1
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera". Appl Environ Microbiol 2014; 80:2451-60. [PMID: 24509918 DOI: 10.1128/aem.04199-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic community in the environment is not necessarily revealed by (13)C-depleted lipids.
Collapse
|
3
|
Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol 2013; 15:3040-53. [PMID: 23663433 DOI: 10.1111/1462-2920.12144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023]
Abstract
Pseudonocardia is an actinobacterial genus of interest due to its potential biotechnological, medical and environmental remediation applications, as well as for the ecologically relevant symbiotic relationships it forms with attine ants. Some Pseudonocardia spp. can grow autotrophically, but the genetic basis of this capability has not previously been reported. In this study, we examined autotrophy in Pseudonocardia dioxanivorans CB1190, which can grow using H2 and CO2, as well as heterotrophically. Genomic and transcriptomic analysis of CB1190 cells grown with H2/bicarbonate implicated the Calvin-Benson-Bassham (CBB) cycle in growth-supporting CO2 fixation, as well as a [NiFe] hydrogenase-encoding gene cluster in H2 oxidation. The CBB cycle genes are evolutionarily most related to actinobacterial homologues, although synteny has not been maintained. Ribulose-1,5-bisphosphate carboxylase activity was confirmed in H2/bicarbonate-grown CB1190 cells and was detected in cells grown with the C1 compounds formate, methanol and carbon monoxide. We also demonstrated the upregulation of CBB cycle genes upon exposure of CB1190 to these C1 substrates, and identified genes putatively involved in generating CO2 from the C1 substrates by using RT-qPCR. Finally, the potential for autotrophic growth of other Pseudonocardia spp. was explored, and the ecological implications of autotrophy in attine ant- and plant root-associated Pseudonocardia discussed.
Collapse
Affiliation(s)
- Ariel Grostern
- Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA, USA.
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, UC Berkeley, Berkeley, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
4
|
Bardey V, Vallet C, Robas N, Charpentier B, Thouvenot B, Mougin A, Hajnsdorf E, Régnier P, Springer M, Branlant C. Characterization of the molecular mechanisms involved in the differential production of erythrose-4-phosphate dehydrogenase, 3-phosphoglycerate kinase and class II fructose-1,6-bisphosphate aldolase in Escherichia coli. Mol Microbiol 2005; 57:1265-87. [PMID: 16102000 DOI: 10.1111/j.1365-2958.2005.04762.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A gapA-pgk gene tandem coding the glyceraldehyde 3-phosphate dehydrogenase and 3-phosphoglycerate kinase, is most frequently found in bacteria. However, in Enterobacteriaceae, gapA is replaced by an epd open reading frame (ORF) coding an erythrose-4-phosphate dehydrogenase and an fbaA ORF coding the class II fructose-1,6-bisphosphate aldolase follows pgk. Although epd expression is very low in Escherichia coli, we show that, in the presence of glucose, the 3 epd, pgk and fbaA ORFs are efficiently cotranscribed from promoter epd P0. Conservation of promoter epd P0 is likely due to its important role in modulation of the metabolic flux during glycolysis and gluconeogenesis. As a consequence, we found that the epd translation initiation region and ORF have been adapted in order to limit epd translation and to create an efficient RNase E entry site. We also show that fbaA is cotranscribed with pgk, from promoter epd P0 or an internal pgk P1 promoter of the extended -10 class. The differential expression of pgk and fbaA also depends upon an RNase E segmentation process, leading to individual mRNAs with different stabilities. The secondary structures of the RNA regions containing the RNase E sites were experimentally determined which brings important information on the structural features of RNase E ectopic sites.
Collapse
Affiliation(s)
- Vincent Bardey
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, UMR 7567 CNRS-UHP Nancy I, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre-lès-Nancy, Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Toyoda K, Yoshizawa Y, Arai H, Ishii M, Igarashi Y. The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. MICROBIOLOGY-SGM 2005; 151:3615-3625. [PMID: 16272383 DOI: 10.1099/mic.0.28056-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogenovibrio marinus MH-110 possesses three different sets of genes for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO): two form I (cbbLS-1 and cbbLS-2) and one form II (cbbM). We have previously shown that the expression of these RubisCO genes is dependent on the ambient CO2 concentration. LysR-type transcriptional regulators, designated CbbR1 and CbbRm, are encoded upstream of the cbbLS-1 and cbbM genes, respectively. In this study, we revealed by gel shift assay that CbbR1 and CbbRm bind with higher affinity to the promoter regions of cbbLS-1 and cbbM, respectively, and with lower affinity to the other RubisCO gene promoters. The expression patterns of the three RubisCOs in the cbbR1 and the cbbRm gene mutants showed that CbbR1 and CbbRm were required to activate the expression of cbbLS-1 and cbbM, respectively, and that neither CbbR1 nor CbbRm was required for the expression of cbbLS-2. The expression of cbbLS-1 was significantly enhanced under high-CO2 conditions in the cbbRm mutant, in which the expression of cbbM was decreased. Although cbbLS-2 was not expressed under high-CO2 conditions in the wild-type strain or the single cbbR mutants, the expression of cbbLS-2 was observed in the cbbR1 cbbRm double mutant, in which the expression of both cbbLS-1 and cbbM was decreased. These results indicate that there is an interactive regulation among the three RubisCO genes.
Collapse
Affiliation(s)
- Koichi Toyoda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoichi Yoshizawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Ida T, Kugimiya M, Kogure M, Takahashi R, Tokuyama T. Phylogenetic relationships among ammonia-oxidizing bacteria as revealed by gene sequences of glyceraldehyde 3-phosphate dehydrogenase and phosphoglycerate kinase. J Biosci Bioeng 2005; 99:569-76. [PMID: 16233833 DOI: 10.1263/jbb.99.569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 03/11/2005] [Indexed: 11/17/2022]
Abstract
The three previously recognized genera of 'Nitrosolobus', Nitrosospira and 'Nitrosovibrio' were combined into one genus, Nitrosospira, on the basis of 16S rDNA sequence similarities. However, this classification has been controversial for some time, since the marked differences in their shapes suggest that they are not closely related. In this study, the phylogenetic analyses of the three groups using two genotypical markers, glyceraldehyde-3-phosphate dehydrogenase (GAP, gap), and 3-phosphoglycerate kinase (PGK, pgk), were performed. In the phylogenetic tree inferred from gap and pgk, the three genera appeared as clearly separated clusters. This is the first study of markers that are able to reveal the precise phylogenetic relationship among 'Nitrosolobus', Nitrosospira and 'Nitrosovibrio'.
Collapse
Affiliation(s)
- Takeshi Ida
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | |
Collapse
|
7
|
Kalyuzhnaya MG, Lidstrom ME. QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1. J Bacteriol 2003; 185:1229-35. [PMID: 12562792 PMCID: PMC142849 DOI: 10.1128/jb.185.4.1229-1235.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new gene, qscR, encoding a LysR-type transcriptional regulator that is a homolog of CbbR, has been characterized from the facultative methylotroph Methylobacterium extorquens AM1 and shown to be the major regulator of the serine cycle, the specific C1 assimilation pathway. The qscR mutant was shown to be unable to grow on C1 compounds, and it lacked the activity of serine-glyoxylate aminotransferase, a key enzyme of the serine cycle. Activities of other serine cycle enzymes were decreased during growth on C1 compounds compared to the activities found in wild-type M. extorquens AM1. Promoter fusion assays, as well as reverse transcription-PCR assays, have indicated that the serine cycle genes belong to three separate transcriptional units, sga-hpr-mtdA-fch, mtkA-mtkB-ppc-mcl, and gly. Gel retardation assays involving the purified QscR have demonstrated the specific binding of QscR to the DNA regions upstream of sga, mtkA, gly, and qscR. We conclude that QscR acts as a positive transcriptional regulator of most of the serine cycle enzymes and also as an autorepressor.
Collapse
Affiliation(s)
- Marina G Kalyuzhnaya
- Department of Chemical Engineering. Department of Microbiology, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
8
|
van Keulen G, Ridder ANJA, Dijkhuizen L, Meijer WG. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J Bacteriol 2003; 185:1245-52. [PMID: 12562794 PMCID: PMC142840 DOI: 10.1128/jb.185.4.1245-1252.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LysR-type transcriptional regulator CbbR controls the expression of the cbb and gap-pgk operons in Xanthobacter flavus, which encode the majority of the enzymes of the Calvin cycle required for autotrophic CO2 fixation. The cbb operon promoter of this chemoautotrophic bacterium contains three potential CbbR binding sites, two of which partially overlap. Site-directed mutagenesis and subsequent analysis of DNA binding by CbbR and cbb promoter activity were used to show that the potential CbbR binding sequences are functional. Inverted repeat IR1 is a high-affinity CbbR binding site. The main function of this repeat is to recruit CbbR to the cbb operon promoter. In addition, it is required for negative autoregulation of cbbR expression. IR3 represents the main low-affinity binding site of CbbR. Binding to IR3 occurs in a cooperative manner, since mutations preventing the binding of CbbR to IR1 also prevent binding to the low-affinity site. Although mutations in IR3 have a negative effect on the binding of CbbR to this site, they result in an increased promoter activity. This is most likely due to steric hindrance of RNA polymerase by CbbR since IR3 partially overlaps with the -35 region of the cbb operon promoter. Mutations in IR2 do not affect the DNA binding of CbbR in vitro but have a severe negative effect on the activity of the cbb operon promoter. This IR2 binding site is therefore critical for transcriptional activation by CbbR.
Collapse
Affiliation(s)
- Geertje van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
9
|
Terazono K, Hayashi NR, Igarashi Y. CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions. FEMS Microbiol Lett 2001; 198:151-7. [PMID: 11430407 DOI: 10.1111/j.1574-6968.2001.tb10635.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cbbR encoding the LysR-type transcriptional regulator is located downstream of cbbLSQOYA and this gene is located upstream of cbbFPT in divergent transcription. The two promoter regions with LysR-binding sites are located in the cbbL upstream region and in the cbbR-cbbF intergenic region. Electrophoretic mobility shift assays using a cell extract of Escherichia coli harboring a plasmid containing cbbR and the DNA fragments of promoter regions indicated that CbbR binds in both regions. NADPH caused differences in the complex of CbbR and DNA.
Collapse
Affiliation(s)
- K Terazono
- Department of Biotechnology, University of Tokyo, Japan
| | | | | |
Collapse
|
10
|
van Keulen G, Dijkhuizen L, Meijer WG. Effects of the Calvin cycle on nicotinamide adenine dinucleotide concentrations and redox balances of Xanthobacter flavus. J Bacteriol 2000; 182:4637-9. [PMID: 10913100 PMCID: PMC94638 DOI: 10.1128/jb.182.16.4637-4639.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of reduced and oxidized nicotinamide adenine dinucleotides were determined in Xanthobacter flavus during a transition from heterotrophic to autotrophic growth. Excess reducing equivalents are rapidly dissipated following induction of the Calvin cycle, indicating that the Calvin cycle serves as a sink for excess reducing equivalents. The physiological data support the conclusion previously derived from molecular studies in that expression of the Calvin cycle genes is controlled by the intracellular concentration of NADPH.
Collapse
Affiliation(s)
- G van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
11
|
|
12
|
Iliffe-Lee ER, McClarty G. Glucose metabolism in Chlamydia trachomatis: the 'energy parasite' hypothesis revisited. Mol Microbiol 1999; 33:177-87. [PMID: 10411734 DOI: 10.1046/j.1365-2958.1999.01464.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular eubacteria that is dependent on a eukaryotic host cell for a variety of metabolites. For years, it has been speculated that chlamydiae are energy parasites, totally dependent on their host cell for ATP and other high-energy intermediates. To determine whether C. trachomatis contains functional enzymes that produce energy or reducing power, four enzymes involved in glycolysis or the pentose phosphate pathway, specifically pyruvate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase, were cloned, sequenced and expressed as recombinant proteins in Escherichia coli. The deduced amino acid sequences obtained show high homology to other pyruvate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase enzymes. In contrast to numerous other bacterial species, chlamydial glycolytic genes are not arranged in an operon, but are dispersed throughout the genome. Results from reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicate that all four genes are maximally expressed in the middle of the chlamydial developmental cycle. The chlamydial genes are capable of complementing mutant E. coli strains lacking the respective enzyme activities. In vitro enzyme analysis indicates that recombinant chlamydial enzymes expressed in E. coli are active and, interestingly, recombinant chlamydial pyruvate kinase is not regulated allosterically by fructose 1,6 bisphosphate or AMP, as found with other bacterial pyruvate kinases. In summary, identification and characterization of these glucose-catabolizing enzymes indicate that chlamydia contains the functional capacity to produce its own ATP and reducing power.
Collapse
Affiliation(s)
- E R Iliffe-Lee
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 0W3
| | | |
Collapse
|
13
|
Shively JM, van Keulen G, Meijer WG. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 1999; 52:191-230. [PMID: 9891798 DOI: 10.1146/annurev.micro.52.1.191] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last decade has seen significant advances in our understanding of the physiology, ecology, and molecular biology of chemoautotrophic bacteria. Many ecosystems are dependent on CO2 fixation by either free-living or symbiotic chemoautotrophs. CO2 fixation in the chemoautotroph occurs via the Calvin-Benson-Bassham cycle. The cycle is characterized by three unique enzymatic activities: ribulose bisphosphate carboxylase/oxygenase, phosphoribulokinase, and sedoheptulose bisphosphatase. Ribulose bisphosphate carboxylase/oxygenase is commonly found in the cytoplasm, but a number of bacteria package much of the enzyme into polyhedral organelles, the carboxysomes. The carboxysome genes are located adjacent to cbb genes, which are often, but not always, clustered in large operons. The availability of carbon and reduced substrates control the expression of cbb genes in concert with the LysR-type transcriptional regulator, CbbR. Additional regulatory proteins may also be involved. All of these, as well as related topics, are discussed in detail in this review.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, South Carolina 29634, USA.
| | | | | |
Collapse
|
14
|
van Keulen G, Girbal L, van den Bergh ER, Dijkhuizen L, Meijer WG. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 1998; 180:1411-7. [PMID: 9515907 PMCID: PMC107038 DOI: 10.1128/jb.180.6.1411-1417.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs in the absence of multicarbon substrates and the presence of methanol, formate, hydrogen, or thiosulfate. The LysR-type transcriptional regulator CbbR regulates the expression of the cbb and gap-pgk operons, but it is unknown to what cellular signal CbbR responds. In order to study the effects of low-molecular-weight compounds on the DNA-binding characteristics of CbbR, the protein was expressed in Escherichia coli and subsequently purified to homogeneity. CbbR of X. flavus is a dimer of 36-kDa subunits. DNA-binding assays suggested that two CbbR molecules bind to a 51-bp DNA fragment on which two inverted repeats containing the LysR motif are located. The addition of 200 microM NADPH, but not NADH, resulted in a threefold increase in DNA binding. The apparent K(dNADPH) of CbbR was determined to be 75 microM. By using circular permutated DNA fragments, it was shown that CbbR introduces a 64 degree bend in the DNA. The presence of NADPH in the DNA-bending assay resulted in a relaxation of the DNA bend by 9 degree. From the results of these in vitro experiments, we conclude that CbbR responds to NADPH. The in vivo regulation of the cbb and gap-pgk operons may therefore be regulated by the intracellular concentration of NADPH.
Collapse
Affiliation(s)
- G van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Paoli GC, Soyer F, Shively J, Tabita FR. Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 1):219-227. [PMID: 9467914 DOI: 10.1099/00221287-144-1-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Analysis of the nucleotide sequence of the form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes (cbbL and cbbS) of the non-sulfur purple bacterium Rhodobacter capsulatus indicated that the deduced amino acid sequence of the large subunit was not closely homologous to the large subunit from related organisms. Indeed, phylogenetic analysis suggested that the large subunit protein (CbbL) more closely resembled the enzyme from alpha/beta/gamma purple bacteria and cyanobacteria and is within a 'green-like' radiation of the RubisCO phylogenetic tree, well separated from CbbL of the related organism Rhodobacter sphaeroides. A cbbQ gene was discovered downstream of cbbS in Rh. capsulatus, a gene arrangement which also appears to be limited to certain organisms containing a 'green-like' RubisCO. Upstream, and divergently transcribed from cbbLSQ, is a gene (cbbRI) that encodes a LysR-type transcriptional activator. Phylogenetic analysis of the deduced amino acid sequence of CbbRI also suggests that this protein is quite distinct from the Rh. sphaeroides CbbR protein, and is even distinct from the previously described CbbRII protein, the gene of which is upstream and divergently transcribed from the cbbII operon of Rh. capsulatus. Interestingly, Rh. capsulatus CbbRI is more closely related to CbbR from bacteria whose RubisCO falls within the 'green-like' radiation of the CbbL tree. These studies suggest that the cbbRI-cbbL-cbbS-cbbQ genes were acquired by Rh. capsulatus via horizontal gene transfer from a bacterial species containing a 'green-like' RubisCO.
Collapse
Affiliation(s)
- George C Paoli
- The Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - Ferda Soyer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jessup Shively
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - F Robert Tabita
- The Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
16
|
Kusian B, Bowien B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 1997; 21:135-55. [PMID: 9348665 DOI: 10.1111/j.1574-6976.1997.tb00348.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Calvin-Benson-Bassham cycle constitutes the principal route of CO2 assimilation in aerobic chemoautotrophic and in anaerobic phototrophic purple bacteria. Most of the enzymes of the cycle are found to be encoded by cbb genes. Despite some conservation of the internal gene arrangement cbb gene clusters of the various organisms differ in size and operon organization. The cbb operons of facultative autotrophs are more strictly regulated than those of obligate autotrophs. The major control is exerted by the cbbR gene, which codes for a transcriptional activator of the LysR family. This gene is typically located immediately upstream of and in divergent orientation to the regulated cbb operon, forming a control region for both transcriptional units. Recent studies suggest that additional protein factors are involved in the regulation. Although the metabolic signal(s) received by the regulatory components of the operons is (are) still unknown, the redox state of the cell is believed to play a key role. It is proposed that the control of the cbb operon expression is integrated into a regulatory network.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
17
|
Meijer WG, de Boer P, van Keulen G. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1925-1931. [PMID: 9202469 DOI: 10.1099/00221287-143-6-1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of the cbb and gap-pgk operons of Xanthobacter flavus encoding enzymes of the Calvin cycle is regulated by the transcriptional regulator CbbR. In order to identify other genes involved in the regulation of these operons, a mutant was isolated with a lowered activity of a fusion between the promoter of the cbb operon and the reporter gene lacZ. This mutant was unable to grow autotrophically and had a reduced growth rate on medium supplemented with gluconate or succinate. The regulation of the gap-pgk operon in the mutant was indistinguishable from the wild-type strain, but induction of the cbb operon upon transition to autotrophic growth conditions was delayed. Complementation of the mutant with a genomic library of X. flavus resulted in the isolation of a 1.1 kb ApaI fragment which restored autotrophic growth of the mutant. One open reading frame (ORF) was present on the ApaI fragment, which could encode a protein highly similar to triosephosphate isomerase proteins from other bacteria. Cell extracts of the mutant grown under glycolytic or gluconeogenic conditions had severely reduced triosephosphate isomerase activities. The ORF was therefore identified as tpi, encoding triosephosphate isomerase. The tpi gene is not linked to the previously identified operons encoding Calvin cycle enzymes and therefore represents a third transcriptional unit required for autotrophic metabolism.
Collapse
Affiliation(s)
- Wim G Meijer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Paulo de Boer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Geertje van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|