1
|
Braesel J, Eustáquio AS. Heterologous expression of a putative ClpC chaperone gene leads to induction of a host metabolite. J BRAZIL CHEM SOC 2018; 30:499-508. [PMID: 33859447 DOI: 10.21577/0103-5053.20180234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Genome mining provides exciting opportunities for the discovery of natural products. However, in contrast to traditional bioassay-guided approaches, challenges of genome mining include poor or no expression of biosynthetic gene clusters (BGCs). Additionally, given that thousands of BGCs are now available through extensive genome sequencing, how does one select BGCs for discovery? Synthetic biology techniques can be used for BGC refactoring and activation, whereas resistance-gene-directed genome mining is a promising approach to discover bioactive natural products. Here we report the selection of a BGC by applying a resistance-gene-directed approach, cloning of the silent BGC from Micromonospora sp. B006, promoter exchange, and heterologous expression in Streptomyces coelicolor M1152. While we have yet to identify the encoded compound, we unexpectedly observed induction of a host metabolite, which we hypothesize is due to the presence of a ClpC chaperone gene in the BGC, suggesting that ClpC chaperones may be used for BGC activation.
Collapse
Affiliation(s)
- Jana Braesel
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Ave, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, 900 South Ashland Ave, Chicago, IL 60607, USA
| |
Collapse
|
2
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
3
|
Molière N, Hoßmann J, Schäfer H, Turgay K. Role of Hsp100/Clp Protease Complexes in Controlling the Regulation of Motility in Bacillus subtilis. Front Microbiol 2016; 7:315. [PMID: 27014237 PMCID: PMC4793158 DOI: 10.3389/fmicb.2016.00315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 11/16/2022] Open
Abstract
The Hsp100/Clp protease complexes of Bacillus subtilis ClpXP and ClpCP are involved in the control of many interconnected developmental and stress response regulatory networks, including competence, redox stress response, and motility. Here we analyzed the role of regulatory proteolysis by ClpXP and ClpCP in motility development. We have demonstrated that ClpXP acts on the regulation of motility by controlling the levels of the oxidative and heat stress regulator Spx. We obtained evidence that upon oxidative stress Spx not only induces the thiol stress response, but also transiently represses the transcription of flagellar genes. Furthermore, we observed that in addition to the known impact of ClpCP via the ComK/FlgM-dependent pathway, ClpCP also affects flagellar gene expression via modulating the activity and levels of the global regulator DegU-P. This adds another layer to the intricate involvement of Clp mediated regulatory proteolysis in different gene expression programs, which may allow to integrate and coordinate different signals for a better-adjusted response to the changing environment of B. subtilis cells.
Collapse
Affiliation(s)
- Noël Molière
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| | - Jörn Hoßmann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin Berlin, Germany
| | - Heinrich Schäfer
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität Hannover Hannover, Germany
| | - Kürşad Turgay
- Naturwissenschaftliche Fakultät, Institut für Mikrobiologie, Leibniz Universität HannoverHannover, Germany; Institut für Biologie-Mikrobiologie, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
4
|
MreB-Dependent Inhibition of Cell Elongation during the Escape from Competence in Bacillus subtilis. PLoS Genet 2015; 11:e1005299. [PMID: 26091431 PMCID: PMC4474612 DOI: 10.1371/journal.pgen.1005299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 02/02/2023] Open
Abstract
During bacterial exponential growth, the morphogenetic actin-like MreB proteins form membrane-associated assemblies that move processively following trajectories perpendicular to the long axis of the cell. Such MreB structures are thought to scaffold and restrict the movement of peptidoglycan synthesizing machineries, thereby coordinating sidewall elongation. In Bacillus subtilis, this function is performed by the redundant action of three MreB isoforms, namely MreB, Mbl and MreBH. mreB and mbl are highly transcribed from vegetative promoters. We have found that their expression is maximal at the end of exponential phase, and rapidly decreases to a low basal level upon entering stationary phase. However, in cells developing genetic competence, a stationary phase physiological adaptation, expression of mreB was specifically reactivated by the central competence regulator ComK. In competent cells, MreB was found in complex with several competence proteins by in vitro pull-down assays. In addition, it co-localized with the polar clusters formed by the late competence peripheral protein ComGA, in a ComGA-dependent manner. ComGA has been shown to be essential for the inhibition of cell elongation characteristic of cells escaping the competence state. We show here that the pathway controlling this elongation inhibition also involves MreB. Our findings suggest that ComGA sequesters MreB to prevent cell elongation and therefore the escape from competence. In bacterial cells, like in their eukaryotic counterparts, precise spatiotemporal localization of proteins is critical for their cellular function. This study shows that the expression and the localization of the bacterial actin-like MreB protein are growth phase-dependent. During exponential growth, we previously showed that MreB, together with other morphogenetic factors, forms discrete assemblies that move in a directed manner along peripheral tracks. Here, we demonstrate that in cells that develop genetic competence during stationary phase, transcription of mreB is specifically activated and MreB relocalizes to the cell poles. Our findings suggest a model in which MreB sequestration by the late competence protein ComGA prevents cell elongation during the escape from competence.
Collapse
|
5
|
The Staphylococcus aureus thiol/oxidative stress global regulator Spx controls trfA, a gene implicated in cell wall antibiotic resistance. Antimicrob Agents Chemother 2013; 57:3283-92. [PMID: 23629700 DOI: 10.1128/aac.00220-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
S. aureus combats cell wall antibiotic stress by altered gene expression mediated by various environmental signal sensors. In this study, we examined the transcriptional regulation of trfA, a gene related to mecA of Bacillus subtilis encoding an adaptor protein implicated in multiple roles, notably, proteolysis and genetic competence. Despite strong sequence similarity to B. subtilis mecA, the function of S. aureus trfA remains largely unexplored; however, its deletion leads to almost complete loss of resistance to oxacillin and glycopeptide antibiotics in glycopeptide-intermediate S. aureus (GISA) derivatives of methicillin-susceptible or methicillin-resistant S. aureus (MRSA) clinical or laboratory isolates. Northern blot analysis and 5' rapid amplification of cDNA ends (RACE) mapping revealed that trfA was expressed monocistronically by three promoters. Cell wall-active antibiotic exposure led to both increased trfA transcription and enhanced steady-state TrfA levels. trfA promoter regulation was not dependent upon the cell wall stress sentinel VraSR and other sensory stress systems, such as GraRS, WalkRK, Stk1/Stp1, and SigB. Notably, we discovered that the global oxidative-stress regulator Spx controlled trfA transcription. This finding was also confirmed using a strain with enhanced Spx levels resulting from a defect in yjbH, encoding a Spx-interacting protein governing Spx proteolytic degradation. A cohort of clinical GISA strains revealed significant steady-state upregulation of trfA compared to corresponding susceptible parental strains, further supporting a role for trfA in antibiotic resistance. These data provide strong evidence for a link between cell wall antibiotic stress and evoked responses mediated by an oxidative-stress sensor.
Collapse
|
6
|
Abstract
The soil-dwelling bacterium Bacillus subtilis is widely used as a model organism to study the Gram-positive branch of Bacteria. A variety of different developmental pathways, such as endospore formation, genetic competence, motility, swarming and biofilm formation, have been studied in this organism. These processes are intricately connected and regulated by networks containing e.g. alternative sigma factors, two-component systems and other regulators. Importantly, in some of these regulatory networks the activity of important regulatory factors is controlled by proteases. Furthermore, together with chaperones, the same proteases constitute the cellular protein quality control (PQC) network, which plays a crucial role in protein homeostasis and stress tolerance of this organism. In this review, we will present the current knowledge on regulatory and general proteolysis in B. subtilis and discuss its involvement in developmental pathways and cellular stress management.
Collapse
Affiliation(s)
- Noël Molière
- Institut für Mikrobiologie, Leibniz Universität Hannover, Schneiderberg 50, 30167, Hannover, Germany,
| | | |
Collapse
|
7
|
Prepiak P, Defrancesco M, Spadavecchia S, Mirouze N, Albano M, Persuh M, Fujita M, Dubnau D. MecA dampens transitions to spore, biofilm exopolysaccharide and competence expression by two different mechanisms. Mol Microbiol 2011; 80:1014-30. [PMID: 21435029 PMCID: PMC3102577 DOI: 10.1111/j.1365-2958.2011.07627.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adapter protein MecA targets the transcription factor ComK for degradation by the ClpC/ClpP proteolytic complex, thereby negatively regulating competence in Bacillus subtilis. Here we show that MecA also decreases the frequency of transitions to the sporulation pathway as well as the expression of eps, which encodes synthesis of the biofilm matrix exopolysaccharide. We present genetic and biophysical evidence that MecA downregulates eps expression and spore formation by directly interacting with Spo0A. MecA does not target Spo0A for degradation, and apparently does not prevent the phosphorylation of Spo0A. We propose that it inhibits the transcriptional activity of Spo0A∼P by direct binding. Thus, in its interaction with Spo0A, MecA differs from its role in the regulation of competence where it targets ComK for degradation. MecA acts as a general buffering protein for development, acting by two distinct mechanisms to regulate inappropriate transitions to energy-intensive pathways.
Collapse
Affiliation(s)
| | - Melissa Defrancesco
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, 225 Warren St., Newark, NJ 07103
| | | | | | | | | | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77201-5001
| | - D. Dubnau
- Corresponding author: , Telephone: 973-854-3400, Fax: 973-854-3453
| |
Collapse
|
8
|
Hamze K, Julkowska D, Autret S, Hinc K, Nagorska K, Sekowska A, Holland IB, Séror SJ. Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology (Reading) 2009; 155:398-412. [DOI: 10.1099/mic.0.021477-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Highly branched dendritic swarming of B. subtilis on synthetic B-medium involves a developmental-like process that is absolutely dependent on flagella and surfactin secretion. In order to identify new swarming genes, we targeted the two-component ComPA signalling pathway and associated global regulators. In liquid cultures, the histidine kinase ComP, and the response regulator ComA, respond to secreted pheromones ComX and CSF (encoded by phrC) in order to control production of surfactin synthases and ComS (competence regulator). In this study, for what is believed to be the first time, we established that distinct early stages of dendritic swarming can be clearly defined, and that they are amenable to genetic analysis. In a mutational analysis producing several mutants with distinctive phenotypes, we were able to assign the genes sfp (activation of surfactin synthases), comA, abrB and codY (global regulators), hag (flagellin), mecA and yvzB (hag-like), and swrB (motility), to the different swarming stages. Surprisingly, mutations in genes comPX, comQ, comS, rapC and oppD, which are normally indispensable for import of CSF, had only modest effects, if any, on swarming and surfactin production. Therefore, during dendritic swarming, surfactin synthesis is apparently subject to novel regulation that is largely independent of the ComXP pathway; we discuss possible alternative mechanisms for driving srfABCD transcription. We showed that the phrC mutant, largely independent of any effect on surfactin production, was also, nevertheless, blocked early in swarming, forming stunted dendrites, with abnormal dendrite initiation morphology. In a mixed swarm co-inoculated with phrC sfp+
and phrC+ sfp (GFP), an apparently normal swarm was produced. In fact, while initiation of all dendrites was of the abnormal phrC type, these were predominantly populated by sfp cells, which migrated faster than the phrC cells. This and other results indicated a specific migration defect in the phrC mutant that could not be trans-complemented by CSF in a mixed swarm. CSF is the C-terminal pentapeptide of the surface-exposed PhrC pre-peptide and we propose that the residual PhrC 35 aa residue peptide anchored in the exterior of the cytoplasmic membrane has an apparently novel extracellular role in swarming.
Collapse
Affiliation(s)
- Kassem Hamze
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Daria Julkowska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Sabine Autret
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Krzysztof Hinc
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Krzysztofa Nagorska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Agnieszka Sekowska
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - I. Barry Holland
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| | - Simone J. Séror
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 409, 91405 Orsay Cedex, France
| |
Collapse
|
9
|
Identification by genomic and genetic analysis of two new genes playing a key role in intermediate glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2008; 53:903-11. [PMID: 19104009 DOI: 10.1128/aac.01287-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Endogenous, low-level glycopeptide resistance in Staphylococcus aureus results from multifactorial genetic changes. Comparative genomic hybridization analysis revealed the specific deletion of a 1.8-kb segment encompassing two adjacent open reading frames (ORFs) of unknown function in a teicoplanin-susceptible revertant (strain 14-4rev) compared to the sequence of its isogenic, teicoplanin-resistant parental strain, strain 14-4. This provocative finding prompted us to perform a detailed genetic analysis of the contribution of this genomic segment to glycopeptide resistance. Despite repeated efforts in our laboratory, 14-4 and 14-4rev have proven refractory to most genetic manipulations. To circumvent this difficulty, we evaluated the contribution of both putative ORFs (designated teicoplanin resistance factors trfA and trfB) on teicoplanin resistance in a different, genetically tractable background. Genetic analysis showed that single or double trfA and/or trfB mutations abolished teicoplanin resistance in two independent teicoplanin-resistant derivatives of NCTC8325 strain ISP794 generated by two-step passages with the drug. The frequency of teicoplanin-resistant mutants was markedly decreased by the absence of trfAB in the teicoplanin-susceptible ISP794 background. Nevertheless, a low rate of teicoplanin-resistant mutants was selected from ISP794 trfAB, thus indicating an additional contribution of trfAB-independent pathways in the emergence of low-level glycopeptide resistance. Further experiments performed with clinical glycopeptide-intermediate S. aureus isolate NRS3 indicated that the trfAB mutation could affect not only teicoplanin resistance but also vancomycin and oxacillin resistance. In conclusion, our study demonstrates the key role of two novel loci in endogenous, low-level glycopeptide resistance in S. aureus whose precise molecular functions warrant further investigation.
Collapse
|
10
|
Szarka K, Temesvári P, Kerekes A, Tege A, Repkény A. Neonatal pneumonia caused by Trichomonas vaginalis. Acta Microbiol Immunol Hung 2002; 49:15-9. [PMID: 12073821 DOI: 10.1556/amicr.49.2002.1.2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The authors present two cases of newborn babies infected by Trichomonas vaginalis (hereafter referred to as T. vaginalis) and suffering from severe congenital breathing difficulties and needing artificial respiration. Microscopic examination of the tracheal discharge revealed characteristically moving, flagellated, pear-shaped unicellular organisms. Cultures on CPLM medium proved the presence of T. vaginalis. During pregnancy the mothers' clinical status was negative and both of them mentioned leukorrhoea of changing intensity. They were regularly involved in antenatal care. The infection caused by T. vaginalis could be detected in the two mothers later by culture procedures.
Collapse
Affiliation(s)
- K Szarka
- Laboratory of Microbiology, National Institute of Health, Bács-Kiskun County, Kecskemét (NPHMOS), PO Box 119, H-6001 Kecskemét, Hungary
| | | | | | | | | |
Collapse
|
11
|
Badger JL, Young BM, Darwin AJ, Miller VL. Yersinia enterocolitica ClpB affects levels of invasin and motility. J Bacteriol 2000; 182:5563-71. [PMID: 10986262 PMCID: PMC111002 DOI: 10.1128/jb.182.19.5563-5571.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Accepted: 07/13/2000] [Indexed: 11/20/2022] Open
Abstract
Expression of the Yersinia enterocolitica inv gene is dependent on growth phase and temperature. inv is maximally expressed at 23 degrees C in late-exponential- to early-stationary-phase cultures. We previously reported the isolation of a Y. enterocolitica mutant (JB1A8v) that shows a decrease in invasin levels yet is hypermotile when grown at 23 degrees C. JB1A8v has a transposon insertion within uvrC. Described here is the isolation and characterization of a clone that suppresses these mutant phenotypes of the uvrC mutant JB1A8v. This suppressing clone encodes ClpB (a Clp ATPase homologue). The Y. enterocolitica ClpB homologue is 30 to 40% identical to the ClpB proteins from various bacteria but is 80% identical to one of the two ClpB homologues of Yersinia pestis. A clpB::TnMax2 insertion mutant (JB69Qv) was constructed and determined to be deficient in invasin production and nonmotile when grown at 23 degrees C. Analysis of inv and fleB (flagellin gene) transcript levels in JB69Qv suggested that ClpB has both transcriptional and posttranscriptional effects. In contrast, a clpB null mutant, BY1v, had no effect on invasin levels or motility. A model accounting for these observations is presented.
Collapse
Affiliation(s)
- J L Badger
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
12
|
Charpentier E, Novak R, Tuomanen E. Regulation of growth inhibition at high temperature, autolysis, transformation and adherence in Streptococcus pneumoniae by clpC. Mol Microbiol 2000; 37:717-26. [PMID: 10972795 DOI: 10.1046/j.1365-2958.2000.02011.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ClpC ATPase is a subfamily of HSP100/Clp molecular chaperones-regulators of proteolysis. By screening a library of loss of function mutants for the ability to survive treatment with penicillin, we identified the gene clpC. The corresponding protein was identified as a ClpC ATPase, sharing strong peptide sequence identity with ClpC of Bacillus subtilis, Listeria monocytogenes and Lactococcus lactis. Northern blot experiments showed that expression of clpC was induced in response to high temperature (40-42 degrees C) versus 37 degrees C, suggesting that ClpC is a heat shock protein. Insertional duplication mutagenesis of clpC resulted in increased tolerance to high temperature; a result in contrast to other bacterial Clp proteases. The clpC-deficient mutant formed long chains and failed to undergo lysis after treatment with penicillin or vancomycin. The effect of the clpC mutation extended to deficiency of adherence to the human type II alveolar cells. Finally, the clpC disruption resulted in decreased genetic transformation. Western blot analysis demonstrated that the mutant failed to express pneumolysin and the choline-binding proteins LytA, CbpA, CbpE, CbpF, CbpJ. These results suggest that the heat shock protein ClpC plays an essential complex pleiotropic role in pneumococcal physiology, including cell growth under heat stress, cell division, autolysis, adherence and transformation.
Collapse
Affiliation(s)
- E Charpentier
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
13
|
Msadek T. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol 1999; 7:201-7. [PMID: 10354595 DOI: 10.1016/s0966-842x(99)01479-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Regulatory pathways involving two-component histidine kinase/response regulator proteins of Bacillus subtilis are highly interconnected and form a signal transduction network controlling stationary-phase adaptive responses. These include chemotaxis and motility, degradative enzyme synthesis, antibiotic production, natural competence for DNA uptake, and sporulation. Many of these responses are mutually exclusive, with different control levels involving protein-environment, protein-protein and protein-DNA interactions, allowing the bacteria to adapt rapidly to environmental changes.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
14
|
Yang DH, von Kalckreuth J, Allmansberger R. Synthesis of the sigmaD protein is not sufficient to trigger expression of motility functions in Bacillus subtilis. J Bacteriol 1999; 181:2942-6. [PMID: 10217790 PMCID: PMC93741 DOI: 10.1128/jb.181.9.2942-2946.1999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 02/17/1999] [Indexed: 11/20/2022] Open
Abstract
The gene encoding sigmaD, sigD, is transcribed from two promoter regions, the fla/che promoter region in front of the fla/che operon and PsigD directly in front of sigD. If sigmaD is translated from transcripts originating from PsigD, the cell is unable to express motility functions but synthesizes autolysins. Therefore, one function of the additional promoter is to allow the cell to express autolysins without expressing motility functions as well.
Collapse
Affiliation(s)
- D H Yang
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
15
|
Liu J, Zuber P. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J Bacteriol 1998; 180:4243-51. [PMID: 9696775 PMCID: PMC107423 DOI: 10.1128/jb.180.16.4243-4251.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis, like many bacteria, will choose among several response pathways when encountering a stressful environment. Among the processes activated under growth-restricting conditions are sporulation, establishment of motility, and competence development. Recent reports implicate ComK and MecA-ClpC as part of a system that regulates both motility and competence development. MecA, while negatively controlling competence by inhibiting ComK, stimulates sigmaD-dependent transcription of genes that function in motility and autolysin production. Both ComK-dependent and -independent pathways have been proposed for MecA's role in the regulation of motility. Mutations in mecA reduce the transcription of hag. encoding flagellin, and are partially suppressed by comK in both medium promoting motility and medium promoting competence. Reduced sigmaD levels are observed in mecA mutants grown in competence medium, but no change in sigmaD concentration is detected in a comK mutant. The comF operon, transcription of which requires ComK, is located immediately upstream of the operon that contains the flgM gene, encoding the sigmaD-specific antisigma factor. An insertion mutation that disrupts the putative comF-flgM transcription unit confers a phenotype identical to that of the comK mutant with respect to hag-lacZ expression. Expression of a flgM-lacZ operon fusion is reduced in both sigD and comK mutant cells but is abolished in the sigD comK double mutant. Reverse transcription-PCR examination of the comF-flgM transcript indicates that readthrough from comF into the flgM operon is dependent on ComK. ComK negatively controls the transcription of hag by stimulating the transcription of comF-flgM, thereby increasing the production of the FlgM antisigma factor that inhibits sigmaD activity. There likely exists another comK-independent mechanism of hag transcription that requires mecA and possibly affects the sigmaD concentration in cells undergoing competence development.
Collapse
Affiliation(s)
- J Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana, USA
| | | |
Collapse
|
16
|
Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 1998; 27:899-914. [PMID: 9535081 DOI: 10.1046/j.1365-2958.1998.00735.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleotide sequence of the Bacillus subtilis clpP gene was determined. The predicted protein shows very high similarity to members of the ClpP family of proteolytic subunits (68% amino acid sequence identity with that of Escherichia coli). We show that ClpP plays an essential role in stationary phase adaptive responses. Indeed, a delta clpP mutant was constructed and shown to display a pleiotropic phenotype, including a deficiency in both sporulation initiation and competence for DNA uptake. The delta clpP mutant has a highly filamentous morphology and appears to be non-motile, as judged by swarm plate assays. Expression of clpP is strongly induced under heat shock conditions, and ClpP is shown to be essential for growth of B. subtilis at high temperature. The role of ClpP in the sporulation and competence regulatory pathways was investigated. ClpP is required for expression of the spollA and spollG operons, encoding the sigmaF and sigmaE sporulation-specific sigma factors. ClpP is also necessary for the expression of the comK gene, encoding a positive transcriptional regulator of competence genes. ComK-dependent transcription of sacB, encoding the exocellular degradative enzyme levansucrase, was found to be abolished in the delta clpP mutant. MecA has been characterized previously as a negative regulator of comK expression, whose overproduction inhibits both sporulation and competence development. Expression of a mecA'-'lacZ translational fusion is shown to be increased in the delta clpP mutant. We suggest that ClpP is involved in controlling MecA levels in the cell through proteolysis. Increased levels of MecA in the absence of ClpP are at least partly responsible for the observed pleiotropic phenotype of the delta clpP mutant.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France.
| | | | | | | | | | | |
Collapse
|
17
|
Collett HJ, Woods DR, Reid SJ. Characterisation of a Transposon-induced Pleiotropic Mutant ofClostridium acetobutylicumP262. Anaerobe 1997; 3:411-21. [PMID: 16887617 DOI: 10.1006/anae.1997.0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1997] [Accepted: 08/29/1997] [Indexed: 11/22/2022]
Abstract
Transposon-induced metronidazole resistance was used as a selection system for the isolation of Clostridium acetobutylicum P262 mutants with altered electron transport pathways. The metronidazole resistant transconjugant of interest, mutant 3R, displayed resistance to DNA damaging agents, UV and bleomycin, and harboured a single transposon insertion within a structural gene, designated sum(susceptibility to metronidazole). The sum gene encoded a 334 amino-acid protein, with 36% identity and 57-58% similarity at the amino acid level to two archaebacterial protein sequences which appear to represent a class of uncharacterised reductase enzymes. Physiological studies of mutant 3R revealed a number of pleiotropic characteristics which included enhanced autolysin activity, increased motility, impaired clostridial cell formation, and resistance to the toxic tripeptide analogue, bialaphos. The introduction of the sum gene in multiple copies on a plasmid vector into the related strain Clostridium beijerinckii NCIMB 8052, resulted in inhibition of cell division, motility and autolysin activity. The sum gene appears to be a member of a new subgroup of activases with reducing activity, which may control a regulon affecting different stationary phase processes such as clostridial differentiation and sporulation in C. acetobutylicum P262. The metronidazole resistant phenotype of the sum mutant can be attributed to an increased capacity for DNA repair.
Collapse
Affiliation(s)
- H J Collett
- Department of Biochemistry, University of the Western Cape, Bellville, 7535, South Africa
| | | | | |
Collapse
|
18
|
Ogura M, Ohshiro Y, Hirao S, Tanaka T. A new Bacillus subtilis gene, med, encodes a positive regulator of comK. J Bacteriol 1997; 179:6244-53. [PMID: 9335269 PMCID: PMC179536 DOI: 10.1128/jb.179.20.6244-6253.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacillus subtilis degR, a positive regulator of the production of degradative enzymes, is negatively regulated by the competence transcription factor ComK which is overproduced in mecA null mutants. We used transposon Tn10 to search for a mutation that reduced the repression level of degR caused by a mecA mutation. A new gene exerting positive regulation on comK was obtained and designated med (suppressor of mecA effect on degR). Sequence determination, Northern analysis, and primer extension analyses revealed that the med gene contained an open reading frame (ORF) composed of 317 codons and was transcribed into an approximately 1,250-nucleotide mRNA together with its short downstream gene. The expression of comK is positively regulated by factors such as ComK itself, ComS (SrfA)-MecA, DegU, SinR, and AbrB. Quantitative analyses using comK'-'lacZ, srfA-lacZ, degU'-'lacZ, and sinR'-'lacZ fusions showed that disruption of med caused a significant decrease in comK expression in both mecA+ and mecA strains, while expression of srfA, sinR, and degU was not affected by the mutation. An epistatic analysis revealed that overproduction of ComK resulted in alteration of med expression, suggesting a regulatory loop between comK and med. Several possible mechanisms for positive regulation of comK by Med are discussed.
Collapse
Affiliation(s)
- M Ogura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | | | | | | |
Collapse
|
19
|
Yamanaka K, Araki J, Takano M, Sekiguchi J. Characterization of Bacillus subtilis mutants resistant to cold shock-induced autolysis. FEMS Microbiol Lett 1997; 150:269-75. [PMID: 9170271 DOI: 10.1111/j.1574-6968.1997.tb10380.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus subtilis vegetative cells undergo autolysis when exposed to cold shock treatment. A mutant (CA1) resistant to cold shock was isolated, and its DNA was used for the transformation of B. subtilis 168AR. The transformant (TR1) and CA1 had almost completely lost major vegetative autolysins (Cw1B and Cw1G) and motility, and showed a filamentous cell morphology during the exponential phase. Expression of the sigD-lacZ fusion was reduced in TR1. But the introduction of a SigD overproducing plasmid, pHYSigD, into TR1 led to a considerable increase in the amount of autolysin, a normal cell morphology (short rod), and the cold shock-sensitive phenotype. However, motility was not restored in the transformant. The roles of pleiotropic genes in cold shock-induced autolysis are discussed.
Collapse
Affiliation(s)
- K Yamanaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | | | | | |
Collapse
|
20
|
Turgay K, Hamoen LW, Venema G, Dubnau D. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 1997; 11:119-28. [PMID: 9000055 DOI: 10.1101/gad.11.1.119] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Development of genetic competence in Bacillus subtilis is controlled by the competence-specific transcription factor ComK. ComK activates transcription of itself and several other genes required for competence. The activity of ComK is controlled by other genes including mecA, clpC, and comS. We have used purified ComK, MecA, ClpC, and synthetic ComS to study their interactions and have demonstrated the following mechanism for ComK regulation. ClpC, in the presence of ATP, forms a ternary complex with MecA and ComK, which prevents ComK from binding to its specific DNA target. This complex dissociates when ComS is added, liberating active ComK. ClpC and MecA function as a molecular switch, in which MecA confers molecular recognition, connecting ClpC to ComK and to ComS.
Collapse
Affiliation(s)
- K Turgay
- Public Health Research Institute, New York, New York 10016, USA
| | | | | | | |
Collapse
|
21
|
Rashid MH, Sekiguchi J. flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis. J Bacteriol 1996; 178:6640-3. [PMID: 8932324 PMCID: PMC178554 DOI: 10.1128/jb.178.22.6640-6643.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A flaD (sinR) null mutation depressed sigD-lacZ expression only two- to fourfold, whereas a flaD1 point mutation depressed it almost completely. Introduction of pHYSigD, a sigmaD-overproducing plasmid, corrected the filamentous phenotype common to both sinR mutants; autolysin synthesis was restored partially and completely in the flaD1 and flaD (sinR) null strains, respectively. Flagellin synthesis and motility were not restored at all in either strain.
Collapse
Affiliation(s)
- M H Rashid
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | | |
Collapse
|