed back loop to limit the metabolic burden on the host. Although many of the related mating pair formation systems are, as in pWW0, transcribed divergently from an operon for replication and/or stable inheritance functions, MpfR is not related to the known regulatory proteins of these other transfer systems outside those of the IncP-9 family and indeed the regulators tend to be specific for each plasmid family. This suggests that the general pattern of genetic organisation exhibited by these systems has arisen a number of times independently and must therefore be highly favourable to plasmid survival and spread.
Collapse
Affiliation(s)
- Lotte M Lambertsen
- Molecular Microbial Ecology Group, Centre for Biomedical Microbiology, BioCentrum-DTU, Building 301, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
10
|
Seubert A, Hiestand R, de la Cruz F, Dehio C. A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol 2003; 49:1253-66. [PMID: 12940985 DOI: 10.1046/j.1365-2958.2003.03650.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type IV secretion systems (T4SS) are multicomponent transporters of Gram-negative bacteria adapted to functions as diverse as DNA transfer in bacterial conjugation or the delivery of effector proteins into eukaryotic target cells in pathogenesis. The generally modest sequence conservation between T4SS may reflect their evolutionary distance and/or functional divergence. Here, we show that the establishment of intraerythrocytic parasitism by Bartonella tribocorum requires a putative T4SS, which shares an unprecedented level of sequence identity with the Trw conjugation machinery of the broad-host-range antibiotic resistance plasmid R388 (up to 80% amino acid identity for individual T4SS components). The highly conserved T4SS loci are collinear except for the presence of numerous tandem gene duplications in B. tribocorum, which mostly encode variant forms of presumed surface-exposed pilus subunits. Conservation is not only structural, but also functional: R388 mutated in either trwD or trwH encoding essential T4SS components could be trans-complemented for conjugation by the homologues of the B. tribocorum system. Conservation also includes the transcription regulatory circuit: both T4SS loci encode a highly homologous and interchangeable KorA/KorB repressor system that negatively regulates the expression of all T4SS components. This striking example of adaptive evolution reveals the capacity of T4SS to assume dedicated functions in either DNA transfer or pathogenesis over rather short evolutionary distance and implies a novel role for the conjugation systems of widespread broad-host-range plasmids in the evolution of bacterial pathogens.
Collapse
Affiliation(s)
- Anja Seubert
- Division of Molecular Microbiology, Biozentrum of the University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
11
|
Deighan P, Beloin C, Dorman CJ. Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Mol Microbiol 2003; 48:1401-16. [PMID: 12787365 DOI: 10.1046/j.1365-2958.2003.03515.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Shigella flexneri 2a strain 2457T has been found to express Sfh, a new member of the H-NS-like family of nucleoid-structuring proteins. With H-NS and its paralogue, StpA, this brings to three the number of these proteins expressed in this bacterium. This raises the possibility that three-way interactions may occur in S. flexneri among these proteins and between the proteins and each other's genes. Such three-way interactions among H-NS-like proteins have not been described previously. The expression of the sfh, stpA and hns genes was studied at the transcriptional and post-transcriptional levels. The Sfh protein displays growth phase-dependent regulation that distinguishes it from both H-NS and StpA. Like H-NS and StpA, Sfh can bind to its own promoter region, it negatively autoregulates transcription of its own gene, and when overexpressed all three proteins cross-repress transcription of each other's genes. The presence of highly conserved oligomerization domains within these molecules suggested the possibility of protein-protein interactions. Like H-NS and StpA, the purified Sfh protein forms homodimers in solution. Using the yeast two-hybrid assay we show that each of the three proteins also forms homodimers in vivo and, additionally, each protein can form heterodimers with either of its homologues. This raises the possibility that Sfh may modulate the activities of H-NS and StpA, and vice versa.
Collapse
Affiliation(s)
- Padraig Deighan
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Ireland
| | | | | |
Collapse
|
12
|
Prival MJ. Anomalous mutagenicity profile of cyclohexanone oxime in bacteria: cell survival in background lawns. Mutat Res 2001; 497:1-9. [PMID: 11525902 DOI: 10.1016/s1383-5718(01)00196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The basis for the observed mutagenicity of cyclohexanone oxime in the presence of hamster liver S9 in Salmonella typhimurium strain TA1535, but not in TA100, was explored. While the chemical had no effect on the appearance of the background lawn in either strain, it did cause a reduction in mutant colony counts in strain TA100, raising the possibility of selective toxicity to this strain. Viability of the two strains was determined directly by titering the cells in background lawns over a 3 day period. In order to do this, cells embedded in top agar overlays were released by extruding agar plugs through small holes in the bottoms of centrifuge tubes, followed by vigorous vortexing. Viable cell counts in background lawns of strain TA100, but not strain TA1535, were greatly reduced in the presence of cyclohexanone oxime. Most of the loss of viable TA100 cells occurred on days 2 and 3 following plating, after the cells had exhausted the histidine in the medium and stopped growing. Therefore, the observed loss of background lawn viable cells is unlikely to be the cause of the non-mutagenicity of cyclohexanone in strain TA100. Analysis of reversion spectra showed that cyclohexanone oxime-induced C-->T transitions in the second position of the CCC triplet at the his mutation site in strain TA1535, but had no significant effect on any transition or transversion in strain TA100.
Collapse
Affiliation(s)
- M J Prival
- Genetic Toxicology Branch (HFS-236), Food and Drug Administration, 200 C Street SW, Washington, DC 20204, USA.
| |
Collapse
|
13
|
Ullrich MS, Schergaut M, Boch J, Ullrich B. Temperature-responsive genetic loci in the plant pathogen Pseudomonas syringae pv. glycinea. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2457-2468. [PMID: 11021922 DOI: 10.1099/00221287-146-10-2457] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plant-pathogenic bacteria may sense variations in environmental factors, such as temperature, to adapt to plant-associated habitats during pathogenesis or epiphytic growth. The bacterial blight pathogen of soybean, Pseudomonas syringae pv. glycinea PG4180, preferentially produces the phytotoxin coronatine at 18 degrees C and infects the host plant under conditions of low temperature and high humidity. A miniTn5-based promoterless glucuronidase (uidA) reporter gene was used to identify genetic loci of PG4180 preferentially expressed at 18 or 28 degrees C. Out of 7500 transposon mutants, 61 showed thermoregulated uidA expression as determined by a three-step screening procedure. Two-thirds of these mutants showed an increased reporter gene expression at 18 degrees C whilst the remainder exhibited higher uidA expression at 28 degrees C. MiniTn5-uidA insertion loci from these mutants were subcloned and their nucleotide sequences were determined. Several of the mutants induced at 18 degrees C contained the miniTn5-uidA insertion within the 32.8 kb coronatine biosynthetic gene cluster. Among the other mutants with increased uidA expression at 18 degrees C, insertions were found in genes encoding formaldehyde dehydrogenase, short-chain dehydrogenase and mannuronan C-5-epimerase, in a plasmid-borne replication protein, and in the hrpT locus, involved in pathogenicity of P. syringae. Among the mutants induced at 28 degrees C, insertions disrupted loci with similarities to a repressor of conjugal plasmid transfer, UV resistance determinants, an isoflavanoid-degrading enzyme, a HU-like DNA-binding protein, two additional regulatory proteins, a homologue of bacterial adhesins, transport proteins, LPS synthesis enzymes and two proteases. Genetic loci from 13 mutants did not show significant similarities to any database entries. Results of plant inoculations showed that three of the mutants tested were inhibited in symptom development and in planta multiplication rates. Temperature-shift experiments suggested that all of the identified loci showed a rather slow induction of expression upon change of temperature.
Collapse
Affiliation(s)
- Matthias S Ullrich
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| | - Marion Schergaut
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| | - Jens Boch
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| | - Beate Ullrich
- Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany1
| |
Collapse
|
14
|
Preston KE, Radomski CC, Venezia RA. Nucleotide sequence of a 7-kb fragment of pACM1 encoding an IncM DNA primase and other putative proteins associated with conjugation. Plasmid 2000; 44:12-23. [PMID: 10873523 DOI: 10.1006/plas.2000.1472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 7-kb fragment of pACM1 (fragment 90¿91) containing one or more kor (kill-override) loci was sequenced, and 28 open reading frames (ORFs; >/=50 codons) were identified. The nucleotide sequence has no significant homologs in the GenBank database except for a 1.3-kb region 98.6% identical to the iml (insensitivity to phage PhiM-mediated lysis) determinant fragment of IncM plasmid R446. Deduced amino acid sequences for several ORFs are homologous to those of known proteins, including the Sog DNA primases of IncI1 plasmids R64 and ColIb-P9 and the TraL, TraM, and TraN products of ColIb-P9. Two protein products of the putative primase ORF (ORF 1, 1100 amino acids) were detected by SDS-PAGE. The 158- and 107-kDa proteins were designated PriL and PriS, respectively. PriS is apparently produced by an in-frame reinitiation of the ORF 1 transcript at a second start codon located between a Sau96I site and a PstI site. The motif EGYATA, conserved among primases and associated with primase function, occurs in the first one-third of the deduced amino acid sequence of PriL and is not included in PriS. Partial suppression of the temperature-sensitive dnaG3 mutation in BW86 was demonstrated by recombinants that overexpressed both PriL and PriS, but not by constructs overexpressing only PriS. Therefore, primase function can be assigned to PriL. Fragment 90/91 represents a portion of the IncM tra region, which has not previously been examined in detail.
Collapse
Affiliation(s)
- K E Preston
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York 12208, USA.
| | | | | |
Collapse
|
15
|
Abstract
pACM1 is a conjugative multiresistance (putative IncM) plasmid from Klebsiella oxytoca. In order to make a structural and functional map, cloned fragments of pACM1 were systematically isolated from pUC19 libraries using DNA probes from previously cloned fragments. All but approximately 3.6 kb of the plasmid were cloned and a consensus map is presented. Certain pACM1 fragments were "unclonable" (i.e., could not be detected among transformants) unless a 7-kb KpnI fragment was also present in the recombinant construct. Restriction sites found in a portion of the 7-kb KpnI fragment resemble those of the iml determinant region of IncM plasmid R446; therefore, the 7-kb fragment is probably within or includes part of the IncM tra (conjugation) operon. It is probable that pACM1 has loci functionally similar to the kil (lethal) and kor (kill override) loci in the tra operons of IncN or IncP plasmids. pACM1 can be a valuable model for the study of IncM plasmids.
Collapse
Affiliation(s)
- K E Preston
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York 12208, USA
| | | |
Collapse
|
16
|
Holcík M, Rodríguez M, Couse A, Cherton-Horvat G, Iyer VN. Conditionally lethal genes in the N pilus region of plasmid pCU1. Plasmid 1999; 42:53-9. [PMID: 10413666 DOI: 10.1006/plas.1999.1414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasmid genes or regions that are conditionally lethal to Escherichia coli have been called kil and those lethal to Klebsiella but not to E. coli have been called kik. Both classes of genes are found in or close to the N pilus region of the plasmid pCU1 and the closely related plasmid pKM101. Here we describe two new and overlapping lethal genes that are located between kikA and traA of the plasmid pCU1 and display host specificity. KilC is lethal in E. coli and Klebsiella while kikC is lethal only in Klebsiella. The previously identified korA gene is sufficient to override the lethality of kilC in trans or in cis but is insufficient to override kikC. kilC expression in E. coli leads to cell death accompanied by an increase in average cell length without affecting septum formation.
Collapse
Affiliation(s)
- M Holcík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| | | | | | | | | |
Collapse
|
17
|
Paterson ES, Moré MI, Pillay G, Cellini C, Woodgate R, Walker GC, Iyer VN, Winans SC. Genetic analysis of the mobilization and leading regions of the IncN plasmids pKM101 and pCU1. J Bacteriol 1999; 181:2572-83. [PMID: 10198024 PMCID: PMC93686 DOI: 10.1128/jb.181.8.2572-2583.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative IncN plasmids pKM101 and pCU1 have previously been shown to contain identical oriT sequences as well as conserved restriction endonuclease cleavage patterns within their tra regions. Complementation analysis and sequence data presented here indicate that these two plasmids encode essentially identical conjugal DNA-processing proteins. This region contains three genes, traI, traJ, and traK, transcribed in the same orientation from a promoter that probably lies within or near the conjugal transfer origin (oriT). Three corresponding proteins were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and complementation analysis confirmed that this region contains three tra complementation groups. All three proteins resemble proteins of the IncW plasmid R388 and other plasmids thought to have roles in processing of plasmid DNA during conjugation. The hydropathy profile of TraJ suggests a transmembrane topology similar to that of several homologous proteins. Both traK and traI were required for efficient interplasmid site-specific recombination at oriT, while traJ was not required. The leading region of pKM101 contains three genes (stbA, stbB, and stbC), null mutations in which cause elevated levels of plasmid instability. Plasmid instability was observed only in hosts that are proficient in interplasmid recombination, suggesting that this recombination can potentially lead to plasmid loss and that Stb proteins somehow overcome this, possibly via site-specific multimer resolution.
Collapse
Affiliation(s)
- E S Paterson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dorman CJ, Hinton JC, Free A. Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 1999; 7:124-8. [PMID: 10203842 DOI: 10.1016/s0966-842x(99)01455-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The bacterial nucleoid-associated proteins H-NS and StpA can form homomeric or heteromeric complexes, a parallel with protein HU. Thus, functional modulation of H-NS and StpA by one another and by other proteins with appropriate interaction domains is possible. This has implications for bacterial pathogenesis and adaptation to environmental stress.
Collapse
Affiliation(s)
- C J Dorman
- Dept of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Ireland.
| | | | | |
Collapse
|
19
|
Cusick ME, Belfort M. Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA. Mol Microbiol 1998; 28:847-57. [PMID: 9643551 DOI: 10.1046/j.1365-2958.1998.00848.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli regulatory protein StpA bears striking similarity to the chromatin-associated protein H-NS. These two proteins have many structural, functional and mechanistic parallels. Although H-NS is more abundant in the cell, both proteins act as transcriptional regulators, both bind to curved DNA and both restrain DNA supercoils. However, StpA is better able to promote RNA annealing and trans-splicing in vitro. In this study, phylogenetic analyses and experiments to examine the protease sensitivity of StpA and H-NS suggest a similar structure for the two proteins. Both proteins consist of two structured domains separated by an exposed protease-sensitive linker. The N-terminal (StpA-NterL) and C-terminal (StpA-CterL) domains of StpA, as well as the full-length StpA and H-NS proteins, were cloned, overproduced in E. coli and purified to homogeneity. StpA-CterL, but not StpA-NterL, promotes strand annealing of complementary RNA oligonucleotides and in vitro trans-splicing of a model group I intron. Both StpA and StpA-CterL exhibited stronger RNA-modulating activity than H-NS. Phylogenetic analyses showed that the N-terminal and C-terminal domains can exist autonomously. The phylogenetic and experimental data are compatible with a two-domain model for StpA and H-NS, with independently functioning modules joined by a non-conserved linker, and with the observed RNA-related activities residing entirely within the C-terminal domain.
Collapse
Affiliation(s)
- M E Cusick
- Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, 12201-2002, USA
| | | |
Collapse
|
20
|
Zatyka M, Thomas CM. Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiol Rev 1998; 21:291-319. [PMID: 25508777 DOI: 10.1111/j.1574-6976.1998.tb00355.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Conjugative transfer is a primary means of spread of mobile genetic elements (plasmids and transposons) between bacteria.It leads to the dissemination and evolution of the genes (such as those conferring resistance to antibiotics) which are carried by the plasmid. Expression of the plasmid genes needed for conjugative transfer is tightly regulated so as to minimise the burden on the host. For plasmids such as those belonging to the IncP group this results in downregulation of the transfer genes once all bacteria have a functional conjugative apparatus. For F-like plasmids (apart from F itself which is a derepressed mutant) tight control results in very few bacteria having a conjugative apparatus. Chance encounters between the rare transfer-proficient bacteria and a potential recipient initiate a cascade of transfer which can continue until all potential recipients have acquired the plasmid. Other systems express their transfer genes in response to specific stimuli. For the pheromone-responsive plasmids of Enterococcus it is small peptide signals from potential recipients which trigger the conjugative transfer genes. For the Ti plasmids of Agrobacterium it is the presence of wounded plants which are susceptible to infection which stimulates T-DNA transfer to plants. Transfer and integration of T-DNA induces production of opines which the plasmid-positive bacteria can utilise. They multiply and when they reach an appropriate density their plasmid transfer system is switched on to allow transfer of the Ti plasmid to other bacteria. Finally some conjugative transfer systems are induced by the antibiotics to which the elements confer resistance. Understanding these control circuits may help to modify management of microbial communities where plasmid transfer is either desirable or undesirable. z 1998 Published by Elsevier Science B.V.
Collapse
Affiliation(s)
- M Zatyka
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | |
Collapse
|
21
|
Holčík M, Iyer VM. Conditionally lethal genes associated with bacterial plasmids. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3403-3416. [PMID: 9387219 DOI: 10.1099/00221287-143-11-3403] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Martin Holčík
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| | - V M Iyer
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa Ontario Canada K1S5B6
| |
Collapse
|