1
|
Rottinghaus AG, Xi C, Amrofell MB, Yi H, Moon TS. Engineering ligand-specific biosensors for aromatic amino acids and neurochemicals. Cell Syst 2022; 13:204-214.e4. [PMID: 34767760 PMCID: PMC8930536 DOI: 10.1016/j.cels.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Microbial biosensors have diverse applications in metabolic engineering and medicine. Specific and accurate quantification of chemical concentrations allows for adaptive regulation of enzymatic pathways and temporally precise expression of diagnostic reporters. Although biosensors should differentiate structurally similar ligands with distinct biological functions, such specific sensors are rarely found in nature and challenging to create. Using E. coli Nissle 1917, a generally regarded as safe microbe, we characterized two biosensor systems that promiscuously recognize aromatic amino acids or neurochemicals. To improve the sensors' selectivity and sensitivity, we applied rational protein engineering by identifying and mutagenizing amino acid residues and successfully demonstrated the ligand-specific biosensors for phenylalanine, tyrosine, phenylethylamine, and tyramine. Additionally, our approach revealed insights into the uncharacterized structure of the FeaR regulator, including critical residues in ligand binding. These results lay the groundwork for developing kinetically adaptive microbes for diverse applications. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Austin G Rottinghaus
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew B Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hyojeong Yi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
2
|
Camakaris H, Yang J, Fujii T, Pittard J. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. J Bacteriol 2021; 203:e0025221. [PMID: 34309399 PMCID: PMC8425403 DOI: 10.1128/jb.00252-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
A novel selection was developed for mutants of the C-terminal domain of RpoA (α-CTD) altered in activation by the TyrR regulatory protein of Escherichia coli K-12. This allowed the identification of an aspartate to asparagine substitution at residue 250 (DN250) as an activation-defective (Act-) mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and the substitutions DR250, RE310, and RD310 were all shown to be defective in activation. None of these mutations caused defects in regulation of the upstream promoter (UP) element. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. The TyrR mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77, and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, and EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act-tyrR mutants were isolated in an rpoA+ strain, adding positions R77, D97, K101, D118, R119, R121, and E141 to known residues S95 and D103 and defining the activation patch on the amino-terminal domain (NTD) of TyrR. These results support a model for activation of TyrR-regulated genes where the activation patch on the TyrR NTD interacts with the TyrR-specific patch on the α-CTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants as activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene tyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore, TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence and important plant interactions.
Collapse
Affiliation(s)
- Helen Camakaris
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ji Yang
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James Pittard
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Pinpointing the l-phenylalanine binding sites of TyrR using biosensors and computer-aided simulation. Biotechnol Lett 2019; 41:401-408. [DOI: 10.1007/s10529-019-02645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
4
|
Ryu RJ, Patten CL. Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 2008; 190:7200-8. [PMID: 18757531 PMCID: PMC2580706 DOI: 10.1128/jb.00804-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 08/22/2008] [Indexed: 11/20/2022] Open
Abstract
The plant growth-promoting rhizobacterium Enterobacter cloacae UW5 synthesizes the plant growth hormone indole-3-acetic acid (IAA) via the indole-3-pyruvate pathway utilizing the enzyme indole-3-pyruvate decarboxylase that is encoded by ipdC. In this bacterium, ipdC expression and IAA production occur in stationary phase and are induced by an exogenous source of tryptophan, conditions that are present in the rhizosphere. The aim of this study was to identify the regulatory protein that controls the expression of ipdC. We identified a sequence in the promoter region of ipdC that is highly similar to the recognition sequence for the Escherichia coli regulatory protein TyrR that regulates genes involved in aromatic amino acid transport and metabolism. Using a tyrR insertional mutant, we demonstrate that TyrR is required for IAA production and for induction of ipdC transcription. TyrR directly induces ipdC expression, as was determined by real-time quantitative reverse transcription-PCR, by ipdC promoter-driven reporter gene activity, and by electrophoretic mobility shift assays. Expression increases in response to tryptophan, phenylalanine, and tyrosine. This suggests that, in addition to its function in plant growth promotion, indolepyruvate decarboxylase may be important for aromatic amino acid uptake and/or metabolism.
Collapse
Affiliation(s)
- R Julie Ryu
- Biology Department, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada
| | | |
Collapse
|
5
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
6
|
Verger D, Carr PD, Kwok T, Ollis DL. Crystal Structure of the N-terminal Domain of the TyrR Transcription Factor Responsible for Gene Regulation of Aromatic Amino Acid Biosynthesis and Transport in Escherichia coli K12. J Mol Biol 2007; 367:102-12. [PMID: 17222426 DOI: 10.1016/j.jmb.2006.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/16/2022]
Abstract
The X-ray structure of the N-terminal domain of TyrR has been solved to a resolution of 2.3 A. It reveals a modular protein containing an ACT domain, a connecting helix, a PAS domain and a C-terminal helix. Two dimers are present in the asymmetric unit with one monomer of each pair exhibiting a large rigid-body movement that results in a hinging around residue 74 of approximately 50 degrees . The structure of the dimer is discussed with reference to other transcription regulator proteins. Putative binding sites are identified for the aromatic amino acid cofactors.
Collapse
Affiliation(s)
- D Verger
- School of Crystallography, Birkbeck College, University of London, UK
| | | | | | | |
Collapse
|
7
|
Abstract
The TyrR protein of Escherichia coli can act both as a repressor and as an activator of transcription. It can interact with each of the three aromatic amino acids, with ATP and, under certain circumstances, with the C-terminal region of the alpha-subunit of RNA polymerase. TyrR protein is a dimer in solution but in the presence of tyrosine and ATP it self-associates to form a hexamer. Whereas TyrR dimers can, in the absence of any aromatic amino acids, bind to certain recognition sequences referred to as 'strong TyrR boxes', hexamers can bind to extended sequences including lower-affinity sites called 'weak TyrR boxes', some of which overlap the promoter. There is no single mechanism for repression, which in some cases involves exclusion of RNA polymerase from the promoter and in others, interference with the ability of bound RNA polymerase to form open complexes or to exit the promoter. When bound to a site upstream of certain promoters, TyrR protein in the presence of phenylalanine, tyrosine or tryptophan can interact with the alpha-subunit of RNA polymerase to activate transcription. In one unusual case, activation of a non-productive promoter is used to repress transcription from a promoter on the opposite strand. Regulation of individual transcription units within the regulon reflects their physiological function and is determined by the position and nature of the recognition sites (TyrR boxes) associated with each of the promoters. The intracellular levels of the various forms of the TyrR protein are also postulated to be of critical importance in determining regulatory outcomes. TyrR protein remains a paradigm for a regulator that is able to interact with multiple cofactors and exert a range of regulatory effects by forming different oligomers on DNA and making contact with other proteins. A recent analysis identifying putative TyrR boxes in the E. coli genome raises the possibility that the TyrR regulon may extend beyond the well-characterized transcription units described in this review.
Collapse
Affiliation(s)
- James Pittard
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
8
|
Yang J, Hwang JS, Camakaris H, Irawaty W, Ishihama A, Pittard J. Mode of action of the TyrR protein: repression and activation of the tyrP promoter of Escherichia coli. Mol Microbiol 2004; 52:243-56. [PMID: 15049824 DOI: 10.1111/j.1365-2958.2003.03965.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tyrP gene of Escherichia coli encodes a tyrosine specific transporter. Its synthesis is repressed by tyrosine but is activated by phenylalanine and to a lesser extent by tryptophan. Both of these effects are mediated by the TyrR protein when it binds to one or both of its cognate binding sites (TyrR boxes) which encompass nucleotides -30 to -75. Activation in the presence of phenylalanine or tryptophan involves a dimer binding to the upstream box and interacting with the alpha subunit (alphaCTD) of RNA polymerase (RNAP). Repression in the presence of tyrosine involves a hexamer binding to both TyrR boxes. The molecular basis for this repression has been studied in vitro. Whereas initial gel shift experiments fail to show the exclusion of RNAP from the promoter region when TyrR hexamer is bound, a DNase I analysis of slices from the gel shows that in the presence of TyrR, RNAP now binds to a previously unrecognized upstream promoter. Although this upstream promoter is bound strongly by RNAP and forms an open complex on linear DNA templates, it fails to form an open complex on supercoiled templates in vitro and is unable to initiate transcription in vivo. A subsequent gel shift assay using a tyrP fragment which eliminates the upstream RNAP binding site confirms conclusively that, in the presence of tyrosine and ATP, the TyrR protein prevents RNAP from binding to the tyrP promoter. In vitro studies have also been carried out in the presence of TyrR protein and phenylalanine. Binding of TyrR protein to the upstream TyrR box in the presence of phenylalanine is shown to increase the affinity of RNAP for the promoter and stimulate open complex formation at the -10 region of the tyrP promoter. This observation coupled with the results from mutational analysis supports the proposal that TyrR-phenylalanine activates tyrP transcription by stimulating the onset of open complex formation.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Yang J, Camakaris H, Pittard J. Molecular analysis of tyrosine-and phenylalanine-mediated repression of the tyrB promoter by the TyrR protein of Escherichia coli. Mol Microbiol 2002; 45:1407-19. [PMID: 12207706 DOI: 10.1046/j.1365-2958.2002.03108.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of repression of the tyrB promoter by TyrR protein has been studied in vivo and in vitro. In tyrR+ strains, transcription of tyrB is repressed by either tyrosine or phenylalanine. Both of the TyrR binding sites (strong and weak TyrR boxes) lie downstream of the tyrB transcription start site and are required for tyrosine- or phenylalanine-mediated repression. Our results establish that the binding of the TyrR protein to the weak box, induced by cofactor tyrosine or phenylalanine, is critical for repression to occur. Neither the binding of the TyrR protein dimer formed in the presence of phenylalanine, nor the binding of the hexamer formed in the presence of tyrosine, blocks the binding of RNA polymerase to the promoter. Instead, open complex formation is inhibited in the presence of tyrosine whereas a step(s) following open complex formation is inhibited in the presence of phenylalanine. Moving the TyrR boxes 3 bp or more further away from the promoter affects tyrosine-mediated repression without affecting phenylalanine-mediated repression which remains unaltered until 6 bp are inserted between the TyrR boxes and the promoter. Analysis of deletion and insertion mutants fails to reveal any face of the helix specificity for either tyrosine- or phenylalanine-mediated repression.
Collapse
Affiliation(s)
- Ji Yang
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
10
|
Katayama T, Suzuki H, Koyanagi T, Kumagai H. Cloning and random mutagenesis of the Erwinia herbicola tyrR gene for high-level expression of tyrosine phenol-lyase. Appl Environ Microbiol 2000; 66:4764-71. [PMID: 11055921 PMCID: PMC92377 DOI: 10.1128/aem.66.11.4764-4771.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tyrosine phenol-lyase (Tpl), which can synthesize 3, 4-dihydroxyphenylalanine from pyruvate, ammonia, and catechol, is a tyrosine-inducible enzyme. Previous studies demonstrated that the tpl promoter of Erwinia herbicola is activated by the TyrR protein of Escherichia coli. In an attempt to create a high-Tpl-expressing strain, we cloned the tyrR gene of E. herbicola and then randomly mutagenized it. Mutant TyrR proteins with enhanced ability to activate tpl were screened for by use of the lac reporter system in E. coli. The most increased transcription of tpl was observed for the strain with the mutant tyrR allele involving amino acid substitutions of alanine, cysteine, and glycine for valine-67, tyrosine-72, and glutamate-201, respectively. A tyrR-deficient derivative of E. herbicola was constructed and transformed with a plasmid carrying the mutant tyrR allele (V67A Y72C E201G substitutions). The resultant strain expressed Tpl without the addition of tyrosine to the medium and produced as much of it as was produced by the wild-type strain grown under tyrosine-induced conditions. The regulatory properties of the mutant TyrR(V67A), TyrR(Y72C), TyrR(E201G), and TyrR(V67A Y72C E201G) proteins were examined in vivo. Interestingly, as opposed to the wild-type TyrR protein, the mutant TyrR(V67A) protein had a repressive effect on the tyrP promoter in the presence of phenylalanine as the coeffector.
Collapse
Affiliation(s)
- T Katayama
- Applied Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
11
|
Yang J, Wang P, Pittard AJ. Mechanism of repression of the aroP P2 promoter by the TyrR protein of Escherichia coli. J Bacteriol 1999; 181:6411-8. [PMID: 10515932 PMCID: PMC103777 DOI: 10.1128/jb.181.20.6411-6418.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we have shown that expression of the Escherichia coli aroP P2 promoter is partially repressed by the TyrR protein alone and strongly repressed by the TyrR protein in the presence of the coeffector tyrosine or phenylalanine (P. Wang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:4206-4212, 1997). Here we present in vitro results showing that the TyrR protein and RNA polymerase can bind simultaneously to the aroP P2 promoter. In the presence of tyrosine, the TyrR protein inhibits open complex formation at the P2 promoter, whereas in the absence of any coeffector or in the presence of phenylalanine, the TyrR protein inhibits a step(s) following the formation of open complexes. We also present mutational evidence which implicates the N-terminal domain of the TyrR protein in the repression of P2 expression. The TyrR binding site of aroP, which includes one weak and one strong TyrR box, is located 5 bp downstream of the transcription start site of P2. Results from a mutational analysis show that the strong box (which is located more closely to the P2 promoter), but not the weak box, plays a critical role in P2 repression.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
12
|
Hwang JS, Yang J, Pittard AJ. Specific contacts between residues in the DNA-binding domain of the TyrR protein and bases in the operator of the tyrP gene of Escherichia coli. J Bacteriol 1999; 181:2338-45. [PMID: 10197993 PMCID: PMC93655 DOI: 10.1128/jb.181.8.2338-2345.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the presence of tyrosine, the TyrR protein of Escherichia coli represses the expression of the tyrP gene by binding to the double TyrR boxes which overlap the promoter. Previously, we have carried out methylation, uracil, and ethylation interference experiments and have identified both guanine and thymine bases and phosphates within the TyrR box sequences that are contacted by the TyrR protein (J. S. Hwang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:1051-1058, 1997). In this study, we have used missing contact probing to test the involvement of all of the bases within the tyrP operator in the binding of TyrR. Our results indicate that nearly all the bases within the palindromic arms of the strong and weak boxes are important for the binding of the TyrR protein. Two alanine-substituted mutant TyrR proteins, HA494 and TA495, were purified, and their binding affinities for the tyrP operator were measured by a gel shift assay. HA494 was shown to be completely defective in binding to the tyrP operator in vitro, while, in comparison with wild-Type TyrR, TA495 had only a small reduction in DNA binding. Missing contact probing was performed by using the purified TA495 protein, and the results suggest that T495 makes specific contacts with adenine and thymine bases at the +/-5 positions in the TyrR boxes.
Collapse
Affiliation(s)
- J S Hwang
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
13
|
Wang P, Yang J, Ishihama A, Pittard AJ. Demonstration that the TyrR protein and RNA polymerase complex formed at the divergent P3 promoter inhibits binding of RNA polymerase to the major promoter, P1, of the aroP gene of Escherichia coli. J Bacteriol 1998; 180:5466-72. [PMID: 9765583 PMCID: PMC107600 DOI: 10.1128/jb.180.20.5466-5472.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have identified three promoters (P1, P2, and P3) in the regulatory region of the Escherichia coli aroP gene (P. Wang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:4206-4212, 1997). Both P1 and P2 can direct mRNA synthesis for aroP expression, whereas P3 is a divergent promoter which overlaps with P1. The repression of transcription from the major promoter, P1, has been postulated to involve the activation of the divergent promoter, P3, by the TyrR protein (P. Wang, J. Yang, B. Lawley, and A. J. Pittard, J. Bacteriol. 179:4213-4218, 1997). In the present study, we confirmed the proposed mechanism of P3-mediated repression of P1 transcription by studying the binding of RNA polymerase to the promoters P1 and P3 in vitro in the presence and absence of TyrR protein and its cofactors. Our results show that (i) only one RNA polymerase molecule can bind to the DNA fragment carrying the aroP regulatory region, (ii) RNA polymerase has a higher affinity for P1 than for either P2 or P3 and binds to P1 in the absence of TyrR protein, (iii) in the presence of TyrR protein and its cofactor, phenylalanine or tyrosine, RNA polymerase preferentially binds to P3, and (iv) RNA polymerase does not respond to the activation-defective mutant TyrR protein TyrR-RQ10 and remains bound to P1 in the presence of TyrR-RQ10 and either of the cofactors.
Collapse
Affiliation(s)
- P Wang
- Department of Microbiology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | |
Collapse
|
14
|
Yang J, Murakami K, Camakaris H, Fujita N, Ishihama A, Pittard AJ. Amino acid residues in the alpha-subunit C-terminal domain of Escherichia coli RNA polymerase involved in activation of transcription from the mtr promoter. J Bacteriol 1997; 179:6187-91. [PMID: 9324270 PMCID: PMC179526 DOI: 10.1128/jb.179.19.6187-6191.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To examine the role of the amino acid residues (between positions 258 and 275 and positions 297 and 298) of the alpha-subunit of RNA polymerase in TyrR-mediated activation of the mtr promoter, we have carried out in vitro transcription experiments using a set of mutant RNA polymerases with a supercoiled mtr template. Decreases in factor-independent transcription in vitro by mutant RNA polymerases L262A, R265A, and K297A suggested the presence of a possible UP element associated with the mtr promoter. Mutational studies have revealed that an AT-rich sequence centered at -41 of the mtr promoter (SeqA) functions like an UP element. In vivo and in vitro analyses using a mutant mtr promoter carrying a disrupted putative UP element showed that this AT-rich sequence is responsible for interactions with the alpha-subunit which influence transcription in the absence of TyrR protein. However, the putative UP element is not needed for activator-dependent activation of the mtr promoter by TyrR and phenylalanine. The results from in vitro studies indicated that the alpha-subunit residues leucine-262, arginine-265, and lysine-297 are critical for interaction with the putative UP element of the mtr promoter and play major roles in TyrR-dependent transcription activation. The residues at positions 258, 260, 261, 268, and 270 also play important roles in TyrR-dependent activation. Other residues, at positions 259, 263, 264, 266, 269, 271, 273, 275, and 298, appear to play less significant roles or no role in activation of mtr transcription.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The ability of microorganisms to degrade L-tyrosine to phenol, pyruvate, and ammonia is catalyzed by the inducible enzyme L-tyrosine phenol lyase (EC 4.1.99.2). To investigate possible mechanisms for how the synthesis of this enzyme is regulated, a variety of biochemical and genetic procedures was used to analyze transcription from the tpl promoter of Citrobacter freundii ATCC 29063 (C. braakii). By computer analysis of the region upstream of the tpl structural gene, two segments of DNA bearing strong homology to the known operator targets of the TyrR protein of Escherichia coli were detected. A DNA fragment of 509 bp carrying these operator targets plus the presumptive tpl promoter was synthesized by PCR and used to construct a single-copy tpl-lacZ reporter system. The formation of beta-galactosidase in strains carrying this reporter system, which was measured in E. coli strains of various genotypes, was strongly dependent on the presence of a functional TyrR protein. In strains bearing deletions of the tyrR gene, the formation of beta-galactosidase was reduced by a factor of 10. Several mutationally altered forms of TyrR were deficient in their abilities to activate the tpl promoter. The pattern of loss of activation function was exactly parallel to the effects of the same tyrR mutations on the mtr promoter, which is known to be activated by the TyrR protein. When cells carrying the tpl-lacZ reporter system were grown on glycerol, the levels of beta-galactosidase were 10- to 20-fold higher than those observed in glucose-grown cells. The effect was the same whether or not TyrR-mediated stimulation of the tpl promoter was in effect. By deleting the cya gene, it was shown that the glycerol effect was attributable to stimulation of the tpl promoter by the cyclic AMP (cAMP)-cAMP reporter protein system. A presumptive binding site for this transcription factor was detected just upstream of the -35 recognition hexamer of the tpl promoter. The transcriptional start point of the tpl promoter was determined by chemical procedures. The precise locations of the TyrR binding sites, which were established by DNase I footprinting, agreed with the computer-predicted positions of these regulatory sites. The two TyrR operators, which were centered at coordinates -272.5 and -158.5 with respect to the transcriptional start point, were independently disabled by site-directed mutagenesis. When the upstream operator was altered, activation was completely abolished. When the downstream operator was altered, there was a fourfold reduction in reporter enzyme levels. The tpl system presents a number of intriguing features not previously encountered in TyrR-activated promoters. First among these is the question of how the TyrR protein, bound to widely separated operators, activates the tpl promoter which is also widely separated from the operators.
Collapse
Affiliation(s)
- H Q Smith
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
16
|
Wang P, Yang J, Lawley B, Pittard AJ. Repression of the aroP gene of Escherichia coli involves activation of a divergent promoter. J Bacteriol 1997; 179:4213-8. [PMID: 9209035 PMCID: PMC179241 DOI: 10.1128/jb.179.13.4213-4218.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The repression of aroP expression which is mediated by the TyrR protein with phenylalanine, tyrosine, or tryptophan has been shown to be primarily a direct result of TyrR-mediated activation of a divergent promoter, P3, which directs the RNA polymerase away from promoter P1. Evidence which has been presented to support this conclusion is as follows. Repression of P1 does not occur either in vitro or in vivo if wild-type TyrR protein is substituted by the activation-negative mutant RQ10 (with an R-to-Q change at position 10). Repression of P1 is greatly diminished if the P3 promoter is inactivated or if a 5-bp insertion is made between the P3 promoter and the binding sites for TyrR. Repression is also abolished if the promoter strength of P1 is increased or a putative UP element associated with P3 is altered. Repression of the second promoter, P2, still occurs if the wild-type TyrR protein is substituted with RQ10 or EQ274. The tryptophan-mediated repression of aroP does not involve the TrpR protein.
Collapse
Affiliation(s)
- P Wang
- Department of Microbiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
17
|
Zhu Q, Zhao S, Somerville RL. Expression, purification, and functional analysis of the TyrR protein of Haemophilus influenzae. Protein Expr Purif 1997; 10:237-46. [PMID: 9226720 DOI: 10.1006/prep.1997.0757] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene that was inferred to encode the TyrR protein of Haemophilus influenzae Rd was synthesized by polymerase chain reaction and inserted into a T7-based expression vector. Methods were developed to overexpress the TyrR protein of H. influenzae in Escherichia coli and to purify the protein on a large scale. Both in vitro and in vivo functional comparisons of the H. influenzae and E. coli TyrR proteins were carried out. The TyrR protein of H. influenzae was able to bind in vitro to an operator target upstream of the aroF-tyrA gene of E. coli. In the presence of [gamma-S]ATP, the DNA binding ability of the H. influenzae TyrR protein was drastically reduced. Despite the much shorter peptide chain length (318 amino acid residues vs 513), the TyrR protein of H. influenzae was as active in repressing the aroF promoter as the TyrR protein of E. coli. Repression by both proteins was enhanced in the presence of tyrosine; however, the transcriptional activation function associated with the TyrR protein of E. coli could not be detected when the H. influenzae TyrR protein was expressed in E. coli. By computer analysis, at least five operator targets for TyrR were identified within the genomic DNA of H. influenzae. These observations show that the assignment of function to the tyrR gene of H. influenzae was correctly made. Further studies of the H. influenzae TyrR protein in comparison to its E. coli counterpart should provide valuable mechanistic information on transcriptional regulation in this system.
Collapse
Affiliation(s)
- Q Zhu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
18
|
Hwang JS, Yang J, Pittard AJ. Critical base pairs and amino acid residues for protein-DNA interaction between the TyrR protein and tyrP operator of Escherichia coli. J Bacteriol 1997; 179:1051-8. [PMID: 9023183 PMCID: PMC178797 DOI: 10.1128/jb.179.4.1051-1058.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In Escherichia coli K-12, the repression of tyrP requires the binding of the TyrR protein to the operator in the presence of coeffectors, tyrosine and ATP. This operator contains two 22-bp palindromic sequences which are termed TyrR boxes. Methylation, uracil, and ethylation interference experiments were used to identify the important sites in the TyrR boxes that make contacts with the TyrR protein. Methylation interference studies demonstrated that guanines at positions +8, -5, and -8 of the strong TyrR box and positions +8, -4, and -8 of the weak box are close to the TyrR protein. Uracil interference revealed that strong van der Waals contacts are made by the thymines at position -7 and +5 of the top strands of both strong and weak boxes and that weaker contacts are made by the thymines at positions +7 (strong box) and -5 and +7 (weak box) of the bottom strand. In addition, ethylation interference suggested that the phosphate backbone contacts are located at the end and central regions of the palindrome. These findings are supported by our results derived from studies of symmetrical mutations of the tyrP strong box. Overall, the results confirm the critical importance of the invariant (G x C)(C x G)8 base pairs for TyrR recognition and also indicate that interactions with (T x A)(A x T)7 are of major importance. In contrast, mutations in other positions result in weaker effects on the binding affinity of TyrR protein, indicating that these positions play a lesser role in TyrR protein recognition. Alanine scanning of both helices of the putative helix-turn-helix DNA-binding motif of TyrR protein has identified those amino acids whose side chains play an essential role in protein structure and DNA binding.
Collapse
Affiliation(s)
- J S Hwang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
19
|
Yang J, Camakaris H, Pittard AJ. In vitro transcriptional analysis of TyrR-mediated activation of the mtr and tyrP+3 promoters of Escherichia coli. J Bacteriol 1996; 178:6389-93. [PMID: 8892849 PMCID: PMC178520 DOI: 10.1128/jb.178.21.6389-6393.1996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In order to understand the mechanism by which the TyrR protein activates transcription from the mtr and tyrP+3 promoters, we have carried out in vitro transcription experiments with supercoiled DNA templates. We have shown that addition of the histone-like protein HU or integration host factor (IHF) greatly inhibited the transcription from the mtr and tyrP+3 promoters. In the presence of phenylalanine, the wild-type TyrR protein, but not a mutant TyrR protein (activation negative), was able to relieve the HU- or IHF-mediated inhibition of transcription. In contrast, the alleviation of the HU- or IHF-mediated transcription inhibition by the wild-type TyrR protein did not occur when a mutant RNA polymerase with a C-terminally truncated alpha subunit was used to carry out the transcription reaction.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
20
|
Pittard J. The various strategies within the TyrR regulation of Escherichia coli to modulate gene expression. Genes Cells 1996; 1:717-25. [PMID: 9077441 DOI: 10.1111/j.1365-2443.1996.tb00012.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The TyrR Regulon of Escherichia coli comprises eight transcription units whose expression is modulated by the TyrR protein. This protein, which is normally a homodimer in solution, can self-associate to form a hexamer, bind with high affinity to specific DNA sequences (TyrR boxes) and interact with the alpha subunit of the RNA polymerase. These various reactions are influenced by the abundance of one or more of the aromatic amino acids, tyrosine, phenylalanine or tryptophan and by the specific location and sequence of the TyrR boxes associated with each transcription unit. This review describes how these activities can be combined in different ways to produce a variety of responses to varying levels of the three aromatic amino acids.
Collapse
Affiliation(s)
- J Pittard
- Department of Microbiology, University of Melbourne, Victoria, Australia
| |
Collapse
|