1
|
Sun Y, Su X, Zhao L, Sun T, Liu W. Carbon metabolism of a novel isolate from Lacticaseibacillus rhamnosus Probio-M9 derived through space mutant. J Appl Microbiol 2024; 135:lxae205. [PMID: 39152088 DOI: 10.1093/jambio/lxae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/07/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
AIMS Carbon source is a necessary nutrient for bacterial strain growth. In industrial production, the cost of using different carbon sources varies greatly. Moreover, the complex environment in space may cause metabolic a series of changes in the strain, and this method has been successfully applied in some basic research. To date, space mutagenesis is still limited number of studies, particularly in carbon metabolism of probiotics. METHODS AND RESULTS HG-R7970-41 was isolated from bacterium suspension (Probio-M9) after space flight, which can produce capsular polysaccharide after space mutagenesis. Phenotype Microarray (PM) was used to evaluated the metabolism of HG-R7970-41 in 190 single carbon sources. RNA sequencing and total protein identification of two strains revealed their different carbon metabolism mechanisms. PM results demonstrated the metabolism of 10 carbon sources were different between Probio-M9 and HG-R7970-41. Transcriptomic and proteomic analyses revealed that this change in carbon metabolism of HG-R7970-41 mainly related to changes in phosphorylation and the glycolysis pathway. Based on the metabolic mechanism of different carbon sources and related gene cluster analysis, we found that the final metabolic activities of HG-R7970-41 and Probio-M9 were mainly regulated by PTS-specific membrane embedded permease, carbohydrate kinase and two rate-limiting enzymes (phosphofructokinase and pyruvate kinase) in the glycolysis pathway. The expanded culture test also confirmed that HG-R7970-41 had different metabolic characteristics from original strain. CONCLUSIONS These results suggested that space environment could change carbon metabolism of Probio-M9. The new isolate (HG-R7970-41) showed a different carbon metabolism pattern from the original strain mainly by the regulation of two rate-limiting enzymes.
Collapse
Affiliation(s)
- Yue Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
- College of Food Science and Technology, Wuhan Business University, Wuhan, Hubei province, 430056, China
| | - Xin Su
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Lixia Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Wenjun Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| |
Collapse
|
2
|
Zheng L, Liu M, Sun J, Wu B, He B. Sodium ions activated phosphofructokinase leading to enhanced D-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent. Appl Microbiol Biotechnol 2017; 101:3677-3687. [PMID: 28190098 DOI: 10.1007/s00253-017-8120-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/20/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
Abstract
Sporolactobacillus inulinus is a superior D-lactic acid-producing bacterium and proposed species for industrial production. The major pathway for D-lactic acid biosynthesis, glycolysis, is mainly regulated via the two irreversible steps catalyzed by the allosteric enzymes, phosphofructokinase (PFK) and pyruvate kinase. The activity level of PFK was significantly consistent with the cell growth and D-lactic acid production, indicating its vital role in control and regulation of glycolysis. In this study, the ATP-dependent PFK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. The PFK was allosterically activated by both GDP and ADP and inhibited by phosphoenolpyruvate; the addition of activators could partly relieve the inhibition by phosphoenolpyruvate. Furthermore, monovalent cations could enhance the activity, and Na+ was the most efficient one. Considering this kind activation, NaOH was investigated as the neutralizer instead of the traditional neutralizer CaCO3. In the early growth stage, the significant accelerated glucose consumption was achieved in the NaOH case probably for the enhanced activity of Na+-activated PFK. Using NaOH as the neutralizer at pH 6.5, the fermentation time was greatly shortened about 22 h; simultaneously, the glucose consumption rate and the D-lactic acid productivity were increased by 34 and 17%, respectively. This probably contributed to the increased pH and Na+-promoted activity of PFK. Thus, fermentations by S. inulinus using the NaOH neutralizer provide a green and highly efficient D-lactic acid production with easy subsequent purification.
Collapse
Affiliation(s)
- Lu Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.,State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Mingqing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing, Jiangsu, 210042, China
| | - Jiaduo Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China. .,School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211816, China.
| |
Collapse
|
3
|
Zhai Z, An H, Wang G, Luo Y, Hao Y. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid. Sci Rep 2015; 5:17024. [PMID: 26581248 PMCID: PMC4652205 DOI: 10.1038/srep17024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/23/2015] [Indexed: 12/17/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Haoran An
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guohong Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science &Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Li C, Sun J, Qi X, Liu L. NaCl stress impact on the key enzymes in glycolysis from Lactobacillus bulgaricus during freeze-drying. Braz J Microbiol 2015; 46:1193-9. [PMID: 26691481 PMCID: PMC4704629 DOI: 10.1590/s1517-838246420140595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
Abstract
The viability of Lactobacillus bulgaricus in freeze-drying is of significant commercial interest to dairy industries. In the study, L.bulgaricus demonstrated a significantly improved (p < 0.05) survival rate during freeze-drying when subjected to a pre-stressed period under the conditions of 2% (w/v) NaCl for 2 h in the late growth phase. The main energy source for the life activity of lactic acid bacteria is related to the glycolytic pathway. To investigate the phenomenon of this stress-related viability improvement in L. bulgaricus, the activities and corresponding genes of key enzymes in glycolysis during 2% NaCl stress were studied. NaCl stress significantly enhanced (p < 0.05) glucose utilization. The activities of glycolytic enzymes (phosphofructokinase, pyruvate kinase, and lactate dehydrogenase) decreased during freeze-drying, and NaCl stress were found to improve activities of these enzymes before and after freeze-drying. However, a transcriptional analysis of the corresponding genes suggested that the effect of NaCl stress on the expression of the pfk2 gene was not obvious. The increased survival of freeze-dried cells of L. bulgaricus under NaCl stress might be due to changes in only the activity or translation level of these enzymes in different environmental conditions but have no relation to their mRNA transcription level.
Collapse
Affiliation(s)
- Chun Li
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, China
| | - Jinwei Sun
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, China
| | - Xiaoxi Qi
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, China
| | - Libo Liu
- Ministry of Education, College of Food Science, Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant Staphylococcus aureus. Biochemistry 2010; 49:7733-47. [PMID: 20707314 DOI: 10.1021/bi100780t] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Novel antimicrobial targets are urgently needed to overcome rising antibiotic resistance of important human pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Here we report the essentiality and kinetic properties of MRSA pyruvate kinase (PK). Targetron-mediated gene disruption demonstrated PK is essential for S. aureus growth and survival, suggesting that this protein may be a potential drug target. The presence of the pfk (6-phosphofructokinase)-pyk operon in MRSA252, and the nonessential nature of PFK shown by targetron, further emphasized the essential role of PK in cell viability. The importance of PK in bacterial growth was confirmed by showing that its enzymatic activity peaked during the logarithmic phase of S. aureus growth. PK from Staphylococcus and several other species of bacteria have an extra C-terminal domain (CT) containing a phosphoenolpyruvate (PEP) binding motif. To elucidate the possible structure and function of this sequence, the quaternary structures and kinetic properties of the full-length MRSA PK and truncated MRSA PK lacking the CT domain were characterized. Our results showed that (1) MRSA PK is an allosteric enzyme with homotetramer architecture activated by AMP or ribose 5-phosphate (R5P), but not by fructose 1,6-bisphosphate (FBP), which suggests a different mode of allosteric regulation when compared with human isozymes, (2) the CT domain is not required for the tetramerization of the enzyme; homotetramerization occurred in a truncated PK lacking the domain, (3) truncated enzyme exhibited high affinity toward both PEP and ADP and exhibited hyperbolic kinetics toward PEP in the presence of activators (AMP and R5P) consistent with kinetic properties of full-length enzyme, indicating that the CT domain is not required for substrate binding or allosteric regulation observed in the holoenzyme, (4) the kinetic efficiency (k(cat)/S(0.5)) of truncated enzyme was decreased by 24- and 16-fold, in ligand-free state, toward PEP and ADP, respectively, but was restored by 3-fold in AMP-bound state, suggesting that the sequence containing the CT domain (Gly(473)-Leu(585)) plays a substantial role in enzyme activity and comformational stability, and (5) full-length MRSA PK activity was stimulated at low concentrations of ATP (e.g., 1 mM) and inhibited by inorganic phosphate and high concentrations of FBP (10 mM) and ATP (e.g., >2.5 mM), whereas for truncated enzyme, stimulation at low concentrations of ATP was lost. These findings suggest that the CT domain is involved in maintaining the specificity of allosteric regulation of MRSA PK by AMP, R5P, and ATP. The CT extension also encodes a protein domain with homology to enzyme I of the Escherichia coli sugar-PTS system, suggesting that MRSA PK may also exert an important regulatory role in sugar transport metabolism. These findings yield new insights into MRSA PK function and mode of allosteric regulation which may aid in the development of clinically important drugs targeting this enzyme and further define the role of the extra C-terminal domain in modulating the enzyme's activity.
Collapse
Affiliation(s)
- Roya Zoraghi
- Division of Infectious Diseases, Department of Medicine, University of BritishColumbia, Vancouver,Britsih Columbia,CanadaV5Z3J5
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Asanuma N, Kanada K, Hino T. Molecular properties and transcriptional control of the phosphofructokinase and pyruvate kinase genes in a ruminal bacterium, Streptococcus bovis. Anaerobe 2008; 14:237-41. [DOI: 10.1016/j.anaerobe.2008.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 03/12/2008] [Accepted: 05/09/2008] [Indexed: 11/28/2022]
|
7
|
Ulrich R, Hughes T. A rapid procedure for isolating chromosomal DNA from Lactobacillus species and other Gram-positive bacteria. Lett Appl Microbiol 2008. [DOI: 10.1111/j.1472-765x.2001.00866.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Bossi A, Rinalducci S, Zolla L, Antonioli P, Righetti PG, Zapparoli G. Effect of tannic acid on Lactobacillus hilgardii analysed by a proteomic approach. J Appl Microbiol 2007; 102:787-95. [PMID: 17309629 DOI: 10.1111/j.1365-2672.2006.03118.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A contribution towards the elucidation of the mechanisms of tannins on bacteria growth inhibition, with particular focus on the interaction between tannins and bacterial proteins. METHODS AND RESULTS The interaction between tannic acid (TA) and Lactobacillus hilgardii, a wine spoilage bacterium, was investigated by a combination of physiologic and proteomic approaches. Growing tests were performed on medium supplemented with TA at concentrations ranging from 100 to 1000 mg l(-1) demonstrating the inhibitory effect of TA on the growth rate. Total proteins extracted from cells unexposed and exposed to TA were then analysed by 2D-electrophoresis and significant quantitative variations with a marked decrease of protein intensity upon TA exposure were observed. Most of the proteins, identified by ESI tandem Mass Spectrometry, were metabolic enzymes of different pathways, located in cytoplasm and membrane. CONCLUSIONS The effects of TA on cells are deduced by the involvement of metabolic enzymes, and functional proteins on the tannin-protein interaction. These results might be related to the altered functions of the cell metabolism. SIGNIFICANCE AND IMPACT OF THE STUDY The possible role of tannins in the inhibition of the bacterial survival and growth in a natural environment such as wine. A similar approach could be applied for evaluating the effects of tannins on food borne and pathogenic bacteria.
Collapse
Affiliation(s)
- A Bossi
- Department of Agricultural and Industrial Biotechnology, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Viana R, Pérez-Martínez G, Deutscher J, Monedero V. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA. Arch Microbiol 2005; 183:385-93. [PMID: 16075200 DOI: 10.1007/s00203-005-0003-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/05/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
In Lactobacillus casei BL23, phosphofructokinase activity was higher in cells utilizing sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The phosphofructokinase gene (pfk) was cloned from L. casei and shown to be clustered with the gene encoding pyruvate kinase (pyk). pfk and pyk genes are cotranscribed and induced upon growth on sugars transported by the PTS. Contrarily to the model proposed for Lactococcus lactis, where the global catabolite regulator protein (CcpA) is involved in PTS-induced transcription of pfk and pyk, a ccpA mutation resulted in a slight increase in pfk-pyk expression in L. casei. This weak regulation was evidenced by CcpA binding to a region of the pfk-pyk promoter which contained two cre sequences significantly deviated from the consensus. The PTS induction of pfk-pyk seems to be counteracted by the CcpA-mediated repression. Our results suggest that the need to accommodate the levels of pfk-pyk mRNA to the availability of sugars is fulfilled in L. casei by a PTS/CcpA-mediated signal transduction different from L. lactis.
Collapse
Affiliation(s)
- Rosa Viana
- Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
10
|
Purification and characterization of the pyruvate kinase of lactobacillus delbrueckii subsp. lactis. Int Dairy J 2002. [DOI: 10.1016/s0958-6946(02)00079-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Ulrich RL, Hughes TA. A rapid procedure for isolating chromosomal DNA from Lactobacillus species and other Gram-positive bacteria. Lett Appl Microbiol 2001; 32:52-6. [PMID: 11169042 DOI: 10.1046/j.1472-765x.2001.00866.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study describes a rapid procedure for the isolation of genomic DNA from various Gram-positive bacteria. Species tested included Lactobacillus delbrueckii subsp. lactis ATCC 4797, Lact. acidophilus N2, Staphylococcus aureus, Staph. epidermidis, Propionibacterium jensenii P126, Bacillus pumilus and Enterococcus faecalis. Our technique for chromosomal DNA isolation circumvents the need for phenol-chloroform extractions and caesium chloride gradients. Isolated DNA is consistently greater than 25 kb in size and can be used directly for subcloning, polymerase chain reaction amplification, restriction digestions and library construction.
Collapse
Affiliation(s)
- R L Ulrich
- Department of Microbiology and Molecular Medicine, Clemson University, Clemson, SC 29672, USA
| | | |
Collapse
|
12
|
Rechinger KB, Siegumfeldt H, Svendsen I, Jakobsen M. "Early" protein synthesis of Lactobacillus delbrueckii ssp. bulgaricus in milk revealed by [35S] methionine labeling and two-dimensional gel electrophoresis. Electrophoresis 2000; 21:2660-9. [PMID: 10949143 DOI: 10.1002/1522-2683(20000701)21:13<2660::aid-elps2660>3.0.co;2-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proteomes of exponentially growing and stationary cells of Lactobacillus delbrueckii ssp. bulgaricus grown in rich medium (MRS) were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE) and quantified after Coomassie staining. Stationary cells grown in MRS were inoculated in reconstituted skim milk, and "early" protein synthesis during the first 30 min of fermentation in milk was monitored by [35S]methionine labeling and 2-DE. In contrast to exponentially growing or stationary cells, the predominant "early" proteins were small (< 15 kDa) and of low pI (< 5.3). Quantification of the proteome of the "early" lag phase based on 47 "spots" revealed that only three "early" proteins accounted for more than 80% of the total label. They were identified as pI 4.7 and 4.9 isoforms of the heat-stable phosphoryl carrier protein (HPr) with 45.2 and 9.4% of total label, respectively, and an unknown protein called EPr1 ("early" protein 1) with 26.6% of total label. Although an N-terminal sequence of 19 amino acids was obtained, no homologs to EPr1 could be found. De novo synthesis of the 10 and 60 kDa heat shock proteins (GroES and GroEL) was considerably lower (0.04 and 0.9% of total label, respectively), indicating only low levels of stress. Synthesis of triosephosphate isomerase (Tpi) as marker for glycolytic enzymes reached only 0.08% of total label. Our results demonstrate that inoculation in milk, resulting in a change from glucose to lactose as carbon source, imposes only little need for synthesis of stress or glycolytic enzymes, as sufficient proteins are present in the stationary, MRS-grown cells. The high level of expression of the pI 4.7 isoform of HPr suggests a regulatory function of the presumed Ser-46 phosphorylated form of HPr.
Collapse
Affiliation(s)
- K B Rechinger
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
13
|
Schramm A, Siebers B, Tjaden B, Brinkmann H, Hensel R. Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J Bacteriol 2000; 182:2001-9. [PMID: 10715009 PMCID: PMC101911 DOI: 10.1128/jb.182.7.2001-2009.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyruvate kinase (PK; EC 2.7.1.40) of Thermoproteus tenax was purified to homogeneity, and its coding gene was cloned and expressed in Escherichia coli. It represents a homomeric tetramer with a molecular mass of 49 kDa per subunit. PK exhibits positive binding cooperativity with respect to phosphoenolpyruvate and metal ions such as Mg(2+) and Mn(2+). Heterotropic effects, as commonly found for PKs from bacterial and eucaryal sources, could not be detected. The enzyme does not depend on K(+) ions. Heterotrophically grown cells exhibit specific activity of PK four times higher than autotrophically grown cells. Since the mRNA level of the PK coding gene is also accordingly higher in heterotrophic cells, we conclude that the PK activity is adjusted to growth conditions mainly on the transcript level. The enzymic properties of the PK and the regulation of its expression are discussed with respect to the physiological framework given by the T. tenax-specific variant of the Embden-Meyerhof-Parnas pathway. T. tenax PK shows moderate overall sequence similarity (25 to 40% identity) to its bacterial and eucaryal pendants. Phylogenetic analyses of the known PK sequences result in a dichotomic tree topology that divides the enzymes into two major PK clusters, probably diverged by an early gene duplication event. The phylogenetic divergence is paralleled by a striking phenotypic differentiation of PKs: PKs of cluster I, which occur in eucaryal cytoplasm, some gamma proteobacteria, and low-GC gram-positive bacteria, are only active in the presence of fructose-1,6-bisphosphate or other phosphorylated sugars, whereas PKs of cluster II, found in various bacterial phyla, plastids, and in Archaea, show activity without effectors but are commonly regulated by the energy charge of the cell.
Collapse
Affiliation(s)
- A Schramm
- Department of Microbiology, Universität GH Essen, D-45117 Essen, Germany
| | | | | | | | | |
Collapse
|
14
|
Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH, Stülke J. Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3419-3429. [PMID: 10627040 DOI: 10.1099/00221287-145-12-3419] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis can utilize several sugars as single sources of carbon and energy. Many of these sugars are transported and concomitantly phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In addition to its role in sugar uptake, the PTS is one of the major signal transduction systems in B. subtilis. In this study, an analysis of the complete set of PTS proteins encoded within the B. subtilis genome is presented. Fifteen sugar-specific PTS permeases were found to be present and the functions of novel PTS permeases were studied based on homology to previously characterized permeases, analysis of the structure of the gene clusters in which the permease encoding genes are located and biochemical analysis of relevant mutants. Members of the glucose, sucrose, lactose, mannose and fructose/mannitol families of PTS permeases were identified. Interestingly, nine pairs of IIB and IIC domains belonging to the glucose and sucrose permease families are present in B. subtilis; by contrast only five Enzyme IIA(Glc)-like proteins or domains are encoded within the B. subtilis genome. Consequently, some of the EIIA(Glc)-like proteins must function in phosphoryl transfer to more than one IIB domain of the glucose and sucrose families. In addition, 13 PTS-associated proteins are encoded within the B. subtilis genome. These proteins include metabolic enzymes, a bifunctional protein kinase/phosphatase, a transcriptional cofactor and transcriptional regulators that are involved in PTS-dependent signal transduction. The PTS proteins and the auxiliary PTS proteins represent a highly integrated network that catalyses and simultaneously modulates carbohydrate utilization in this bacterium.
Collapse
Affiliation(s)
- Jonathan Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Steffi Bachem
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| | - Aiala Reizer
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Maryvonne Arnaud
- Unité de Biochimie Microbienne, D épartement des Biotechnologies, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France 3
| | - Milton H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA1
| | - Jörg Stülke
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik der Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany2
| |
Collapse
|
15
|
Wang X, Kemp RG. Identification of residues of Escherichia coli phosphofructokinase that contribute to nucleotide binding and specificity. Biochemistry 1999; 38:4313-8. [PMID: 10194349 DOI: 10.1021/bi982940q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The apparent affinity of phosphofructo-1-kinase (PFK) of Escherichia coli for ATP is at least 10 times higher than for other nucleotides. Mutagenesis was directed toward five residues that may interact with ATP: Y41, F76, R77, R82, and R111. Alanine at position 41 or 76 increased the apparent Km by 49- and 62-fold, respectively. Position 41 requires the presence of a large hydrophobic residue and is not restricted to aromatic rings. Tryptophan and, to a lesser extent, phenylalanine could substitute at position 76. None of the mutants at 41 or 76 showed a change in the preference for alternative purines, although F76W used CTP 3 times better than the wild type enzyme. Mutations of R77 suggested that the interaction was hydrophobic with no influence on nucleotide preference. Mutation of R82 to alanine or glutamic acid increased the apparent Km for ATP by more than 20-fold and lowered the kcat/Km with ATP more than 30-fold. However, these mutants had a higher kcat/Km than wild type for both GTP and CTP, reflecting a loss of substrate preference. A loss in preference is seen as well with R111A where the kcat/Km for ATP decreases by only 68%, but the kcat/Km with GTP increases more than 10-fold. Activities with ITP, CTP, and UTP are also higher than with the wild type enzyme. Arginine residues at positions 82 and 111 are important dictators of nucleoside triphosphate preference.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, The Chicago Medical School, Illinois 60064, USA
| | | |
Collapse
|
16
|
Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N. The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 1999; 96:2896-901. [PMID: 10077608 PMCID: PMC15866 DOI: 10.1073/pnas.96.6.2896] [Citation(s) in RCA: 854] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previously, we presented evidence that it is possible to predict functional coupling between genes based on conservation of gene clusters between genomes. With the rapid increase in the availability of prokaryotic sequence data, it has become possible to verify and apply the technique. In this paper, we extend our characterization of the parameters that determine the utility of the approach, and we generalize the approach in a way that supports detection of common classes of functionally coupled genes (e.g., transport and signal transduction clusters). Now that the analysis includes over 30 complete or nearly complete genomes, it has become clear that this approach will play a significant role in supporting efforts to assign functionality to the remaining uncharacterized genes in sequenced genomes.
Collapse
Affiliation(s)
- R Overbeek
- Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4844, USA.
| | | | | | | | | |
Collapse
|
17
|
Siebers B, Klenk HP, Hensel R. PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J Bacteriol 1998; 180:2137-43. [PMID: 9555897 PMCID: PMC107141 DOI: 10.1128/jb.180.8.2137-2143.1998] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Flux into the glycolytic pathway of most cells is controlled via allosteric regulation of the irreversible, committing step catalyzed by ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11), the key enzyme of glycolysis. In some organisms, the step is catalyzed by PPi-dependent PFK (PPi-PFK; EC 2.7.1.90), which uses PPi instead of ATP as the phosphoryl donor, conserving ATP and rendering the reaction reversible under physiological conditions. We have determined the enzymic properties of PPi-PFK from the anaerobic, hyperthermophilic archaeon Thermoproteus tenax, purified the enzyme to homogeneity, and sequenced the gene. The approximately 100-kDa PPi-PFK from T. tenax consists of 37-kDa subunits; is not regulated by classical effectors of ATP-PFKs such as ATP, ADP, fructose 2,6-bisphosphate, or metabolic intermediates; and shares 20 to 50% sequence identity with known PFK enzymes. Phylogenetic analyses of biochemically characterized PFKs grouped the enzymes into three monophyletic clusters: PFK group I represents only classical ATP-PFKs from Bacteria and Eucarya; PFK group II contains only PPi-PFKs from the genus Propionibacterium, plants, and amitochondriate protists; whereas group III consists of PFKs with either cosubstrate specificity, i.e., the PPi-dependent enzymes from T. tenax and Amycolatopsis methanolica and the ATP-PFK from Streptomyces coelicolor. Comparative analyses of the pattern of conserved active-site residues strongly suggest that the group III PFKs originally bound PPi as a cosubstrate.
Collapse
Affiliation(s)
- B Siebers
- FB 9 Mikrobiologie, Universität GH Essen, Germany.
| | | | | |
Collapse
|
18
|
Branny P, de la Torre F, Garel JR. An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 4):905-914. [PMID: 9579064 DOI: 10.1099/00221287-144-4-905] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.
Collapse
Affiliation(s)
- Pavel Branny
- Laboratoire d'Enzymologie et de Biochimie Structurales du CNRS, 91198 Gif-sur-Yvette, France
| | - Françoise de la Torre
- Laboratoire d'Enzymologie et de Biochimie Structurales du CNRS, 91198 Gif-sur-Yvette, France
| | - Jean-Renaud Garel
- Laboratoire d'Enzymologie et de Biochimie Structurales du CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|