1
|
Wang Z, Hou X, Shang G, Deng G, Luo K, Peng M. Exploring Fatty Acid β-Oxidation Pathways in Bacteria: From General Mechanisms to DSF Signaling and Pathogenicity in Xanthomonas. Curr Microbiol 2024; 81:336. [PMID: 39223428 DOI: 10.1007/s00284-024-03866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids (FAs) participate in extensive physiological activities such as energy metabolism, transcriptional control, and cell signaling. In bacteria, FAs are degraded and utilized through various metabolic pathways, including β-oxidation. Over the past ten years, significant progress has been made in studying FA oxidation in bacteria, particularly in E. coli, where the processes and roles of FA β-oxidation have been comprehensively elucidated. Here, we provide an update on the new research achievements in FAs β-oxidation in bacteria. Using Xanthomonas as an example, we introduce the oxidation process and regulation mechanism of the DSF-family quorum sensing signal. Based on current findings, we propose the specific enzymes required for β-oxidation of several specific FAs. Finally, we discuss the future outlook on scientific issues that remain to be addressed. This paper supplies theoretical guidance for further study of the FA β-oxidation pathway with particular emphasis on its connection to the pathogenicity mechanisms of bacteria.
Collapse
Affiliation(s)
- Zhiyong Wang
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Xue Hou
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Guohui Shang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangai Deng
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Kai Luo
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China
| | - Mu Peng
- Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology College of Biological and Food Engineering, Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
2
|
Soria S, Carreón-Rodríguez OE, de Anda R, Flores N, Escalante A, Bolívar F. Transcriptional and Metabolic Response of a Strain of Escherichia coli PTS - to a Perturbation of the Energetic Level by Modification of [ATP]/[ADP] Ratio. BIOTECH 2024; 13:10. [PMID: 38651490 PMCID: PMC11036233 DOI: 10.3390/biotech13020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
The intracellular [ATP]/[ADP] ratio is crucial for Escherichia coli's cellular functions, impacting transport, phosphorylation, signaling, and stress responses. Overexpression of F1-ATPase genes in E. coli increases glucose consumption, lowers energy levels, and triggers transcriptional responses in central carbon metabolism genes, particularly glycolytic ones, enhancing carbon flux. In this contribution, we report the impact of the perturbation of the energetic level in a PTS- mutant of E. coli by modifying the [ATP]/[ADP] ratio by uncoupling the cytoplasmic activity of the F1 subunit of the ATP synthase. The disruption of [ATP]/[ADP] ratio in the evolved strain of E. coli PB12 (PTS-) was achieved by the expression of the atpAGD operon encoding the soluble portion of ATP synthase F1-ATPase (strain PB12AGD+). The analysis of the physiological and metabolic response of the PTS- strain to the ATP disruption was determined using RT-qPCR of 96 genes involved in glucose and acetate transport, glycolysis and gluconeogenesis, pentose phosphate pathway (PPP), TCA cycle and glyoxylate shunt, several anaplerotic, respiratory chain, and fermentative pathways genes, sigma factors, and global regulators. The apt mutant exhibited reduced growth despite increased glucose transport due to decreased energy levels. It heightened stress response capabilities under glucose-induced energetic starvation, suggesting that the carbon flux from glycolysis is distributed toward the pentose phosphate and the Entner-Duodoroff pathway with the concomitant. Increase acetate transport, production, and utilization in response to the reduction in the [ATP]/[ADP] ratio. Upregulation of several genes encoding the TCA cycle and the glyoxylate shunt as several respiratory genes indicates increased respiratory capabilities, coupled possibly with increased availability of electron donor compounds from the TCA cycle, as this mutant increased respiratory capability by 240% more than in the PB12. The reduction in the intracellular concentration of cAMP in the atp mutant resulted in a reduced number of upregulated genes compared to PB12, suggesting that the mutant remains a robust genetic background despite the severe disruption in its energetic level.
Collapse
Affiliation(s)
- Sandra Soria
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
- Laboratorio de Soluciones Biotecnológicas (LasoBiotc), Montevideo 11800, Uruguay
| | - Ofelia E. Carreón-Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Ramón de Anda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (S.S.); (O.E.C.-R.); (R.d.A.); (N.F.)
| |
Collapse
|
3
|
Kremer K, Meier D, Theis L, Miller S, Rost-Nasshan A, Naing YT, Zarzycki J, Paczia N, Serrania J, Blumenkamp P, Goesmann A, Becker A, Thanbichler M, Hochberg GKA, Carter MS, Erb TJ. Functional Degeneracy in Paracoccus denitrificans Pd1222 Is Coordinated via RamB, Which Links Expression of the Glyoxylate Cycle to Activity of the Ethylmalonyl-CoA Pathway. Appl Environ Microbiol 2023:e0023823. [PMID: 37318336 PMCID: PMC10370305 DOI: 10.1128/aem.00238-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.
Collapse
Affiliation(s)
- Katharina Kremer
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Doreen Meier
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Lisa Theis
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephanie Miller
- Department of Biological Sciences, Salisbury University, Maryland, USA
| | | | - Yadanar T Naing
- Department of Biological Sciences, Salisbury University, Maryland, USA
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for terrestrial Microbiology, Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Patrick Blumenkamp
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anke Becker
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg K A Hochberg
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Chemistry, University of Marburg, Marburg, Germany
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael S Carter
- Department of Biological Sciences, Salisbury University, Maryland, USA
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
4
|
Meng Q, Xu Q, Xu Y, Ren H, Ge X, Yu J, Cao X, Yin J, Yu Z. A FadR-Type Regulator Activates the Biodegradation of Polycyclic Aromatic Hydrocarbons by Mediating Quorum Sensing in Croceicoccus naphthovorans Strain PQ-2. Appl Environ Microbiol 2023; 89:e0043323. [PMID: 37098893 PMCID: PMC10231186 DOI: 10.1128/aem.00433-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
Bacteria employ multiple transcriptional regulators to orchestrate cellular responses to adapt to constantly varying environments. The bacterial biodegradation of polycyclic aromatic hydrocarbons (PAHs) has been extensively described, and yet, the PAH-related transcriptional regulators remain elusive. In this report, we identified an FadR-type transcriptional regulator that controls phenanthrene biodegradation in Croceicoccus naphthovorans strain PQ-2. The expression of fadR in C. naphthovorans PQ-2 was induced by phenanthrene, and its deletion significantly impaired both the biodegradation of phenanthrene and the synthesis of acyl-homoserine lactones (AHLs). In the fadR deletion strain, the biodegradation of phenanthrene could be recovered by supplying either AHLs or fatty acids. Notably, FadR simultaneously activated the fatty acid biosynthesis pathway and repressed the fatty acid degradation pathway. As intracellular AHLs are synthesized with fatty acids as substrates, boosting the fatty acid supply could enhance AHL synthesis. Collectively, these findings demonstrate that FadR in C. naphthovorans PQ-2 positively regulates PAH biodegradation by controlling the formation of AHLs, which is mediated by the metabolism of fatty acids. IMPORTANCE Master transcriptional regulation of carbon catabolites is extremely important for the survival of bacteria that face changes in carbon sources. Polycyclic aromatic hydrocarbons (PAHs) can be utilized as carbon sources by some bacteria. FadR is a well-known transcriptional regulator involved in fatty acid metabolism; however, the connection between FadR regulation and PAH utilization in bacteria remains unknown. This study revealed that a FadR-type regulator in Croceicoccus naphthovorans PQ-2 stimulated PAH biodegradation by controlling the biosynthesis of the acyl-homoserine lactone quorum-sensing signals that belong to fatty acid-derived compounds. These results provide a unique perspective for understanding bacterial adaptation to PAH-containing environments.
Collapse
Affiliation(s)
- Qiu Meng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Qimiao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Yinming Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Huiping Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xuzhe Ge
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Jianming Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Xueqiang Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Yang P, Liu W, Chen Y, Gong AD. Engineering the glyoxylate cycle for chemical bioproduction. Front Bioeng Biotechnol 2022; 10:1066651. [PMID: 36532595 PMCID: PMC9755347 DOI: 10.3389/fbioe.2022.1066651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 07/24/2023] Open
Abstract
With growing concerns about environmental issues and sustainable economy, bioproduction of chemicals utilizing microbial cell factories provides an eco-friendly alternative to current petro-based processes. Creating high-performance strains (with high titer, yield, and productivity) through metabolic engineering strategies is critical for cost-competitive production. Commonly, it is inevitable to fine-tuning or rewire the endogenous or heterologous pathways in such processes. As an important pathway involved in the synthesis of many kinds of chemicals, the potential of the glyoxylate cycle in metabolic engineering has been studied extensively these years. Here, we review the metabolic regulation of the glyoxylate cycle and summarize recent achievements in microbial production of chemicals through tuning of the glyoxylate cycle, with a focus on studies implemented in model microorganisms. Also, future prospects for bioproduction of glyoxylate cycle-related chemicals are discussed.
Collapse
|
6
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|
7
|
Sawant N, Singh H, Appukuttan D. Overview of the Cellular Stress Responses Involved in Fatty Acid Overproduction in E. coli. Mol Biotechnol 2021; 64:373-387. [PMID: 34796451 DOI: 10.1007/s12033-021-00426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic view of various stresses caused due to fatty acid overproduction in E. coli. It also addresses how certain stresses like high temperature and nitrogen limitation can boost fatty acid production. This review paper also highlights the interconnections that exist between these stresses.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Vile Parle (West), Mumbai, 400056, India.
| | - Deepti Appukuttan
- Biosystems Engineering Lab, Department of Chemical Engineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
8
|
Lai N, Luo Y, Fei P, Hu P, Wu H. One stone two birds: Biosynthesis of 3-hydroxypropionic acid from CO 2 and syngas-derived acetic acid in Escherichia coli. Synth Syst Biotechnol 2021; 6:144-152. [PMID: 34278012 PMCID: PMC8255177 DOI: 10.1016/j.synbio.2021.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 10/31/2022] Open
Abstract
Syngas, which contains large amount of CO2 as well as H2 and CO, can be convert to acetic acid chemically or biologically. Nowadays, acetic acid become a cost-effective nonfood-based carbon source for value-added biochemical production. In this study, acetic acid and CO2 were used as substrates for the biosynthesis of 3-hydroxypropionic acid (3-HP) in metabolically engineered Escherichia coli carrying heterogeneous acetyl-CoA carboxylase (Acc) from Corynebacterium glutamicum and codon-optimized malonyl-CoA reductase (MCR) from Chloroflexus aurantiacus. Strategies of metabolic engineering included promoting glyoxylate shunt pathway, inhibiting fatty acid synthesis, dynamic regulating of TCA cycle, and enhancing the assimilation of acetic acid. The engineered strain LNY07(M*DA) accumulated 15.8 g/L of 3-HP with the yield of 0.71 g/g in 48 h by whole-cell biocatalysis. Then, syngas-derived acetic acid was used as substrate instead of pure acetic acid. The concentration of 3-HP reached 11.2 g/L with the yield of 0.55 g/g in LNY07(M*DA). The results could potentially contribute to the future development of an industrial bioprocess of 3-HP production from syngas-derived acetic acid.
Collapse
Affiliation(s)
- Ningyu Lai
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Hu
- Shanghai GTL Biotech Co., Ltd., 1688 North Guoquan Road, Shanghai, 200438, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China
- Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
9
|
Kim Y, Lama S, Agrawal D, Kumar V, Park S. Acetate as a potential feedstock for the production of value-added chemicals: Metabolism and applications. Biotechnol Adv 2021; 49:107736. [PMID: 33781888 DOI: 10.1016/j.biotechadv.2021.107736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Acetate is regarded as a promising carbon feedstock in biological production owing to its possible derivation from C1 gases such as CO, CO2 and methane. To best use of acetate, comprehensive understanding of acetate metabolisms from genes and enzymes to pathways and regulations is needed. This review aims to provide an overview on the potential of acetate as carbon feedstock for industrial biotechnology. Biochemical, microbial and biotechnological aspects of acetate metabolism are described. Especially, the current state-of-the art in the production of value-added chemicals from acetate is summarized. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Yeonhee Kim
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Suman Lama
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK430AL, United Kingdom.
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
10
|
Madikonda AK, Shaikh A, Khanra S, Yakkala H, Yellaboina S, Lin-Chao S, Siddavattam D. Metabolic remodeling in Escherichia coli MG1655. A prophage e14-encoded small RNA, co293, post-transcriptionally regulates transcription factors HcaR and FadR. FEBS J 2020; 287:4767-4782. [PMID: 32061118 DOI: 10.1111/febs.15247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
Abstract
In previous studies, we have shown the existence of metabolic remodeling in glucose-grown Escherichia coli MG1655 cells expressing the esterase Orf306 from the opd island of Sphingobium fuliginis. We now show that Orf306-dependent metabolic remodeling is due to regulation of a novel small RNA (sRNA). Endogenous propionate, produced due to the esterase/lipase activity of Orf306, repressed expression of a novel E. coli sRNA, co293. This sRNA post-transcriptionally regulates expression of the transcription factors HcaR and FadR either by inhibiting translation or by destabilizing their transcripts. Hence, repression of co293 expression elevates the levels of HcaR and FadR with consequent activation of alternative carbon catabolic pathways. HcaR activates the hca and MHP operons leading to upregulation of the phenyl propionate and hydroxy phenyl propionate (HPP) degradation pathways. Similarly, FadR stimulates the expression of the transcription factor IclR which negatively regulates the glyoxylate bypass pathway genes, aceBAK.
Collapse
Affiliation(s)
- Ashok Kumar Madikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Akbarpasha Shaikh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sonali Khanra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Harshita Yakkala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sailu Yellaboina
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
11
|
Alternative fate of glyoxylate during acetate and hexadecane metabolism in Acinetobacter oleivorans DR1. Sci Rep 2019; 9:14402. [PMID: 31591464 PMCID: PMC6779741 DOI: 10.1038/s41598-019-50852-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
The glyoxylate shunt (GS), involving isocitrate lyase (encoded by aceA) and malate synthase G (encoded by glcB), is known to play important roles under several conditions including oxidative stress, antibiotic defense, or certain carbon source metabolism (acetate and fatty acids). Comparative growth analyses of wild type (WT), aceA, and glcB null-strains revealed that aceA, but not glcB, is essential for cells to grow on either acetate (1%) or hexadecane (1%) in Acinetobacter oleivorans DR1. Interestingly. the aceA knockout strain was able to grow slower in 0.1% acetate than the parent strain. Northern Blot analysis showed that the expression of aceA was dependent on the concentration of acetate or H2O2, while glcB was constitutively expressed. Up-regulation of stress response-related genes and down-regulation of main carbon metabolism-participating genes in a ΔaceA mutant, compared to that in the parent strain, suggested that an ΔaceA mutant is susceptible to acetate toxicity, but grows slowly in 0.1% acetate. However, a ΔglcB mutant showed no growth defect in acetate or hexadecane and no susceptibility to H2O2, suggesting the presence of an alternative pathway to eliminate glyoxylate toxicity. A lactate dehydrogenase (LDH, encoded by a ldh) could possibly mediate the conversion from glyoxylate to oxalate based on our RNA-seq profiles. Oxalate production during hexadecane degradation and impaired growth of a ΔldhΔglcB double mutant in both acetate and hexadecane-supplemented media suggested that LDH is a potential detoxifying enzyme for glyoxylate. Our constructed LDH-overexpressing Escherichia coli strain also showed an important role of LDH under lactate, acetate, and glyoxylate metabolisms. The LDH-overexpressing E. coli strain, but not wild type strain, produced oxalate under glyoxylate condition. In conclusion, the GS is a main player, but alternative glyoxylate pathways exist during acetate and hexadecane metabolism in A. oleivorans DR1.
Collapse
|
12
|
Yang J, Fang Y, Wang J, Wang C, Zhao L, Wang X. Deletion of regulator-encoding genes fadR, fabR and iclR to increase L-threonine production in Escherichia coli. Appl Microbiol Biotechnol 2019; 103:4549-4564. [DOI: 10.1007/s00253-019-09818-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/25/2022]
|
13
|
Microbial Production of Fatty Acid via Metabolic Engineering and Synthetic Biology. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Abstract
2017 marks the 60th anniversary of Krebs’ seminal paper on the glyoxylate shunt (and coincidentally, also the 80th anniversary of his discovery of the citric acid cycle). Sixty years on, we have witnessed substantial developments in our understanding of how flux is partitioned between the glyoxylate shunt and the oxidative decarboxylation steps of the citric acid cycle. The last decade has shown us that the beautifully elegant textbook mechanism that regulates carbon flux through the shunt in E. coli is an oversimplification of the situation in many other bacteria. The aim of this review is to assess how this new knowledge is impacting our understanding of flux control at the TCA cycle/glyoxylate shunt branch point in a wider range of genera, and to summarize recent findings implicating a role for the glyoxylate shunt in cellular functions other than metabolism.
Collapse
Affiliation(s)
- Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;,
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom;,
| |
Collapse
|
15
|
Yousuf S, Angara RK, Roy A, Gupta SK, Misra R, Ranjan A. Mce2R/Rv0586 of Mycobacterium tuberculosis is the functional homologue of FadR E. coli. MICROBIOLOGY-SGM 2018; 164:1133-1145. [PMID: 29993358 DOI: 10.1099/mic.0.000686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid metabolism is critical to Mycobacterium tuberculosis survival and infection. Unlike Escherichia coli, which has a single FadR, the M. tuberculosis genome encodes five proteins of the FadR sub-family. While the role of E. coli FadR as a regulator of fatty acid metabolism is well known, the definitive functions of M. tuberculosis FadR proteins are still under investigation. An interesting question about the M. tuberculosis FadRs remains open: which one of these proteins is the functional homologue of E. coli FadR? To address this, we have applied two different approaches. The first one was the bioinformatics approach and the second one was the classical molecular genetic approach involving complementation studies. Surprisingly, the results of these two approaches did not agree. Among the five M. tuberculosis FadRs, Rv0494 shared the highest sequence similarity with FadRE. coli and Rv0586 was the second best match. However, only Rv0586, but not Rv0494, could complement E. coli ∆fadR, indicating that Rv0586 is the M. tuberculosis functional homologue of FadRE. coli. Further studies showed that both regulators, Rv0494 and Rv0586, show similar responsiveness to LCFA, and have conserved critical residues for DNA binding. However, analysis of the operator site indicated that the inter-palindromic distance required for DNA binding differs for the two regulators. The differences in the binding site selection helped in the success of Rv0586 binding to fadB upstream over Rv0494 and may have played a critical role in complementing E. coli ∆fadR. Further, for the first time, we report the lipid-responsive nature of Rv0586.
Collapse
Affiliation(s)
- Suhail Yousuf
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rajendra Kumar Angara
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ajit Roy
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shailesh Kumar Gupta
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rohan Misra
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
- 2Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akash Ranjan
- 1Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500039, India
| |
Collapse
|
16
|
Ha S, Shin B, Park W. Lack of glyoxylate shunt dysregulates iron homeostasis in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:587-599. [PMID: 29465342 DOI: 10.1099/mic.0.000623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aceA and glcB genes, encoding isocitrate lyase (ICL) and malate synthase, respectively, are not in an operon in many bacteria, including Pseudomonas aeruginosa, unlike in Escherichia coli. Here, we show that expression of aceA in P. aeruginosa is specifically upregulated under H2O2-induced oxidative stress and under iron-limiting conditions. In contrast, the addition of exogenous redox active compounds or antibiotics increases the expression of glcB. The transcriptional start sites of aceA under iron-limiting conditions and in the presence of iron were found to be identical by 5' RACE. Interestingly, the enzymatic activities of ICL and isocitrate dehydrogenase had opposite responses under different iron conditions, suggesting that the glyoxylate shunt (GS) might be important under iron-limiting conditions. Remarkably, the intracellular iron concentration was lower while the iron demand was higher in the GS-activated cells growing on acetate compared to cells growing on glucose. Absence of GS dysregulated iron homeostasis led to changes in the cellular iron pool, with higher intracellular chelatable iron levels. In addition, GS mutants were found to have higher cytochrome c oxidase activity on iron-supplemented agar plates of minimal media, which promoted the growth of the GS mutants. However, deletion of the GS genes resulted in higher sensitivity to a high concentration of H2O2, presumably due to iron-mediated killing. In conclusion, the GS system appears to be tightly linked to iron homeostasis in the promotion of P. aeruginosa survival under oxidative stress.
Collapse
Affiliation(s)
- Sunhee Ha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Yeo HK, Park YW, Lee JY. Structural basis of operator sites recognition and effector binding in the TetR family transcription regulator FadR. Nucleic Acids Res 2017; 45:4244-4254. [PMID: 28160603 PMCID: PMC5397183 DOI: 10.1093/nar/gkx009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/05/2017] [Indexed: 12/01/2022] Open
Abstract
FadR is a fatty acyl-CoA dependent transcription factor that regulates genes encoding proteins involved in fatty-acid degradation and synthesis pathways. In this study, the crystal structures of Bacillus halodurans FadR, which belong to the TetR family, have been determined in three different forms: ligand-bound, ligand-free and DNA-bound at resolutions of 1.75, 2.05 and 2.80 Å, respectively. Structural and functional data showed that B. halodurans FadR was bound to its operator site without fatty acyl-CoAs. Structural comparisons among the three different forms of B. halodurans FadR revealed that the movement of DNA binding domains toward the operator DNA was blocked upon binding of ligand molecules. These findings suggest that the TetR family FadR negatively regulates the genes involved in fatty acid metabolism by binding cooperatively to the operator DNA as a dimer of dimers.
Collapse
Affiliation(s)
- Hyun Ku Yeo
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
18
|
Effect of acetate as a co-feedstock on the production of poly(lactate-co-3-hydroxyalkanoate) by pflA-deficient Escherichia coli RSC10. J Biosci Bioeng 2017; 123:547-554. [DOI: 10.1016/j.jbiosc.2016.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022]
|
19
|
The Fatty Acid Regulator FadR Influences the Expression of the Virulence Cascade in the El Tor Biotype of Vibrio cholerae by Modulating the Levels of ToxT via Two Different Mechanisms. J Bacteriol 2017; 199:JB.00762-16. [PMID: 28115548 DOI: 10.1128/jb.00762-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
FadR is a master regulator of fatty acid (FA) metabolism that coordinates the pathways of FA degradation and biosynthesis in enteric bacteria. We show here that a ΔfadR mutation in the El Tor biotype of Vibrio cholerae prevents the expression of the virulence cascade by influencing both the transcription and the posttranslational regulation of the master virulence regulator ToxT. FadR is a transcriptional regulator that represses the expression of genes involved in FA degradation, activates the expression of genes involved in unsaturated FA (UFA) biosynthesis, and also activates the expression of two operons involved in saturated FA (SFA) biosynthesis. Since FadR does not bind directly to the toxT promoter, we determined whether the regulation of any of its target genes indirectly influenced ToxT. This was accomplished by individually inserting a double point mutation into the FadR-binding site in the promoter of each target gene, thereby preventing their activation or repression. Although preventing FadR-mediated activation of fabA, which encodes the enzyme that carries out the first step in UFA biosynthesis, did not significantly influence either the transcription or the translation of ToxT, it reduced its levels and prevented virulence gene expression. In the mutant strain unable to carry out FadR-mediated activation of fabA, expressing fabA ectopically restored the levels of ToxT and virulence gene expression. Taken together, the results presented here indicate that V. cholerae FadR influences the virulence cascade in the El Tor biotype by modulating the levels of ToxT via two different mechanisms.IMPORTANCE Fatty acids (FAs) play important roles in membrane lipid homeostasis and energy metabolism in all organisms. In Vibrio cholerae, the causative agent of the acute intestinal disease cholera, they also influence virulence by binding into an N-terminal pocket of the master virulence regulator, ToxT, and modulating its activity. FadR is a transcription factor that coordinately controls the pathways of FA degradation and biosynthesis in enteric bacteria. This study identifies a new link between FA metabolism and virulence in the El Tor biotype by showing that FadR influences both the transcription and posttranslational regulation of the master virulence regulator ToxT by two distinct mechanisms.
Collapse
|
20
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
21
|
Abstract
The tricarboxylic acid (TCA) cycle plays two essential roles in metabolism. First, under aerobic conditions the cycle is responsible for the total oxidation of acetyl-CoA that is derived mainly from the pyruvate produced by glycolysis. Second, TCA cycle intermediates are required in the biosynthesis of several amino acids. Although the TCA cycle has long been considered a "housekeeping" pathway in Escherichia coli and Salmonella enterica, the pathway is highly regulated at the transcriptional level. Much of this control is exerted in response to respiratory conditions. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although a few loose ends remain. The realization that a "shadow" TCA cycle exists that proceeds through methylcitrate has cleared up prior ambiguities. The glyoxylate bypass has long been known to be essential for growth on carbon sources such as acetate or fatty acids because this pathway allowsnet conversion of acetyl-CoA to metabolic intermediates. Strains lacking this pathway fail to grow on these carbon sources, since acetate carbon entering the TCA cycle is quantitatively lost as CO2 resulting in the lack of a means to replenish the dicarboxylic acids consumed in amino acid biosynthesis. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although the identity of the small molecule ligand that modulates transcriptional control of the glyoxylate cycle genes by binding to the IclR repressor remains unknown. The activity of the cycle is also exerted at the enzyme level by the reversible phosphorylation of the TCA cycle enzyme isocitrate dehydrogenase catalyzed by a specific kinase/phosphatase to allow isocitratelyase to compete for isocitrate and cleave this intermediate to glyoxylate and succinate.
Collapse
|
22
|
Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. EcoSal Plus 2015; 4. [PMID: 26443778 DOI: 10.1128/ecosalplus.10.2.1] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biochemical network reconstructions have become popular tools in systems biology. Metabolicnetwork reconstructions are biochemically, genetically, and genomically (BiGG) structured databases of biochemical reactions and metabolites. They contain information such as exact reaction stoichiometry, reaction reversibility, and the relationships between genes, proteins, and reactions. Network reconstructions have been used extensively to study the phenotypic behavior of wild-type and mutant stains under a variety of conditions, linking genotypes with phenotypes. Such phenotypic simulations have allowed for the prediction of growth after genetic manipulations, prediction of growth phenotypes after adaptive evolution, and prediction of essential genes. Additionally, because network reconstructions are organism specific, they can be used to understand differences between organisms of species in a functional context.There are different types of reconstructions representing various types of biological networks (metabolic, regulatory, transcription/translation). This chapter serves as an introduction to metabolic and regulatory network reconstructions and models and gives a complete description of the core Escherichia coli metabolic model. This model can be analyzed in any computational format (such as MATLAB or Mathematica) based on the information given in this chapter. The core E. coli model is a small-scale model that can be used for educational purposes. It is meant to be used by senior undergraduate and first-year graduate students learning about constraint-based modeling and systems biology. This model has enough reactions and pathways to enable interesting and insightful calculations, but it is also simple enough that the results of such calculations can be understoodeasily.
Collapse
|
23
|
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis. Protein J 2015; 34:359-66. [DOI: 10.1007/s10930-015-9630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Gautam US, Mehra S, Kaushal D. In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS One 2015; 10:e0135208. [PMID: 26270051 PMCID: PMC4535907 DOI: 10.1371/journal.pone.0135208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/19/2015] [Indexed: 11/28/2022] Open
Abstract
Despite considerable progress in understanding the pathogenesis of Mycobacterium tuberculosis (Mtb), development of new therapeutics and vaccines against it has proven difficult. This is at least in part due to the use of less than optimal models of in-vivo Mtb infection, which has precluded a study of the physiology of the pathogen in niches where it actually persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally infected with Mtb and thus make available, a faithful and highly tractable system to study the physiology of the pathogen in-vivo. We compared the transcriptomics of Mtb and various mutants in the DosR (DevR) regulon derived from Kramnik mouse granulomas to those cultured in-vitro. We recently showed that mutant ΔdosS is attenuated in C3HeB/FeJ mice. Aerosol exposure of mice with the mutant mycobacteria resulted in a substantially different and a relatively weaker transcriptional response (< = 20 genes were induced) for the functional category ‘Information Pathways’ in Mtb:ΔdosR; ‘Lipid Metabolism’ in Mtb:ΔdosT; ‘Virulence, Detoxification, Adaptation’ in both Mtb:ΔdosR and Mtb:ΔdosT; and ‘PE/PPE’ family in all mutant strains compare to wild-type Mtb H37Rv, suggesting that the inability to induce DosR functions to different levels can modulate the interaction of the pathogen with the host. The Mtb genes expressed during growth in C3HeB/FeJ mice appear to reflect adaptation to differential nutrient utilization for survival in mouse lungs. The genes such as glnB, Rv0744c, Rv3281, sdhD/B, mce4A, dctA etc. downregulated in mutant ΔdosS indicate their requirement for bacterial growth and flow of carbon/energy source from host cells. We conclude that genes expressed in Mtb during in-vivo chronic phase of infection in Kramnik mice mainly contribute to growth, cell wall processes, lipid metabolism, and virulence.
Collapse
Affiliation(s)
- Uma Shankar Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail: (DK); (USG)
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Louisiana State University School of Veterinary Medicine Department of Pathobiological Sciences, Baton Rouge, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (DK); (USG)
| |
Collapse
|
25
|
D101 is critical for the function of AttJ, a repressor of quorum quenching system in Agrobacterium tumefaciens. J Microbiol 2015; 53:623-32. [PMID: 26231372 DOI: 10.1007/s12275-015-5100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
The quorum quenching system of Agrobacterium tumefaciens is specifically activated upon entering the stationary phase. Evidence has shown that this system includes two key components: the IclR-type transcriptional factor AttJ (also named as BlcR) and the AHL-lactonase AttM (also named as BlcC). At exponential phase, AttJ binds to the promoter region of attM and thus suppresses the expression of attM. At stationary phase, however, the small molecule SSA directly binds to AttJ and relieves its inhibition of AttJ and thereby triggers the expression of attM. While the regulation of AttM has been extensively investigated, little is known about the regulation of AttJ. In this study, we demonstrated the D101 amino acid of AttJ is essential for the AttJ function. In vitro, the variant protein of AttJD101H appeared to be readily aggregated. In vivo, the D101H mutation in AttJ entirely abolished the inhibitory activity of AttJ and overexpressed attM in A. tumefaciens A6. In addition, D101H mutation led to an overexpression of attJ, indicating an auto-regulatory mechanism for the attJ regulation. Put together, these findings demonstrate that D101 is an important amino acid for the transcription activity of AttJ and the transcription of attJ is regulated by a negative feedback loop. These results expand previous biochemical characterization of AttJ and provide new mechanistic insights into the regulation of quorum quenching in A. tumefaciens.
Collapse
|
26
|
Zhang H, Zheng B, Gao R, Feng Y. Binding of Shewanella FadR to the fabA fatty acid biosynthetic gene: implications for contraction of the fad regulon. Protein Cell 2015; 6:667-679. [PMID: 26050090 PMCID: PMC4537474 DOI: 10.1007/s13238-015-0172-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/06/2015] [Indexed: 11/25/2022] Open
Abstract
The Escherichia coli fadR protein product, a paradigm/prototypical FadR regulator, positively regulates fabA and fabB, the two critical genes for unsaturated fatty acid (UFA) biosynthesis. However the scenario in the other Ɣ-proteobacteria, such as Shewanella with the marine origin, is unusual in that Rodionov and coworkers predicted that only fabA (not fabB) has a binding site for FadR protein. It raised the possibility of fad regulon contraction. Here we report that this is the case. Sequence alignment of the FadR homologs revealed that the N-terminal DNA-binding domain exhibited remarkable similarity, whereas the ligand-accepting motif at C-terminus is relatively-less conserved. The FadR homologue of S. oneidensis (referred to FadR_she) was over-expressed and purified to homogeneity. Integrative evidence obtained by FPLC (fast protein liquid chromatography) and chemical cross-linking analyses elucidated that FadR_she protein can dimerize in solution, whose identity was determined by MALDI-TOF-MS. In vitro data from electrophoretic mobility shift assays suggested that FadR_she is almost functionally-exchangeable/equivalent to E. coli FadR (FadR_ec) in the ability of binding the E. coli fabA (and fabB) promoters. In an agreement with that of E. coli fabA, S. oneidensis fabA promoter bound both FadR_she and FadR_ec, and was disassociated specifically with the FadR regulatory protein upon the addition of long-chain acyl-CoA thioesters. To monitor in vivo effect exerted by FadR on Shewanella fabA expression, the native promoter of S. oneidensis fabA was fused to a LacZ reporter gene to engineer a chromosome fabA-lacZ transcriptional fusion in E. coli. As anticipated, the removal of fadR gene gave about 2-fold decrement of Shewanella fabA expression by β-gal activity, which is almost identical to the inhibitory level by the addition of oleate. Therefore, we concluded that fabA is contracted to be the only one member of fad regulon in the context of fatty acid synthesis in the marine bacteria Shewanella genus.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Beiwen Zheng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Rongsui Gao
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Youjun Feng
- Department of Medical Microbiology & Parasitology, Zhejiang University School of Medicine, Hangzhou, 310058 China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310058 China
| |
Collapse
|
27
|
Reassessment of the Genetic Regulation of Fatty Acid Synthesis in Escherichia coli: Global Positive Control by the Dual Functional Regulator FadR. J Bacteriol 2015; 197:1862-72. [PMID: 25802297 DOI: 10.1128/jb.00064-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/11/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED In Escherichia coli, the FadR transcriptional regulator represses the expression of fatty acid degradation (fad) genes. However, FadR is also an activator of the expression of fabA and fabB, two genes involved in unsaturated fatty acid synthesis. Therefore, FadR plays an important role in maintaining the balance between saturated and unsaturated fatty acids in the membrane. We recently showed that FadR also activates the promoter upstream of the fabH gene (L. My, B. Rekoske, J. J. Lemke, J. P. Viala, R. L. Gourse, and E. Bouveret, J Bacteriol 195:3784-3795, 2013, doi:10.1128/JB.00384-13). Furthermore, recent transcriptomic and proteomic data suggested that FadR activates the majority of fatty acid (FA) synthesis genes. In the present study, we tested the role of FadR in the expression of all genes involved in FA synthesis. We found that FadR activates the transcription of all tested FA synthesis genes, and we identified the FadR binding site for each of these genes. This necessitated the reassessment of the transcription start sites for accA and accB genes described previously, and we provide evidence for the presence of multiple promoters driving the expression of these genes. We showed further that regulation by FadR impacts the amount of FA synthesis enzymes in the cell. Our results show that FadR is a global regulator of FA metabolism in E. coli, acting both as a repressor of catabolism and an activator of anabolism, two directly opposing pathways. IMPORTANCE In most bacteria, a transcriptional regulator tunes the level of FA synthesis enzymes. Oddly, such a global regulator still was missing for E. coli, which nonetheless is one of the prominent model bacteria used for engineering biofuel production using the FA synthesis pathway. Our work identifies the FadR functional dual regulator as a global activator of almost all FA synthesis genes in E. coli. Because FadR also is the repressor of FA degradation, FadR acts both as a repressor and an activator of the two opposite pathways of FA degradation and synthesis. Our results show that there are still discoveries waiting to be made in the understanding of the genetic regulation of FA synthesis, even in the very well-known bacterium E. coli.
Collapse
|
28
|
The 40-residue insertion in Vibrio cholerae FadR facilitates binding of an additional fatty acyl-CoA ligand. Nat Commun 2015; 6:6032. [PMID: 25607896 DOI: 10.1038/ncomms7032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/04/2014] [Indexed: 11/08/2022] Open
Abstract
FadR is a master regulator of fatty acid metabolism and influences virulence in certain members of Vibrionaceae. Among FadR homologues of the GntR family, the Vibrionaceae protein is unusual in that it contains a C-terminal 40-residue insertion. Here we report the structure of Vibrio cholerae FadR (VcFadR) alone, bound to DNA, and in the presence of a ligand, oleoyl-CoA. Whereas Escherichia coli FadR (EcFadR) contains only one acyl-CoA-binding site in each monomer, crystallographic and calorimetric data indicate that VcFadR has two. One of the binding sites resembles that of EcFadR, whereas the other, comprised residues from the insertion, has not previously been observed. Upon ligand binding, VcFadR undergoes a dramatic conformational change that would more fully disrupt DNA binding than EcFadR. These findings suggest that the ability to bind and respond to an additional ligand allows FadR from Vibrionaceae to function as a more efficient regulator.
Collapse
|
29
|
A new glimpse of FadR-DNA crosstalk revealed by deep dissection of the E. coli FadR regulatory protein. Protein Cell 2014; 5:928-39. [PMID: 25311842 PMCID: PMC4259882 DOI: 10.1007/s13238-014-0107-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/29/2014] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli (E. coli) FadR regulator plays dual roles in fatty acid metabolism, which not only represses the fatty acid degradation (fad) system, but also activates the unsaturated fatty acid synthesis pathway. Earlier structural and biochemical studies of FadR protein have provided insights into interplay between FadR protein with its DNA target and/or ligand, while the missing knowledge gap (esp. residues with indirect roles in DNA binding) remains unclear. Here we report this case through deep mapping of old E. coli fadR mutants accumulated. Molecular dissection of E. coli K113 strain, a fadR mutant that can grow on decanoic acid (C10) as sole carbon sources unexpectedly revealed a single point mutation of T178G in fadR locus (W60G in FadRk113). We also observed that a single genetically-recessive mutation of W60G in FadR regulatory protein can lead to loss of its DNA-binding activity, and thereby impair all the regulatory roles in fatty acid metabolisms. Structural analyses of FadR protein indicated that the hydrophobic interaction amongst the three amino acids (W60, F74 and W75) is critical for its DNA-binding ability by maintaining the configuration of its neighboring two β-sheets. Further site-directed mutagenesis analyses demonstrated that the FadR mutants (F74G and/or W75G) do not exhibit the detected DNA-binding activity, validating above structural reasoning.
Collapse
|
30
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
32
|
Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 2013; 195:3784-95. [PMID: 23772072 DOI: 10.1128/jb.00384-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability.
Collapse
|
33
|
Comparison of different approaches to activate the glyoxylate bypass in Escherichia coli K-12 for succinate biosynthesis during dual-phase fermentation in minimal glucose media. Biotechnol Lett 2012. [DOI: 10.1007/s10529-012-1108-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Park YW, Yeo HK, Lee JY. Crystallization and preliminary X-ray diffraction analysis of a fatty-acid metabolism regulatory protein, FadR, from Bacillus halodurans. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:975-7. [PMID: 22869136 DOI: 10.1107/s1744309112029508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/28/2012] [Indexed: 11/11/2022]
Abstract
FadR is an acyl-CoA-dependent transcription factor which regulates genes encoding proteins involved in fatty-acid degradation and synthesis in order to maintain lipid homeostasis. FadR from the alkaliphilic bacterium Bacillus halodurans was cloned and overexpressed in Escherichia coli. The FadR (Bh3102) protein from B. halodurans is composed of 195 amino-acid residues with a molecular mass of 22 378 Da. Crystals were obtained by the sitting-drop vapour-diffusion method and diffracted to 2.05 Å resolution. FadR was crystallized at 296 K using polyethylene glycol 3350 as a precipitant. The crystal belonged to the apparent trigonal space group P3(2)21, with unit-cell parameters a = b = 56.34, c = 199.73 Å. The Matthews coefficient and solvent content were estimated to be 2.0 Å(3) Da(-1) and 39.8%, respectively, assuming that the asymmetric unit contained two molecules of FadR, which was subsequently confirmed by molecular-replacement calculations.
Collapse
Affiliation(s)
- Young Woo Park
- Department of Life Science, Dongguk University-Seoul, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Republic of Korea
| | | | | |
Collapse
|
35
|
zhou Y, Huang H, Zhou P, Xie J. Molecular mechanisms underlying the function diversity of transcriptional factor IclR family. Cell Signal 2012; 24:1270-5. [PMID: 22382436 DOI: 10.1016/j.cellsig.2012.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/14/2012] [Indexed: 11/25/2022]
Abstract
The IclR family transcriptional factor is widespread and involves in diverse bacterial physio-pathological events, such as primary and secondary metabolism, virulence, quorum sensing, sporulation. Unlike other transcriptional factors which function as either activators or repressors, IclR can assume both role simutaneously. Its N-terminal domain possesses a helix-turn-helix DNA binding motif which can dimerize or tetramerize to bind target promoters, while the C-terminal domain is for the effector binding. The function of IclR varies with the effectors bound. Escherichia coli transcription factor IclR is the archetype of this family, which regulates the aceBAK operon responsible for the glyoxylate shunt. The sophisticated regulatory mechanisms underlying iclR was largely based on E. coli iclR. Information concerning the pathogen IclR, especially those of Mycobacterium tuberculosis is poor, and is pivotal to our understanding of its biology and development of new effective TB control measures.
Collapse
Affiliation(s)
- Yexin zhou
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | | | |
Collapse
|
36
|
Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus. J Bacteriol 2011; 193:6207-14. [PMID: 21908673 DOI: 10.1128/jb.05847-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in resistance to quinolones and β-lactams, such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional-profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold) genes. The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were the NorC (4-fold) and AbcA (6-fold) genes. Other categories of genes, such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time reverse transcription (RT)-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or downregulation by NorG. The norG mutant showed a 2-fold increase in resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus.
Collapse
|
37
|
Feng Y, Cronan JE. The Vibrio cholerae fatty acid regulatory protein, FadR, represses transcription of plsB, the gene encoding the first enzyme of membrane phospholipid biosynthesis. Mol Microbiol 2011; 81:1020-33. [PMID: 21771112 DOI: 10.1111/j.1365-2958.2011.07748.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycerol-3-phosphate (sn-glycerol-3-P, G3P) acyltransferase catalyses the first committed step in the biosynthesis of membrane phospholipids, the acylation of G3P to form 1-acyl G3P (lysophosphatidic acid). The paradigm G3P acyltransferase is the Escherichia coli plsB gene product which acylates position-1 of G3P using fatty acids in thioester linkage to either acyl carrier protein (ACP) or CoA as acyl donors. Although the E. coli plsB gene was discovered about 30 years ago, no evidence for transcriptional control of its expression has been reported. However A.E. Kazakov and co-workers (J Bacteriol 2009; 191: 52-64) reported the presence of a putative FadR binding site upstream of the candidate plsB genes of Vibrio cholerae and three other Vibrio species suggesting that plsB might be regulated by FadR, a GntR family transcription factor thus far known only to regulate fatty acid synthesis and degradation. We report that the V. cholerae plsB homologue restored growth of E. coli strain BB26-36 which is a G3P auxotroph due to an altered G3P acyltransferase activity. The plsB promoter was also mapped and the predicted FadR-binding palindrome was found to span positions -19 to -35, upstream of the transcription start site. Gel shift assays confirmed that both V. cholerae FadR and E. coli FadR bound the V. cholerae plsB promoter region and binding was reversed upon addition of long-chain fatty acyl-CoA thioesters. The expression level of the V. cholerae plsB gene was elevated two- to threefold in an E. coli fadR null mutant strain indicating that FadR acts as a repressor of V. cholerae plsB expression. In both E. coli and V. cholerae the β-galactosidase activity of transcriptional fusions of the V. cholerae plsB promoter to lacZ increased two- to threefold upon supplementation of growth media with oleic acid. Therefore, V. cholerae co-ordinates fatty acid metabolism with 1-acyl G3P synthesis.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
38
|
GntR family regulators of the pathogen of fish tuberculosis Mycobacterium marinum. Biochem Biophys Res Commun 2011; 410:780-5. [PMID: 21703231 DOI: 10.1016/j.bbrc.2011.06.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/08/2011] [Indexed: 11/24/2022]
Abstract
Mycobacterium marinum is a slow-growing pathogenic mycobacterium. It was first isolated by Aronson in 1926 from fish, fish mycobacteriosis or called fish tuberculosis is the common causative agent of bacterial disease in many species of freshwater and marine fish. M. marinum can infect wild fish, aquaculture and ornamental fish, and it has a close relative of the causative agent of human tuberculosis, Mycobacterium tuberculosis. The recently sequenced genome of M. marinum has been shown to contain several putative GntR regulators. This family named after gluconate regulator has a helix-turn-helix structure. Characterization of transcription regulators and their network is an important step towards the complete understanding of cellular physiology. The regulator of this family shares a similar and conserved N-terminal DNA-binding domain, but has a highly diverse C-terminal effector-binding and oligomerization domain. According to the heterogeneity, we classify the M. marinum GntR family to four subfamilies: FadR, HutC, MocR, and YtrA, and these regulators are encoded by 8, 3, 1 and 1 genes, respectively. Thus this study extends the annotation of M. marinum GntR family proteins, and can help to understand the pathogenic role of this family in M. marinum and facilitate future drug design against this pathogen.
Collapse
|
39
|
Kang Z, Du L, Kang J, Wang Y, Wang Q, Liang Q, Qi Q. Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2011; 102:6600-6604. [PMID: 21489786 DOI: 10.1016/j.biortech.2011.03.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.
Collapse
Affiliation(s)
- Zhen Kang
- State Key Laboratory of Microbial Technology, Life Science School, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | |
Collapse
|
40
|
Dellomonaco C, Rivera C, Campbell P, Gonzalez R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol 2010; 76:5067-78. [PMID: 20525863 PMCID: PMC2916504 DOI: 10.1128/aem.00046-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/25/2010] [Indexed: 01/08/2023] Open
Abstract
Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products.
Collapse
Affiliation(s)
- Clementina Dellomonaco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Carlos Rivera
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Paul Campbell
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| |
Collapse
|
41
|
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Engineering Escherichia coli for an efficient aerobic fermentation platform. J Biotechnol 2009; 144:58-63. [DOI: 10.1016/j.jbiotec.2009.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/20/2009] [Accepted: 06/13/2009] [Indexed: 11/22/2022]
|
43
|
Feng Y, Cronan JE. A new member of the Escherichia coli fad regulon: transcriptional regulation of fadM (ybaW). J Bacteriol 2009; 191:6320-8. [PMID: 19684132 PMCID: PMC2753046 DOI: 10.1128/jb.00835-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 08/09/2009] [Indexed: 11/20/2022] Open
Abstract
Recently, Nie and coworkers (L. Nie, Y. Ren, A. Janakiraman, S. Smith, and H. Schulz, Biochemistry 47:9618-9626, 2008) reported a new Escherichia coli thioesterase encoded by the ybaW gene that cleaves the thioester bonds of inhibitory acyl-coenzyme A (CoA) by-products generated during beta-oxidation of certain unsaturated fatty acids. These authors suggested that ybaW expression might be regulated by FadR, the repressor of the fad (fatty acid degradation) regulon. We report mapping of the ybaW promoter and show that ybaW transcription responded to FadR in vivo. Moreover, purified FadR bound to a DNA sequence similar to the canonical FadR binding site located upstream of the ybaW coding sequence and was released from the promoter upon the addition of long-chain acyl-CoA thioesters. We therefore propose the designation fadM in place of ybaW. Although FadR regulation of fadM expression had the pattern typical of fad regulon genes, its modulation by the cyclic AMP (cAMP) receptor protein-cAMP complex (CRP-cAMP) global regulator was the opposite of that normally observed. CRP-cAMP generally acts as an activator of fad gene expression, consistent with the low status of fatty acids as carbon sources. However, glucose growth stimulated fadM expression relative to acetate growth, as did inactivation of CRP-cAMP, indicating that the complex acts as a negative regulator of this gene. The stimulation of fadM expression seen upon deletion of the gene encoding adenylate cyclase (Deltacya) was reversed by supplementation of the growth medium with cAMP. Nie and coworkers also reported that growth on a conjugated linoleic acid isomer yields much higher levels of FadM thioesterase activity than does growth on oleic acid. In contrast, we found that the conjugated linoleic acid isomer was only a weak inducer of fadM expression. Although the gene is not essential for growth, the high basal level of fadM expression under diverse growth conditions suggests that the encoded thioesterase has functions in addition to beta-oxidation.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
44
|
Regulation of fatty acid metabolism by FadR is essential for Vibrio vulnificus to cause infection of mice. J Bacteriol 2008; 190:7633-44. [PMID: 18835990 DOI: 10.1128/jb.01016-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the DeltafadR mutation was complemented in trans with the wild-type gene. Further characterization of the DeltafadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the DeltafadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.
Collapse
|
45
|
Comparative genomics of regulation of fatty acid and branched-chain amino acid utilization in proteobacteria. J Bacteriol 2008; 191:52-64. [PMID: 18820024 DOI: 10.1128/jb.01175-08] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria can use branched-chain amino acids (ILV, i.e., isoleucine, leucine, valine) and fatty acids (FAs) as sole carbon and energy sources converting ILV into acetyl-coenzyme A (CoA), propanoyl-CoA, and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR, and GntR families binding to 11 distinct DNA motifs. The ILV degradation genes in gamma- and betaproteobacteria are regulated mainly by a novel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species); in addition, the TetR-type regulator LiuQ was identified in some betaproteobacteria (eight species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gammaproteobacteria (34 species), PsrA in gamma- and betaproteobacteria (45 species), FadP in betaproteobacteria (14 species), and LiuR orthologs in alphaproteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from functional and evolutionary points of view.
Collapse
|
46
|
Rahman M, Hasan MR, Shimizu K. Growth phase-dependent changes in the expression of global regulatory genes and associated metabolic pathways in Escherichia coli. Biotechnol Lett 2008; 30:853-60. [DOI: 10.1007/s10529-007-9621-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 11/23/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
|
47
|
Abstract
In Escherichia coli, the main player in transcription regulation of fatty acid metabolism is the FadR protein, which is involved in negative regulation of fatty acid degradation and in positive and negative regulation of the cellular processes related to it, as well as in positive regulation of the biosynthesis of unsaturated fatty acids in a concerted manner with negative regulation of FabR. On the other hand, Bacillus subtilis possesses two global transcriptional regulators, FadR (YsiA) and FapR. B. subtilis FadR represses fatty acid degradation, whereas FapR represses almost all the processes in the biosynthesis of saturated fatty acids and phospholipids. Furthermore, Streptococcus pneumoniae FabT represses the genes of fatty acid biosynthesis that are clustered in its genome. Long-chain acyl-CoAs appear to be metabolic signals for fatty acid degradation by bacteria in general, and antagonize the FadR protein from either E. coli or B. subtilis. However, malonyl-CoA is a metabolic signal for fatty acid and phospholipid biosynthesis by Gram-positive low-GC bacteria, and it antagonizes FapR. These would be the primary aspects for understanding the elaborate and complex regulation of fatty acid metabolism in bacteria to maintain membrane lipid homeostasis.
Collapse
Affiliation(s)
- Yasutaro Fujita
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama 729-0292, Japan.
| | | | | |
Collapse
|
48
|
Lorca GL, Ezersky A, Lunin VV, Walker JR, Altamentova S, Evdokimova E, Vedadi M, Bochkarev A, Savchenko A. Glyoxylate and Pyruvate Are Antagonistic Effectors of the Escherichia coli IclR Transcriptional Regulator. J Biol Chem 2007; 282:16476-91. [PMID: 17426033 DOI: 10.1074/jbc.m610838200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli isocitrate lyase regulator (IclR) regulates the expression of the glyoxylate bypass operon (aceBAK). Founding member of a large family of common fold transcriptional regulators, IclR comprises a DNA binding domain that interacts with the operator sequence and a C-terminal domain (C-IclR) that binds a hitherto unknown small molecule. We screened a chemical library of more than 150 metabolic scaffolds using a high-throughput protein stability assay to identify molecules that bind IclR and then tested the active compounds in in vitro assays of operator binding. Glyoxylate and pyruvate, identified by this method, bound the C-IclR domain with KD values of 0.9+/-0.2 and 156.2+/-7.9 microM, as defined by isothermal titration calorimetry. Both compounds altered IclR interactions with operator DNA in electrophoretic mobility shift assays but showed an antagonistic effect. Glyoxylate disrupted the formation of the IclR/operator complex in vitro by favoring the inactive dimeric state of the protein, whereas pyruvate increased the binding of IclR to the aceBAK promoter by stabilizing the active tetrameric form of the protein. Structures of the C-IclR domain alone and in complex with each effector were determined at 2.3 A, confirming the binding of both molecules in the effector recognition site previously characterized for the other representative of the family, the E. coli AllR regulator. Site-directed mutagenesis demonstrated the importance of hydrophobic patch formed by Met-146, Leu-154, Leu-220, and Leu-143 in interactions with effector molecules. In general, our strategy of combining chemical screens with functional assays and structural studies has uncovered two small molecules with antagonistic effects that regulate the IclR-dependent transcription of the aceBAK operon.
Collapse
Affiliation(s)
- Graciela L Lorca
- Banting and Best Department of Medical Research, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rahman M, Hasan MR, Oba T, Shimizu K. Effect of rpoS gene knockout on the metabolism of Escherichia coli during exponential growth phase and early stationary phase based on gene expressions, enzyme activities and intracellular metabolite concentrations. Biotechnol Bioeng 2006; 94:585-95. [PMID: 16511888 DOI: 10.1002/bit.20858] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The RNA polymerase sigma factor, encoded by rpoS gene, controls the expression of a large number of genes in Escherichia coli under stress conditions. The present study investigated the growth characteristics and metabolic pathways of rpoS gene knockout mutant of E. coli growing in LB media under aerobic condition. The analyses were made based on gene expressions obtained by DNA microarray and RT-PCR, enzyme activities and intracellular metabolite concentrations at the exponential and early stationary phases of growth. Although the glucose utilization pattern of the mutant was similar to the parent strain, the mutant failed to utilize acetate throughout the cultivation period. Microarray data indicated that the expression levels of several important genes of acetate metabolism such as acs, aceAB, cysDEK, fadR, etc. were significantly altered in the absence of rpoS gene. Interestingly, there was an increased activity of TCA cycle during the exponential growth phase, which was gradually diminished at the onset of stationary phase. Moreover, rpoS mutation had profound effect on the expression of several other genes of E. coli metabolic pathways that were not described earlier. The changes in the gene expressions, enzyme activities and intracellular metabolite concentrations of the rpoS mutant are discussed in details with reference to the major metabolic pathways of E. coli.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | |
Collapse
|
50
|
Iram SH, Cronan JE. The beta-oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent. J Bacteriol 2006; 188:599-608. [PMID: 16385050 PMCID: PMC1347308 DOI: 10.1128/jb.188.2.599-608.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Based on its genome sequence, the pathway of beta-oxidative fatty acid degradation in Salmonella enterica serovar Typhimurium LT2 has been thought to be identical to the well-characterized Escherichia coli K-12 system. We report that wild-type strains of S. enterica grow on decanoic acid, whereas wild-type E. coli strains cannot. Mutant strains (carrying fadR) of both organisms in which the genes of fatty acid degradation (fad) are expressed constitutively are readily isolated. The S. enterica fadR strains grow more rapidly than the wild-type strains on decanoic acid and also grow well on octanoic and hexanoic acids (which do not support growth of wild-type strains). By contrast, E. coli fadR strains grow well on decanoic acid but grow only exceedingly slowly on octanoic acid and fail to grow at all on hexanoic acid. The two wild-type organisms also differed in the ability to grow on oleic acid when FadR was overexpressed. Under these superrepression conditions, E. coli failed to grow, whereas S. enterica grew well. Exchange of the wild-type fadR genes between the two organisms showed this to be a property of S. enterica rather than of the FadR proteins per se. This difference in growth was attributed to S. enterica having higher cytosolic levels of the inducing ligands, long-chain acyl coenzyme As (acyl-CoAs). The most striking results were the differences in the compositions of CoA metabolites of strains grown with octanoic acid or oleic acid. S. enterica cleanly converted all of the acid to acetyl-CoA, whereas E. coli accumulated high levels of intermediate-chain-length products. Exchange of homologous genes between the two organisms showed that the S. enterica FadE and FadBA enzymes were responsible for the greater efficiency of beta-oxidation relative to that of E. coli.
Collapse
Affiliation(s)
- Surtaj Hussain Iram
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, IL 61801, USA
| | | |
Collapse
|