1
|
Methanothermobacter thermautotrophicus strain ΔH as a potential microorganism for bioconversion of CO2 to methane. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Structures of 2-Hydroxyisobutyric Acid-CoA Ligase Reveal Determinants of Substrate Specificity and Describe a Multi-Conformational Catalytic Cycle. J Mol Biol 2019; 431:2747-2761. [DOI: 10.1016/j.jmb.2019.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/01/2023]
|
3
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
4
|
Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM. Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin. ISME JOURNAL 2014; 8:1831-42. [PMID: 24599070 DOI: 10.1038/ismej.2014.24] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3 m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.
Collapse
Affiliation(s)
| | | | - Ben Pasarelli
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alfred M Spormann
- 1] Department of Chemical Engineering, Stanford University, Stanford, CA, USA [2] Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
More than 200 genes required for methane formation from H₂ and CO₂ and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:973848. [PMID: 21559116 PMCID: PMC3087415 DOI: 10.1155/2011/973848] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/07/2010] [Accepted: 02/18/2011] [Indexed: 12/19/2022]
Abstract
The hydrogenotrophic methanogens Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus can easily be mass cultured. They have therefore been used almost exclusively to study the biochemistry of methanogenesis from H2 and CO2, and the genomes of these two model organisms have been sequenced. The close relationship of the two organisms is reflected in their genomic architecture and coding potential. Within the 1,607 protein coding sequences (CDS) in common, we identified approximately 200 CDS required for the synthesis of the enzymes, coenzymes, and prosthetic groups involved in CO2 reduction to methane and in coupling this process with the phosphorylation of ADP. Approximately 20 additional genes, such as those for the biosynthesis of F430 and methanofuran and for the posttranslational modifications of the two methyl-coenzyme M reductases, remain to be identified.
Collapse
|
6
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2377-2406. [PMID: 9782487 DOI: 10.1099/00221287-144-9-2377] [Citation(s) in RCA: 637] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Straße, D-35032 Marburg, GermanyIn 1933, Stephenson & Stickland (1933a) published that they had isolated from river mud, by the single cell technique, a methanogenic organism capable of growth in an inorganic medium with formate as the sole carbon source.
Collapse
Affiliation(s)
- Rudolf K Thauer
- (Delivered at the 140th Ordinary Meeting of the Society for General Microbiology, 31 March 1998)
| |
Collapse
|
8
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
9
|
Morgan RM, Pihl TD, Nölling J, Reeve JN. Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH. J Bacteriol 1997; 179:889-98. [PMID: 9006047 PMCID: PMC178774 DOI: 10.1128/jb.179.3.889-898.1997] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Changes in growth rate, methanogenesis, growth yield (Y(CH4)), and methane gene transcription have been correlated with changes in the supply of H2 to Methanobacterium thermoautotrophicum deltaH cells growing on H2 plus CO2 in fed-batch cultures. Under conditions of excess H2, biomass and methanogenesis increased exponentially and in parallel, resulting in cultures with a constant Y(CH4) and transcription of the mth and mrt genes that encode the H2-dependent N5,N10-methenyltetrahydromethanopterin (methenyl-H4MPT) reductase (MTH) and methyl coenzyme M reductase II (MRII), respectively. Reducing the H2 supply, by decreasing the percentage of H2 in the input gas mixture or by reducing the mixing speed of the fermentor impeller, decreased the growth rate and resulted in lower and constant rates of methanogenesis. Under such H2-limited growth conditions, cultures grew with a continuously increasing Y(CH4) and the mtd and mcr genes that encode the reduced coenzyme F420-dependent N5,N10-methenyl-H4MPT reductase (MTD) and methyl coenzyme M reductase I (MRI), respectively, were transcribed. Changes in the kinetics of growth, methanogenesis, and methane gene transcription directed by reducing the H2 supply could be reversed by restoring a high H2 supply. Methane production continued, but at a low and constant rate, and only mcr transcripts could be detected when the H2 supply was reduced to a level insufficient for growth. ftsA transcripts, which encode coenzyme F390 synthetase, were most abundant in cells growing with high H2 availability, consistent with coenzyme F390 synthesis signaling a high exogenous supply of reductant.
Collapse
Affiliation(s)
- R M Morgan
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
10
|
Nölling J, Reeve JN. Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. J Bacteriol 1997; 179:899-908. [PMID: 9006048 PMCID: PMC178775 DOI: 10.1128/jb.179.3.899-908.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The formate dehydrogenase-encoding fdhCAB operon and flanking genes have been cloned and sequenced from Methanobacterium thermoformicicum Z-245. fdh transcription was shown to be initiated 21 bp upstream from fdhC, although most fdh transcripts terminated or were processed between fdhC and fdhA. The resulting fdhC, fdhAB, and fdhCAB transcripts were present at all growth stages in cells growing on formate but were barely detectable during early exponential growth on H2 plus CO2. The levels of the fdh transcripts did, however, increase dramatically in cells growing on H2 plus CO2, coincident with the decrease in the growth rate and the onset of constant methanogenesis that occurred when culture densities reached an optical density at 600 nm of approximately 0.5. The mth transcript that encodes the H2-dependent methenyl-H4 MPT reductase (MTH) and the frh and mvh transcripts that encode the coenzyme F420-reducing (FRH) and nonreducing (MVH) hydrogenases, respectively, were also present in cells growing on formate, consistent with the synthesis of three hydrogenases, MTH, FRH, and MVH, in the absence of exogenously supplied H2. Reducing the H2 supply to M. thermoformicicum cells growing on H2 plus CO2 reduced the growth rate and CH4 production but increased frh and fdh transcription and also increased transcription of the mtd, mer, and mcr genes that encode enzymes that catalyze steps 4, 5, and 7, respectively, in the pathway of CO2 reduction to CH4. Reducing the H2 supply to a level insufficient for growth resulted in the disappearance of all methane gene transcripts except the mcr transcript, which increased. Regions flanking the fdhCAB operon in M. thermoformicicum Z-245 were used as probes to clone the homologous region from the Methanobacterium thermoautotrophicum deltaH genome. Sequencing revealed the presence of very similar genes except that the genome of M. thermoautotrophicum, a methanogen incapable of growth on formate, lacked the fdhCAB operon.
Collapse
Affiliation(s)
- J Nölling
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|