1
|
Qiu C, Liu Y, Wu Y, Zhao L, Pei J. Functional Characterization and Screening of Promiscuous Kinases and Isopentenyl Phosphate Kinases for the Synthesis of DMAPP via a One-Pot Enzymatic Cascade. Int J Mol Sci 2022; 23:12904. [PMID: 36361694 PMCID: PMC9654404 DOI: 10.3390/ijms232112904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/29/2024] Open
Abstract
Dimethylallyl diphosphate (DMAPP) is a key intermediate metabolite in the synthesis of isoprenoids and is also the prenyl donor for biosynthesizing prenylated flavonoids. However, it is difficult to prepare DMAPP via chemical and enzymatic methods. In this study, three promiscuous kinases from Shigella flexneri (SfPK), Escherichia coli (EcPK), and Saccharomyces cerevisiae (ScPK) and three isopentenyl phosphate kinases from Methanolobus tindarius (MtIPK), Methanothermobacter thermautotrophicus str. Delta H (MthIPK), and Arabidopsis thaliana (AtIPK) were cloned and expressed in Escherichia coli. The enzymatic properties of recombinant enzymes were determined. The Kcat/Km value of SfPK for DMA was 6875 s-1 M-1, which was significantly higher than those of EcPK and ScPK. The Kcat/Km value of MtIPK for DMAP was 402.9 s-1 M-1, which was ~400% of that of MthIPK. SfPK was stable at pH 7.0-9.5 and had a 1 h half-life at 65 °C. MtIPK was stable at pH 6.0-8.5 and had a 1 h half-life at 50 °C. The stability of SfPK and MtIPK was better than that of the other enzymes. Thus, SfPK and MtIPK were chosen to develop a one-pot enzymatic cascade for producing DMAPP from DMA because of their catalytic efficiency and stability. The optimal ratio between SfPK and MtIPK was 1:8. The optimal pH and temperature for the one-pot enzymatic cascade were 7.0 and 35 °C, respectively. The optimal concentrations of ATP and DMA were 10 and 80 mM, respectively. Finally, maximum DMAPP production reached 1.23 mM at 1 h under optimal conditions. Therefore, the enzymatic method described herein for the biosynthesis of DMAPP from DMA can be widely used for the synthesis of isoprenoids and prenylated flavonoids.
Collapse
Affiliation(s)
- Cong Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Yangbao Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| |
Collapse
|
2
|
Lund S, Courtney T, Williams GJ. Probing the Substrate Promiscuity of Isopentenyl Phosphate Kinase as a Platform for Hemiterpene Analogue Production. Chembiochem 2019; 20:2217-2221. [PMID: 30998839 DOI: 10.1002/cbic.201900135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/14/2022]
Abstract
Isoprenoids are a large class of natural products with wide-ranging applications. Synthetic biology approaches to the manufacture of isoprenoids and their new-to-nature derivatives are limited due to the provision in nature of just two hemiterpene building blocks for isoprenoid biosynthesis. To address this limitation, artificial chemo-enzymatic pathways such as the alcohol-dependent hemiterpene (ADH) pathway serve to leverage consecutive kinases to convert exogenous alcohols into pyrophosphates that could be coupled to downstream isoprenoid biosynthesis. To be successful, each kinase in this pathway should be permissive of a broad range of substrates. For the first time, we have probed the promiscuity of the second enzyme in the ADH pathway-isopentenyl phosphate kinase from Thermoplasma acidophilum-towards a broad range of acceptor monophosphates. Subsequently, we evaluate the suitability of this enzyme to provide unnatural pyrophosphates and provide a critical first step in characterizing the rate-limiting steps in the artificial ADH pathway.
Collapse
Affiliation(s)
- Sean Lund
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Present address: Amyris, 5885 Hollis Street, Suite 100, Emeryville, CA, 94608, USA
| | - Taylor Courtney
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Present address: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, 2620 Yarbrough Drive, Raleigh, NC, 27695, USA.,Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA
| |
Collapse
|
3
|
Kim H, Rha E, Seong W, Yeom SJ, Lee DH, Lee SG. A Cell-Cell Communication-Based Screening System for Novel Microbes with Target Enzyme Activities. ACS Synth Biol 2016; 5:1231-1238. [PMID: 27452868 DOI: 10.1021/acssynbio.5b00287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The development of synthetic biological devices has increased rapidly in recent years and the practical benefits of such biological devices are becoming increasingly clear. Here, we further improved the design of a previously reported high-throughput genetic enzyme screening system by investigating device-compatible biological components and phenol-mediated cell-cell communication, both of which increased the efficiency and practicality of the screening device without requiring the use of flow cytometry analysis. A sensor cell was designed to detect novel microbes with target enzyme activities on solid media by forming clear, circular colonies with fluorescence around the unknown microbes producing target enzymes. This mechanism of detection was enabled by the combination of pre-effector phenolic substrate treatment in the presence of target enzyme-producing microbes and control of the growth and fluorescence of remote sensor cells via phenol-mediated cell-cell communication. The sensor cells were applied to screen soil bacteria with phosphatase activity using phenyl phosphate as phenolic substrates. The sensor cells facilitated successful visualization of phosphatase activity in unknown microbes, which were identified by 16S rRNA analysis. Enzyme activity assays confirmed that the proposed screening technique was able to find 23 positive clones out of 33 selected colonies. Since many natural enzymatic reactions produce phenolic compounds from phenol-derived substrates, we anticipate that the proposed technique may have broad applications in the assessment and screening of novel microbes with target enzymes of interest. This method also can provide insights into the identification of novel enzymes for which screening assays are not yet available.
Collapse
Affiliation(s)
- Haseong Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Eugene Rha
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Wonjae Seong
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
- Biosystems
and Bioengineering Program, University of Science and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon, South Korea
| | - Soo-Jin Yeom
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Dae-Hee Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
- Biosystems
and Bioengineering Program, University of Science and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon, South Korea
| | - Seung-Goo Lee
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
- Biosystems
and Bioengineering Program, University of Science and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
4
|
Tasnádi G, Hall M, Baldenius K, Ditrich K, Faber K. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation. J Biotechnol 2016; 233:219-27. [DOI: 10.1016/j.jbiotec.2016.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 11/25/2022]
|
5
|
U Gandhi N, B Chandra S. A comparative analysis of three classes of bacterial non-specific Acid phosphatases and archaeal phosphoesterases: evolutionary perspective. Acta Inform Med 2013; 20:167-73. [PMID: 23322973 PMCID: PMC3508851 DOI: 10.5455/aim.2012.20.167-173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022] Open
Abstract
Introduction: Bacterial nonspecific acid phosphohydrolases (NSAPs) or phosphatases are group of enzymes secreted as soluble periplasmic proteins or retained as membrane bound lipoproteins that are usually able to dephosphorylate a broad array of structurally unrelated organic phosphoesters (nucleotides, sugar phosphates, phytic acid etc.) to acquire inorganic phosphate (Pi) and organic byproducts. They exhibit optimal catalytic activity at acidic to neutral pH values. On the basis of amino acid sequence relatedness, phosphatase are grouped into different molecular families namely Class A, Class B and Class C acid phosphatase respectively. Results and discussion: In this article out of thirty three sequences, twenty six belonging to each of the three classes of bacterial acid phosphatase and seven belonging to archaeal phosphoesterases were analyzed using various tools of bioinformatics. Phylogenetic analysis, dot plot comparisons and motif analysis were done to identify a number of similarities and differences between three classes of bacterial acid phosphatases and archaeal phosphoesterases. In this research we have attempted to decipher evolutionary relationship between three classes of bacterial acid phosphatase and archaeal phosphoesterases using bioinformatics approach.
Collapse
Affiliation(s)
- Neha U Gandhi
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, USA
| | | |
Collapse
|
6
|
Enzymatic production of 5'-inosinic acid by a newly synthesised acid phosphatase/phosphotransferase. Food Chem 2012; 134:948-56. [PMID: 23107712 DOI: 10.1016/j.foodchem.2012.02.213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 02/13/2012] [Accepted: 02/29/2012] [Indexed: 11/20/2022]
Abstract
5'-Nucleotides including 5'-inosinic acid have characteristic taste and important application in various foods as flavour potentiators. The selective nucleoside acid phosphatase/phosphotransferase (AP/PTase) can catalyse the synthesis of 5'-nucleotides by transfer of phosphate groups. In this study, a 747-bp gene encoding AP/PTase from Escherichia blattae was synthesised. After expression, the recombinant AP/PTase was purified using nickel-NTA. The optimal temperature and pH of this enzyme were 30°C and 5.0, respectively. The activity was partially inhibited by metal ions such as Hg(2+), Ag(+) and Cu(2+), but not by chelating reagents such as EDTA. The values of K(m) and V(max) for inosine were 40 mM and 3.5 U/mg, respectively. Using this purified enzyme, 16.83 mM of 5'-IMP was synthesised from 37 mM of inosine and the molar yield reached 45.5%. Homology modelling and docking simulation were discussed.
Collapse
|
7
|
van Herk T, Hartog AF, Babich L, Schoemaker HE, Wever R. Improvement of an Acid Phosphatase/DHAP-Dependent Aldolase Cascade Reaction by Using Directed Evolution. Chembiochem 2009; 10:2230-5. [DOI: 10.1002/cbic.200900102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
van Herk T, Hartog A, Ruijssenaars H, Kerkman R, Schoemaker H, Wever R. Optimization of the Kinetic Resolution of thedl-Phosphomonoesters of Threonine and Serine by Random Mutagenesis of the Acid Phosphatase fromSalmonella enterica. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Makde RD, Dikshit K, Kumar V. Protein engineering of class-A non-specific acid phosphatase (PhoN) of Salmonella typhimurium: modulation of the pH-activity profile. ACTA ACUST UNITED AC 2006; 23:247-51. [PMID: 16901752 DOI: 10.1016/j.bioeng.2006.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/28/2006] [Accepted: 06/29/2006] [Indexed: 10/24/2022]
Abstract
Engineering of the PhoN enzyme of Salmonella typhimurium due to its superior characteristics for bioremediation of heavy metals has been advocated by Macaskie and colleagues [Basnakova, G., Stephens, E.R., Thaller, M.C., Rossolini, G.M., Macaskie, L.E., 1998. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows. Appl. Microbiol. Biotechnol. 50, 266-272]. The native enzyme hydrolyzes disparate organophosphates and exhibits optimal phosphatase activity at pH 5.5, for instance, with substrate p-nitrophenyl phosphate. Structurally guided Ile-78 was mutated using site-directed mutagenesis to Ala, Asp and His residues, with an aim to shift the optimum pH of the PhoN enzyme. Encouragingly, the I78A mutant displays significantly higher (as high as 160%) enzymatic efficiency over a broad pH range of 3.0-9.0, compared to the wild-type PhoN. The higher catalytic efficiency is due to the increase in k(cat), and can be mainly attributed to a deshielding of catalytic His-158 from the bulk-solvent. The I78D mutant possesses nearly twice the specific activity at the optimum pH of 7.0. The alkaline shift of the pH-activity profile agrees well with reasoning based on electrostatics. An increase in K(m), however, lowers the catalytic efficiency of the I78D mutant at the optimum pH. The I78H mutant, counter-intuitively, also exhibits an alkaline shift in the pH-optimum. Nonetheless, the active site scaffold in I78H mutant may not be disturbed, as similar steady-state kinetic parameters are observed for both I78H mutant and wild-type PhoN at their respective pH optima.
Collapse
Affiliation(s)
- Ravindra D Makde
- Synchrotron Radiation Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
10
|
Santapaola D, Del Chierico F, Petrucca A, Uzzau S, Casalino M, Colonna B, Sessa R, Berlutti F, Nicoletti M. Apyrase, the product of the virulence plasmid-encoded phoN2 (apy) gene of Shigella flexneri, is necessary for proper unipolar IcsA localization and for efficient intercellular spread. J Bacteriol 2006; 188:1620-7. [PMID: 16452446 PMCID: PMC1367242 DOI: 10.1128/jb.188.4.1620-1627.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role in virulence of the Shigella flexneri ospB-phoN2 operon has been evaluated. Here we confirm that OspB is an effector and show that apyrase, the product of phoN2, may be a virulence factor, since it is required for efficient intercellular spreading. Apyrase may be important in a deoxynucleoside triphosphate-hydrolyzing activity-independent manner, suggesting that it may act as an interaction partner in the process of IcsA localization.
Collapse
Affiliation(s)
- D Santapaola
- Dipartimento di Scienze Biomediche, Università G. D'Annunzio, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wilson JW, Nickerson CA. A new experimental approach for studying bacterial genomic island evolution identifies island genes with bacterial host-specific expression patterns. BMC Evol Biol 2006; 6:2. [PMID: 16396675 PMCID: PMC1360685 DOI: 10.1186/1471-2148-6-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 01/05/2006] [Indexed: 11/24/2022] Open
Abstract
Background Genomic islands are regions of bacterial genomes that have been acquired by horizontal transfer and often contain blocks of genes that function together for specific processes. Recently, it has become clear that the impact of genomic islands on the evolution of different bacterial species is significant and represents a major force in establishing bacterial genomic variation. However, the study of genomic island evolution has been mostly performed at the sequence level using computer software or hybridization analysis to compare different bacterial genomic sequences. We describe here a novel experimental approach to study the evolution of species-specific bacterial genomic islands that identifies island genes that have evolved in such a way that they are differentially-expressed depending on the bacterial host background into which they are transferred. Results We demonstrate this approach by using a "test" genomic island that we have cloned from the Salmonella typhimurium genome (island 4305) and transferred to a range of Gram negative bacterial hosts of differing evolutionary relationships to S. typhimurium. Systematic analysis of the expression of the island genes in the different hosts compared to proper controls allowed identification of genes with genera-specific expression patterns. The data from the analysis can be arranged in a matrix to give an expression "array" of the island genes in the different bacterial backgrounds. A conserved 19-bp DNA site was found upstream of at least two of the differentially-expressed island genes. To our knowledge, this is the first systematic analysis of horizontally-transferred genomic island gene expression in a broad range of Gram negative hosts. We also present evidence in this study that the IS200 element found in island 4305 in S. typhimurium strain LT2 was inserted after the island had already been acquired by the S. typhimurium lineage and that this element is likely not involved in the integration or excision of island 4305. Conclusion The "clone-and-transfer" approach of evolutionary study identifies genes whose expression patterns indicate the existence of genera-specific regulatory mechanisms that influence the expression of horizontally-transferred DNA sections. The results provide key information that can be used to facilitate the identification of these regulatory mechanisms.
Collapse
Affiliation(s)
- James W Wilson
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, Room 5728, New Orleans, LA 70112 USA
| | - Cheryl A Nickerson
- Program in Molecular Pathogenesis and Immunity, Department of Microbiology and Immunology, Tulane University Health Sciences Center, 1430 Tulane Avenue, Room 5728, New Orleans, LA 70112 USA
| |
Collapse
|
12
|
Sarli S, Nicoletti M, Schippa S, Del Chierico F, Santapaola D, Valenti P, Berlutti F. Ala160 and His116 residues are involved in activity and specificity of apyrase, an ATP-hydrolysing enzyme produced by enteroinvasive Escherichia coli. MICROBIOLOGY-SGM 2005; 151:2853-2860. [PMID: 16151198 DOI: 10.1099/mic.0.28142-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The virulence plasmid-carried apy (phoN2) gene of Shigella and related enteroinvasive Escherichia coli (EIEC) encodes apyrase, an ATP-diphosphohydrolase belonging to class A of the non-specific acid phosphatases (A-NSAPs). Apyrase and A-NSAPs share three domains of conserved amino acids (domains D1-D3) containing residues forming the putative active site of apyrase. In spite of their similarity, apyrase and A-NSAPs show different substrate specificity, apyrase being able to hydrolyse nucleotide tri- and diphosphates, but not monophosphates, as well as p-nitrophenyl phosphate (pNPP), while A-NSAPs are also active towards monophosphates and pNPP. In this paper, to get further insights into the structure-function relationship of apyrase, a random and site-directed mutagenesis of the apy gene of EIEC strain HN280 was conducted. Results indicate that amino acids located within the D2 and D3 conserved domains (Ser157 and Arg192, respectively) as well as residues located in the N-terminal (Ser97) and C-terminal (Glu233) domains are required for enzyme activity. Surprisingly, Ala160, located near the D2 domain and considered to be important for enzyme specificity, is required for enzyme activity, as its substitution with Thr led to the inactivation of enzyme activity. Furthermore, residue His116 is involved in apyrase specificity, since the H116L apyrase mutant shows substrate specificity resembling that of A-NSAPs.
Collapse
Affiliation(s)
- Serena Sarli
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| | - Mauro Nicoletti
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia, Università G. D'Annunzio, Chieti, Italy
| | - Serena Schippa
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| | - Federica Del Chierico
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| | - Daniela Santapaola
- Dipartimento di Scienze Biomediche, Sezione di Microbiologia, Università G. D'Annunzio, Chieti, Italy
| | - Piera Valenti
- Dipartimento di Medicina Sperimentale, Seconda Università, Naples, Italy
| | - Francesca Berlutti
- Dipartimento di Scienze di Sanità Pubblica, Università di Roma 'La Sapienza', Piazzale A. Moro, 5 00185 Rome, Italy
| |
Collapse
|
13
|
Mihara Y, Utagawa T, Yamada H, Asano Y. Acid phosphatase/phosphotransferases from enteric bacteria. J Biosci Bioeng 2005; 92:50-4. [PMID: 16233057 DOI: 10.1263/jbb.92.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2001] [Accepted: 04/16/2001] [Indexed: 11/17/2022]
Abstract
We have investigated the enzymatic phosphorylation of nucleosides and found that Morganella morganii phoC acid phosphatase exhibits regioselective pyrophosphate (PP(i))-nucleoside phosphotransferase activity. In this study, we isolated genes encoding an acid phosphatase with regioselective phosphotransferase activity (AP/PTase) from Providencia stuartii, Enterobacter aerogenes, Escherichia blattae and Klebsiella planticola, and compared the primary structures and enzymatic characteristics of these enzymes with those of AP/PTase (PhoC acid phosphatase) from M. morganii. The enzymes were highly homologous in primary structure with M. morganii AP/PTase, and are classified as class A1 acid phosphatases. The synthesis of inosine-5'-monophosphate (5'-IMP) by E. coli overproducing each acid phosphatase was investigated. The P. stuartii enzyme, which is most closely related to the M. morganii enzyme, exhibited high 5'-IMP productivity, similar to the M. morganii enzyme. The 5'-IMP productivities of the E. aerogenes, E. blattae and K. planticola enzymes were inferior to those of the former two enzymes. This result underlines the importance of lower K(m) values for efficient nucleotide production. As these enzymes exhibited a very high degree of homology at the amino acid sequence level, it is likely that local sequence differences in the binding pocket are responsible for the differences in the nucleoside-PP(i) phosphotransferase reaction.
Collapse
Affiliation(s)
- Y Mihara
- Applied Microbiology Laboratory, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi 210-8681, Japan.
| | | | | | | |
Collapse
|
14
|
Bernard R, El Ghachi M, Mengin-Lecreulx D, Chippaux M, Denizot F. BcrC from Bacillus subtilis Acts as an Undecaprenyl Pyrophosphate Phosphatase in Bacitracin Resistance. J Biol Chem 2005; 280:28852-7. [PMID: 15946938 DOI: 10.1074/jbc.m413750200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the BcrC(Bs) protein, formerly called YwoA, in Escherichia coli or in Bacillus subtilis allows these bacteria to stand higher concentrations of bacitracin. It was suggested that BcrC(Bs) was a membrane-spanning domain of an ATP binding cassette (ABC) transporter involved in bacitracin resistance. However, we hypothesized that this protein has an undecaprenyl pyrophosphate (UPP) phosphatase activity able to compete with bacitracin for UPP. We found that overexpression of a recombinant His6-BcrC(Bs) protein in E. coli (i) increased the resistance of the cells to bacitracin and (ii) increased UPP phosphatase activity in membrane preparations by 600-fold. We solubilized and prepared an electrophoretically pure protein exhibiting a strong UPP phosphatase activity. BcrC(Bs), which belongs to the type 2 phosphatidic acid phosphatase (PAP2) phosphatase superfamily (PF01569), differs totally from the already known BacA UPP phosphatase from E. coli, a member of the PF02673 family of the Protein family (Pfam) database. Thus, BcrC(Bs) and its orthologs form a new class of proteins within the PAP2 phosphatase superfamily, and likely all of them share a UPP phosphatase activity.
Collapse
Affiliation(s)
- Remi Bernard
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Bātiment 430, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
15
|
Ansai T, Chen X, Barik S, Takehara T. Conserved proline residues near the N-terminus are important for enzymatic activity of class A bacterial acid phosphatases. Arch Biochem Biophys 2002; 408:144-6. [PMID: 12485613 DOI: 10.1016/s0003-9861(02)00524-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Toshihiro Ansai
- Department of Preventive Dentistry, Kyushu Dental College, 803-8580, Kitakyushu, Japan.
| | | | | | | |
Collapse
|
16
|
Tanaka N, Dumay V, Liao Q, Lange AJ, Wever R. Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2162-7. [PMID: 11985594 DOI: 10.1046/j.1432-1033.2002.02871.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vanadium haloperoxidases and the bacterial class A nonspecific acid phosphatases have a conserved active site. It is shown that vanadate-substituted recombinant acid phosphatase from Shigella flexneri (PhoN-Sf) and Salmonella enterica ser. typhimurium (PhoN-Se) in the presence of H2O2 are able to oxidize bromide to hypobromous acid. Vanadate is essential for this activity. The kinetic parameters for the artificial bromoperoxidases have been determined. The Km value for H2O2 is about the same as that for the vanadium bromoperoxidases from the seaweed Ascophyllum nodosum. However, the Km value for Br- is about 10-20 times higher, and the turnover values of about 3.4 min-1 and 33 min-1 for PhoN-Sf and PhoN-Se, respectively, are much slower, than those of the native bromoperoxidase. Thus, despite the striking similarity in the active-site structures of the vanadium haloperoxidases and the acid phosphatase, the turnover frequency is low, and clearly the active site of acid phosphatases is not optimized for haloperoxidase activity. Like the native vanadium bromoperoxidase, the vanadate-substituted PhoN-Sf and PhoN-Se catalyse the enantioselective sulfoxidation of thioanisole.
Collapse
Affiliation(s)
- Naoko Tanaka
- Institute for Molecular Chemistry, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Babu MM, Kamalakkannan S, Subrahmanyam YVBK, Sankaran K. Shigella apyrase--a novel variant of bacterial acid phosphatases? FEBS Lett 2002; 512:8-12. [PMID: 11852042 DOI: 10.1016/s0014-5793(02)02287-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A virulence-associated ATP diphosphohydrolase activity in the periplasm of Shigella, identified as apyrase, was found to be markedly similar to bacterial non-specific acid phosphatases in primary structure. When the Shigella apyrase sequence was threaded in to the recently published 3D structure of the highly similar (73%) Escherichia blattae acid phosphatase it was found to have a highly overlapping 3D structure. Our analysis, which included assays for phosphatase, haloperoxidase and catalase activities, led us to hypothesize that Shigella apyrase might belong to a new class of pyrophosphatase originating as one more variant in the family of bacterial non-specific acid phosphatases. It revealed interesting structure-function relationships and probable roles relevant to pathogenesis.
Collapse
Affiliation(s)
- M Madan Babu
- Centre for Biotechnology, Anna University, 600 025, Chennai, India
| | | | | | | |
Collapse
|
18
|
Mihara Y, Utagawa T, Yamada H, Asano Y. Acid phosphatase/phosphotransferases from enteric bacteria. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80198-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Buchrieser C, Glaser P, Rusniok C, Nedjari H, D'Hauteville H, Kunst F, Sansonetti P, Parsot C. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 2000; 38:760-71. [PMID: 11115111 DOI: 10.1046/j.1365-2958.2000.02179.x] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of Shigella spp. are the causative agents of shigellosis. The virulence traits of these pathogens include their ability to enter into epithelial cells and induce apoptosis in macrophages. Expression of these functions requires the Mxi-Spa type III secretion apparatus and the secreted IpaA-D proteins, all of which are encoded by a virulence plasmid. In wild-type strains, the activity of the secretion apparatus is tightly regulated and induced upon contact of bacteria with epithelial cells. To investigate the repertoire of proteins secreted by Shigella flexneri in conditions of active secretion, we determined the N-terminal sequence of 14 proteins that are secreted by a mutant in which secretion was deregulated. Sequencing of the virulence plasmid pWR100 of the S. flexneri strain M90T (serotype 5) has allowed us to identify the genes encoding these secreted proteins and suggests that approximately 25 proteins are secreted by the type III secretion apparatus. Analysis of the G+C content and the relative positions of genes and open reading frames carried by the plasmid, together with information concerning the localization and function of encoded proteins, suggests that pWR100 contains blocks of genes of various origins, some of which were initially carried by four different plasmids.
Collapse
Affiliation(s)
- C Buchrieser
- Laboratoire de Génomique des Microorganismes Pathogènes, and Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ishikawa K, Mihara Y, Gondoh K, Suzuki E, Asano Y. X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. EMBO J 2000; 19:2412-23. [PMID: 10835340 PMCID: PMC212741 DOI: 10.1093/emboj/19.11.2412] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of Escherichia blattae non-specific acid phosphatase (EB-NSAP) has been determined at 1.9 A resolution with a bound sulfate marking the phosphate-binding site. The enzyme is a 150 kDa homohexamer. EB-NSAP shares a conserved sequence motif not only with several lipid phosphatases and the mammalian glucose-6-phosphatases, but also with the vanadium-containing chloroperoxidase (CPO) of Curvularia inaequalis. Comparison of the crystal structures of EB-NSAP and CPO reveals striking similarity in the active site structures. In addition, the topology of the EB-NSAP core shows considerable similarity to the fold of the active site containing part of the monomeric 67 kDa CPO, despite the lack of further sequence identity. These two enzymes are apparently related by divergent evolution. We have also determined the crystal structure of EB-NSAP complexed with the transition-state analog molybdate. Structural comparison of the native enzyme and the enzyme-molybdate complex reveals that the side-chain of His150, a putative catalytic residue, moves toward the molybdate so that it forms a hydrogen bond with the metal oxyanion when the molybdenum forms a covalent bond with NE2 of His189.
Collapse
Affiliation(s)
- K Ishikawa
- Central Research Laboratories, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | | | | | | | | |
Collapse
|
21
|
Chen X, Ansai T, Awano S, Iida T, Barik S, Takehara T. Isolation, cloning, and expression of an acid phosphatase containing phosphotyrosyl phosphatase activity from Prevotella intermedia. J Bacteriol 1999; 181:7107-14. [PMID: 10559178 PMCID: PMC94187 DOI: 10.1128/jb.181.22.7107-7114.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel acid phosphatase containing phosphotyrosyl phosphatase (PTPase) activity, designated PiACP, from Prevotella intermedia ATCC 25611, an anaerobe implicated in progressive periodontal disease, has been purified and characterized. PiACP, a monomer with an apparent molecular mass of 30 kDa, did not require divalent metal cations for activity and was sensitive to orthovanadate but highly resistant to okadaic acid. The enzyme exhibited substantial activity against tyrosine phosphate-containing peptides derived from the epidermal growth factor receptor. On the basis of N-terminal and internal amino acid sequences of purified PiACP, the gene coding for PiACP was isolated and sequenced. The PiACP gene consisted of 792 bp and coded for a basic protein with an M(r) of 29,164. The deduced amino acid sequence exhibited striking similarity (25 to 64%) to those of members of class A bacterial acid phosphatases, including PhoC of Morganella morganii, and involved a conserved phosphatase sequence motif that is shared among several lipid phosphatases and the mammalian glucose-6-phosphatases. The highly conservative motif HCXAGXXR in the active domain of PTPase was not found in PiACP. Mutagenesis of recombinant PiACP showed that His-170 and His-209 were essential for activity. Thus, the class A bacterial acid phosphatases including PiACP may function as atypical PTPases, the biological functions of which remain to be determined.
Collapse
Affiliation(s)
- X Chen
- Department of Preventive Dentistry, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Berlutti F, Casalino M, Zagaglia C, Fradiani PA, Visca P, Nicoletti M. Expression of the virulence plasmid-carried apyrase gene (apy) of enteroinvasive Escherichia coli and Shigella flexneri is under the control of H-NS and the VirF and VirB regulatory cascade. Infect Immun 1998; 66:4957-64. [PMID: 9746603 PMCID: PMC108614 DOI: 10.1128/iai.66.10.4957-4964.1998] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of the virulence plasmid (pINV)-carried invasion genes of Shigella flexneri and enteroinvasive Escherichia coli (EIEC) is induced at 37 degreesC and repressed at 30 degreesC. In this work, we report that the O135: K-:H- EIEC strain HN280 and S. flexneri SFZM53, M90T, and 454, of serotypes 4, 5, and 2a, respectively, produce apyrase (ATP-diphosphohydrolase), the product of the apy gene. In addition, the S. flexneri strains, but not the EIEC strain, produce a nonspecific phosphatase encoded by the phoN-Sf gene. Both apy and phoN-Sf are pINV-carried loci whose contribution to the pathogenicity of enteroinvasive microorganisms has been hypothesized but not yet established. We found that, like that of virulence genes, the expression of both the apy and the phoN-Sf genes was temperature regulated. Strain HN280/32 (a pINV-integrated avirulent derivative of HN280 which has a severe reduction of virB transcription) expressed the apy gene in a temperature-regulated fashion but to a much lower extent than wild-type HN280, while the introduction of the Deltahns deletion in HN280 and in HN280/32 induced the wild-type temperature-independent expression of apyrase. These results indicated that a reduction of virB transcription, which is known to occur in the pINV-integrated strain HN280/32, accounts for reduced apyrase expression and that the histone-like protein H-NS is involved in this regulatory network. Independent spontaneously generated mutants of HN280 and of SFZM53 which had lost the capacity to bind Congo red dye (Crb-) were isolated, and the molecular alterations of pINV were evaluated by PCR analysis. Alterations of pINV characterized by the absence of virF or virB and by the presence of the intact apy locus or intact apy and phoN-Sf loci were detected among Crb- mutants of HN280 and SFZM53, respectively. While all Crb- apy+ mutants of HN280 failed to produce apyrase, Crb- apy+ phoN-Sf+ mutants of SFZM53 lacked apyrase activity but produced a nonspecific phosphatase, like parental SFZM53. Moreover, the introduction of recombinant plasmids carrying cloned virF (pMYSH6504) or virB (pBN1) into Crb- mutants of HN280 and SFZM53 lacking virF or virB, respectively, fully restored temperature-dependent apyrase expression to levels resembling those of the parental strains. Taken together, our results demonstrate that, as has already been shown for invasion genes, apy is another locus whose expression is controlled by temperature, H-NS, and the VirF and VirB regulatory cascade. In contrast, the temperature-regulated expression of the nonspecific phosphatase does not appear to be under the control of the same regulatory network. These findings led us to speculate that apyrase may play a role in the pathogenicity of enteroinvasive bacteria.
Collapse
Affiliation(s)
- F Berlutti
- Istituto di Microbiologia, Sezione di Scienze Microbiologiche, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Thaller MC, Schippa S, Rossolini GM. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci 1998; 7:1647-52. [PMID: 9684901 PMCID: PMC2144050 DOI: 10.1002/pro.5560070722] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of a new molecular family of bacterial nonspecific acid phosphatases (NSAPs), indicated as class C, were found to share significant sequence similarities to bacterial class B NSAPs and to some plant acid phosphatases, representing the first example of a family of bacterial NSAPs that has a relatively close eukaryotic counterpart. Despite the lack of an overall similarity, conserved sequence motifs were also identified among the above enzyme families (class B and class C bacterial NSAPs, and related plant phosphatases) and several other families of phosphohydrolases, including bacterial phosphoglycolate phosphatases, histidinol-phosphatase domains of the bacterial bifunctional enzymes imidazole-glycerolphosphate dehydratases, and bacterial, eukaryotic, and archaeal phosphoserine phosphatases and threalose-6-phosphatases. These conserved motifs are clustered within two domains, separated by a variable spacer region, according to the pattern [FILMAVT]-D-[ILFRMVY]-D-[GSNDE]-[TV]-[ILVAM]-[AT S VILMC]-X-¿YFWHKR)-X-¿YFWHNQ¿-X( 102,191)-¿KRHNQ¿-G-D-¿FYWHILVMC¿-¿QNH¿-¿FWYGP¿-D -¿PSNQYW¿. The dephosphorylating activity common to all these proteins supports the definition of this phosphatase motif and the inclusion of these enzymes into a superfamily of phosphohydrolases that we propose to indicate as "DDDD" after the presence of the four invariant aspartate residues. Database searches retrieved various hypothetical proteins of unknown function containing this or similar motifs, for which a phosphohydrolase activity could be hypothesized.
Collapse
Affiliation(s)
- M C Thaller
- Dipartimento di Biologia, Università di Roma Tor Vergata, Rome, Italy.
| | | | | |
Collapse
|