1
|
Escherichia coli Strains Producing Selected Bacteriocins Inhibit Porcine Enterotoxigenic Escherichia coli (ETEC) under both In Vitro and In Vivo Conditions. Appl Environ Microbiol 2021; 87:e0312120. [PMID: 33962981 DOI: 10.1128/aem.03121-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) and Shiga toxin-producing E. coli (STEC) strains are the causative agents of severe foodborne diseases in both humans and animals. In this study, porcine pathogenic E. coli strains (n = 277) as well as porcine commensal strains (n = 188) were tested for their susceptibilities to 34 bacteriocin monoproducers to identify the most suitable bacteriocin types inhibiting porcine pathogens. Under in vitro conditions, the set of pathogenic E. coli strains was found to be significantly more susceptible to the majority of tested bacteriocins than commensal E. coli. Based on the production of bacteriocins with specific activity against pathogens, three potentially probiotic commensal E. coli strains of human origin were selected. These strains were found to be able to outcompete ETEC strains expressing F4 or F18 fimbriae in liquid culture and also decreased the severity and duration of diarrhea in piglets during experimental ETEC infection as well as pathogen numbers on the last day of in vivo experimentation. While the extents of the probiotic effect were different for each strain, the cocktail of all three strains showed the most pronounced beneficial effects, suggesting synergy between the tested E. coli strains. IMPORTANCE Increasing levels of antibiotic resistance among bacteria also increase the need for alternatives to conventional antibiotic treatment. Pathogenic Escherichia coli represents a major diarrheic infectious agent of piglets in their postweaning period; however, available measures to control these infections are limited. This study describes three novel E. coli strains producing antimicrobial compounds (bacteriocins) that actively inhibit a majority of toxigenic E. coli strains. The beneficial effect of three potentially probiotic E. coli strains was demonstrated under both in vitro and in vivo conditions. The novel probiotic candidates may be used as prophylaxis during piglets' postweaning period to overcome common infections caused by E. coli.
Collapse
|
2
|
Bhattacharya A, Pak HT, Bashey F. Plastic responses to competition: Does bacteriocin production increase in the presence of nonself competitors? Ecol Evol 2018; 8:6880-6888. [PMID: 30073052 PMCID: PMC6065276 DOI: 10.1002/ece3.4203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 11/07/2022] Open
Abstract
Anticompetitor traits such as the production of allelopathic toxins can confer significant competitive benefits but are often costly to produce. Evolution of these traits may be facilitated by environment-specific induction; however, the extent to which costly anticompetitor traits are induced by competitors is not well explored. Here, we addressed this question using bacteriocins, which are highly specific, proteinaceous anticompetitor toxins, produced by most lineages of bacteria and archaea. We tested the prediction that bacteriocin production is phenotypically plastic and induced by the presence of competitors by examining bacteriocin production in the presence and absence of nonself competitors over the course of growth of a producing strain. Our results show that bacteriocin production is detectable only at high cell densities, when competition for resources is high. However, the amount of bacteriocin activity was not significantly different in the presence vs. the absence of nonself competitors. These results suggest that bacteriocin production is either (a) canalized, constitutively produced by a fixed frequency of cells in the population or (b) induced by generic cues of competition, rather than specific self/nonself discrimination. Such a nonspecific response to competition could be favored in the natural environment where competition is ubiquitous.
Collapse
Affiliation(s)
| | | | - Farrah Bashey
- Department of BiologyIndiana UniversityBloomingtonIndiana
| |
Collapse
|
3
|
Rainey PB, De Monte S. Resolving Conflicts During the Evolutionary Transition to Multicellular Life. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2014. [DOI: 10.1146/annurev-ecolsys-120213-091740] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul B. Rainey
- New Zealand Institute for Advanced Study and Allan Wilson Center for Molecular Ecology and Evolution, Massey University, Auckland 0745, New Zealand;
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l'Ecole Normale Supérieure, UMR CNRS 8197 INSERM 1024, F-75005 Paris, France;
| |
Collapse
|
4
|
Hol FJH, Voges MJ, Dekker C, Keymer JE. Nutrient-responsive regulation determines biodiversity in a colicin-mediated bacterial community. BMC Biol 2014; 12:68. [PMID: 25159553 PMCID: PMC4161892 DOI: 10.1186/s12915-014-0068-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/01/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Antagonistic interactions mediated by antibiotics are strong drivers of bacterial community dynamics which shape biodiversity. Colicin production by Escherichia coli is such an interaction that governs intraspecific competition and is involved in promoting biodiversity. It is unknown how environmental cues affect regulation of the colicin operon and thus influence antibiotic-mediated community dynamics. RESULTS Here, we investigate the community dynamics of colicin-producing, -sensitive, and -resistant/non-producer E. coli strains that colonize a microfabricated spatially-structured habitat. Nutrients are found to strongly influence community dynamics: when growing on amino acids and peptides, colicin-mediated competition is intense and the three strains do not coexist unless spatially separated at large scales (millimeters). Surprisingly, when growing on sugars, colicin-mediated competition is minimal and the three strains coexist at the micrometer scale. Carbon storage regulator A (CsrA) is found to play a key role in translating the type of nutrients into the observed community dynamics by controlling colicin release. We demonstrate that by mitigating lysis, CsrA shapes the community dynamics and determines whether the three strains coexist. Indeed, a mutant producer that is unable to suppress colicin release, causes the collapse of biodiversity in media that would otherwise support co-localized growth of the three strains. CONCLUSIONS Our results show how the environmental regulation of an antagonistic trait shapes community dynamics. We demonstrate that nutrient-responsive regulation of colicin release by CsrA, determines whether colicin producer, resistant non-producer, and sensitive strains coexist at small spatial scales, or whether the sensitive strain is eradicated. This study highlights how molecular-level regulatory mechanisms that govern interference competition give rise to community-level biodiversity patterns.
Collapse
Affiliation(s)
- Felix JH Hol
- />Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ Delft, 2628 The Netherlands
| | - Mathias J Voges
- />Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ Delft, 2628 The Netherlands
| | - Cees Dekker
- />Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ Delft, 2628 The Netherlands
| | - Juan E Keymer
- />Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ Delft, 2628 The Netherlands
- />Instituto de Ecología y Biodiversidad, Casilla 653, Santiago, Chile
| |
Collapse
|
5
|
Ghazaryan L, Tonoyan L, Ashhab AA, Soares MIM, Gillor O. The role of stress in colicin regulation. Arch Microbiol 2014; 196:753-64. [PMID: 25048159 DOI: 10.1007/s00203-014-1017-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/05/2014] [Accepted: 07/11/2014] [Indexed: 12/28/2022]
Abstract
Bacteriocins produced by Enterobacteriaceae are high molecular weight toxic proteins that kill target cells through a variety of mechanisms, including pore formation and nucleic acid degradation. What is remarkable about these toxins is that their expression results in death to the producing cells and therefore bacteriocin induction have to be tightly regulated, often confined to times of stress. Information on the regulation of bacteriocins produced by enteric bacteria is sketchy as their expression has only been elucidated in a handful of bacteria. Here, we review the known regulatory mechanisms of enteric bacteriocins and explore the expression of 12 of them in response to various triggers: DNA-damaging agents, stringent response, catabolite repression, oxidative stress, growth phase, osmolarity, cold shock, nutrient deprivation, anaerobiosis and pH stress. Our results indicate that the expression of bacteriocins is mostly confined to mutagenic triggers, while all other triggers tested are limited inducers.
Collapse
Affiliation(s)
- Lusine Ghazaryan
- Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University, 84990, Midreshet Ben-Gurion, Israel
| | | | | | | | | |
Collapse
|
6
|
A new biofilm-associated colicin with increased efficiency against biofilm bacteria. ISME JOURNAL 2014; 8:1275-88. [PMID: 24451204 DOI: 10.1038/ismej.2013.238] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/08/2022]
Abstract
Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments.
Collapse
|
7
|
Bano S, Vankemmelbeke M, Penfold CN, James R. Pattern of induction of colicin E9 synthesis by sub MIC of Norfloxacin antibiotic. Microbiol Res 2013; 168:661-6. [DOI: 10.1016/j.micres.2013.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 04/04/2013] [Indexed: 11/28/2022]
|
8
|
Regulating colicin synthesis to cope with stress and lethality of colicin production. Biochem Soc Trans 2013; 40:1507-11. [PMID: 23176507 DOI: 10.1042/bst20120184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are plasmid-encoded bacteriocins active against Escherichia coli and closely related species of Enterobacteriaceae. They promote microbial diversity and genetic diversity in E. coli populations. Colicin synthesis is characteristically repressed by the LexA protein, the key regulator of the SOS response. As colicins are released by cell lysis, generally two LexA dimers binding to two overlapping SOS boxes control untimely expression. Nevertheless, genetic organization of the colicin clusters, additional transcription regulators as well as post-transcriptional mechanisms involving translational efficiency of the lysis and activity genes fine-tune colicin expression and protect against lethality of colicin production.
Collapse
|
9
|
Kamenšek S, Žgur-Bertok D. Global transcriptional responses to the bacteriocin colicin M in Escherichia coli. BMC Microbiol 2013; 13:42. [PMID: 23421615 PMCID: PMC3599342 DOI: 10.1186/1471-2180-13-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/18/2013] [Indexed: 01/17/2023] Open
Abstract
Background Bacteriocins are protein antimicrobial agents that are produced by all prokaryotic lineages. Escherichia coli strains frequently produce the bacteriocins known as colicins. One of the most prevalent colicins, colicin M, can kill susceptible cells by hydrolyzing the peptidoglycan lipid II intermediate, which arrests peptidoglycan polymerization steps and provokes cell lysis. Due to the alarming rise in antibiotic resistance and the lack of novel antimicrobial agents, colicin M has recently received renewed attention as a promising antimicrobial candidate. Here the effects of subinhibitory concentrations of colicin M on whole genome transcription in E. coli were investigated, to gain insight into its ecological role and for purposes related to antimicrobial therapy. Results Transcriptome analysis revealed that exposure to subinhibitory concentrations of colicin M altered expression of genes involved in envelope, osmotic and other stresses, including genes of the CreBC two-component system, exopolysaccharide production and cell motility. Nonetheless, there was no induction of biofilm formation or genes involved in mutagenesis. Conclusion At subinhibitory concentrations colicin M induces an adaptive response primarily to protect the bacterial cells against envelope stress provoked by peptidoglycan damage. Among the first induced were genes of the CreBC two-component system known to promote increased resistance against colicins M and E2, providing novel insight into the ecology of colicin M production in natural environments. While an adaptive response was induced nevertheless, colicin M application did not increase biofilm formation, nor induce SOS genes, adverse effects that can be provoked by a number of traditional antibiotics, providing support for colicin M as a promising antimicrobial agent.
Collapse
Affiliation(s)
- Simona Kamenšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Ho D, Lugo MR, Merrill AR. Harmonic analysis of the fluorescence response of bimane adducts of colicin E1 at helices 6, 7, and 10. J Biol Chem 2012; 288:5136-48. [PMID: 23264635 DOI: 10.1074/jbc.m112.436303] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pre-channel state of helices 6, 7, and 10 (Val(447)-Gly(475) and Ile(508)-Ile(522)) of colicin E1 was investigated by a site-directed fluorescence labeling technique. A total of 44 cysteine variants were purified and covalently labeled with monobromobimane fluorescent probe. A variety of fluorescence properties of the bimane fluorophore were measured for both the soluble and membrane-bound states of the channel peptide, including the fluorescence emission maximum, fluorescence anisotropy, and membrane bilayer penetration depth. Using site-directed fluorescence labeling combined with our novel helical periodicity analysis method, the data revealed that helices 6, 7, and 10 are separate amphipathic α-helices with a calculated periodicity of T = 3.34 ± 0.08 for helix 6, T = 3.56 ± 0.03 for helix 7, and T = 2.99 ± 0.12 for helix 10 in the soluble state. In the membrane-bound state, the helical periodicity was determined to be T = 3.00 ± 0.15 for helix 6, T = 3.68 ± 0.03 for helix 7, and T = 3.47 ± 0.04 for helix 10. Dual fluorescence quencher analysis showed that both helices 6 and 7 adopt a tilted topology that correlates well with the analysis based on the fluorescence anisotropy profile. These data provide further support for the umbrella model of the colicin E1 channel domain.
Collapse
Affiliation(s)
- Derek Ho
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
11
|
McWilliams BD, Palzkill T, Weinstock GM, Petrosino JF. Identification of novel and cross-species seroreactive proteins from Bacillus anthracis using a ligation-independent cloning-based, SOS-inducible expression system. Microb Pathog 2012; 53:250-8. [PMID: 22975444 DOI: 10.1016/j.micpath.2012.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The current standard for Bacillus anthracis vaccination is the Anthrax Vaccine Adsorbed (AVA, BioThrax). While effective, the licensed vaccine schedule requires five intramuscular injections in the priming series and yearly boosters to sustain protection. One potential approach to maintain or improve the protection afforded by an anthrax vaccine, but requiring fewer doses, is through the use of purified proteins to enhance an antibody response, which could be used on their own or in combination with the current vaccine. This study describes a novel, high-throughput system to amplify and clone every gene in the B. anthracis pXO1 and pXO2 virulence plasmids. We attempted to express each cloned gene in Escherichia coli, and obtained full-length expression of 57% of the proteins. Expressed proteins were then used to identify immunogens using serum from three different mammalian infection models: Dutch-belted rabbits, BALB/c mice, and rhesus macaque monkeys. Ten proteins were detected by antibodies in all of these models, eight of which have not been identified as immunoreactive in other studies to date. Serum was also collected from humans who had received the AVA vaccine, and similar screens showed that antigens that were detected in the infection models were not present in the serum of vaccinated humans, suggesting that antibodies elicited by the current AVA vaccine do not react with the immunoreactive proteins identified in this study. These results will contribute to the future selection of targets in antigenicity and protection studies as one or more of these proteins may prove to be worthy of inclusion in future vaccine preparations.
Collapse
Affiliation(s)
- Brian D McWilliams
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
12
|
Butala M, Sonjak S, Kamenšek S, Hodošček M, Browning DF, Žgur-Bertok D, Busby SJW. Double locking of an Escherichia coli promoter by two repressors prevents premature colicin expression and cell lysis. Mol Microbiol 2012; 86:129-39. [PMID: 22812562 DOI: 10.1111/j.1365-2958.2012.08179.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The synthesis of Eschericha coli colicins is lethal to the producing cell and is repressed during normal growth by the LexA transcription factor, which is the master repressor of the SOS system for repair of DNA damage. Following DNA damage, LexA is inactivated and SOS repair genes are induced immediately, but colicin production is delayed and induced only in terminally damaged cells. The cause of this delay is unknown. Here we identify the global transcription repressor, IscR, as being directly responsible for the delay in colicin K expression during the SOS response, and identify the DNA target for IscR at the colicin K operon promoter. Our results suggest that, IscR stabilizes LexA at the cka promoter after DNA damage thus, preventing its cleavage and inactivation, and this cooperation ensures that suicidal colicin K production is switched on only as a last resort. A similar mechanism operates at the regulatory region of other colicins and, hence, we suggest that many promoters that control the expression of 'lethal' genes are double locked.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli. J Bacteriol 2011; 193:4643-51. [PMID: 21764927 DOI: 10.1128/jb.00368-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.
Collapse
|
14
|
Proximity-dependent inhibition in Escherichia coli isolates from cattle. Appl Environ Microbiol 2011; 77:2345-51. [PMID: 21296941 DOI: 10.1128/aem.03150-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel proximity-dependent inhibition phenotype of Escherichia coli that is expressed when strains are cocultured in defined minimal media. When cocultures of "inhibitor" and "target" strains approached a transition between logarithmic and stationary growth, target strain populations rapidly declined >4 log CFU per ml over a 2-h period. Inhibited strains were not affected by exposure to conditioned media from inhibitor and target strain cocultures or when the inhibitor and target strains were incubated in shared media but physically separated by a 0.4-μm-pore-size membrane. There was no evidence of lytic phage or extracellular bacteriocin involvement, unless the latter was only present at effective concentrations within immediate proximity of the inhibited cells. The inhibitory activity observed in this study was effective against a diversity of E. coli strains, including enterohemorrhagic E. coli serotype O157:H7, enterotoxigenic E. coli expressing F5 (K99) and F4 (K88) fimbriae, multidrug-resistant E. coli, and commensal E. coli. The decline in counts of target strains in coculture averaged 4.8 log CFU/ml (95% confidence interval, 4.0 to 5.5) compared to their monoculture counts. Coculture of two inhibitor strains showed mutual immunity to inhibition. These results suggest that proximity-dependent inhibition can be used by bacteria to gain a numerical advantage when populations are entering stationary phase, thus setting the stage for a competitive advantage when growth conditions improve.
Collapse
|
15
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 813] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
White D, Musse AA, Wang J, London E, Merrill AR. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. J Biol Chem 2006; 281:32375-84. [PMID: 16854987 DOI: 10.1074/jbc.m605880200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-bound closed state of the colicin E1 channel domain was investigated by site-directed fluorescence labeling using a bimane fluorophore attached to each single cysteine residue within helix 2 of each mutant protein. The fluorescence properties of the bimane fluorophore were measured for the membrane-associated form of the closed channel and included fluorescence emission maximum, fluorescence anisotropy, apparent polarity, surface accessibility, and membrane bilayer penetration depth. The fluorescence data show that helix 2 is an amphipathic alpha-helix that is situated parallel to the membrane surface, but it is less deeply embedded within the bilayer interfacial region than is helix 1 in the closed channel. A least squares fit of the various data sets to a harmonic wave function indicated that the periodicity and angular frequency for helix 2 in the membrane-bound state are typical for an amphipathic alpha-helix (3.8 +/- 0.1 residues per turn and 94 +/- 4 degrees, respectively) that is located at an interfacial region of a membrane bilayer. Dual quencher analysis also revealed that helix 2 is peripherally membrane associated, with one face of the helix dipping into the interfacial region of the lipid bilayer and the other face projecting outwardly into the aqueous solvent. Finally, our data show that helices 1 and 2 remain independent helices upon membrane association with a short connector link (Tyr(363)-Gly(364)) and that short amphipathic alpha-helices participate in the formation of a lipid-dependent, toroidal pore for this colicin.
Collapse
Affiliation(s)
- Dawn White
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
17
|
Norman A, Hansen LH, Sørensen SJ. A flow cytometry-optimized assay using an SOS–green fluorescent protein (SOS–GFP) whole-cell biosensor for the detection of genotoxins in complex environments. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:164-72. [PMID: 16413819 DOI: 10.1016/j.mrgentox.2005.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 11/22/2005] [Accepted: 11/26/2005] [Indexed: 11/29/2022]
Abstract
Whole-cell biosensors have become popular tools for detection of ecotoxic compounds in environmental samples. We have developed an assay optimized for flow cytometry with detection of genotoxic compounds in mind. The assay features extended pre-incubation and a cell density of only 10(6)-10(7) cells/mL, and proved far more sensitive than a previously published assay using the same biosensor strain. By applying the SOS-green fluorescent protein (GFP) whole-cell biosensor directly to soil microcosms we were also able to evaluate both the applicability and sensitivity of a biosensor based on SOS-induction in whole soil samples. Soil microcosms were spiked with a dilution-series of crude broth extract from the mitomycin C-producing streptomycete Streptomyces caespitosus. Biosensors extracted from these microcosms after 1 day of incubation at 30 degrees C were easily distinguished from extracts of non-contaminated soil particles when using flow cytometry, and induction of the biosensor by mitomycin C was detectable at concentrations as low as 2.5 ng/g of soil.
Collapse
Affiliation(s)
- Anders Norman
- Department of Microbiology, University of Copenhagen, 1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
18
|
Starcic-Erjavec M, van Putten JPM, Gaastra W, Jordi BJAM, Grabnar M, Zgur-Bertok D. H-NS and Lrp serve as positive modulators of traJ expression from the Escherichia coli plasmid pRK100. Mol Genet Genomics 2003; 270:94-102. [PMID: 12942368 DOI: 10.1007/s00438-003-0908-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 07/18/2003] [Indexed: 11/26/2022]
Abstract
Conjugative transfer of F-like plasmids is a tightly regulated process. The TraJ protein is the main positive activator of the tra operon which encodes products required for conjugative transfer of F-like plasmids. Nucleotide sequence analysis revealed potential Lrp and H-NS binding sites in the traJ regulatory region. Expression of a traJ-lacZ fusion in hns and lrp mutant strains showed that both are positive modulators of traJ expression. Competitive RT-PCR demonstrated that H-NS and Lrp exert their effect at the transcriptional level. Electrophoretic mobility-shift assays showed that H-NS and Lrp proteins bind to the traJ promoter. Conjugative transfer of pRK100 was decreased in hns but not in lrp mutant strains. Together, the results indicate H-NS and Lrp function as activators of traJ transcription.
Collapse
Affiliation(s)
- M Starcic-Erjavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
19
|
Chiuchiolo MJ, Delgado MA, Farías RN, Salomón RA. Growth-phase-dependent expression of the cyclopeptide antibiotic microcin J25. J Bacteriol 2001; 183:1755-64. [PMID: 11160108 PMCID: PMC95062 DOI: 10.1128/jb.183.5.1755-1764.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin J25 is a 2,107-Da, plasmid-encoded, cyclopeptide antibiotic produced by Escherichia coli. We have isolated lacZ fusions to mcjA (encoding the 58-amino-acid microcin precursor) and mcjB and mcjC (which are required for microcin maturation), and the regulation of these fusions was used to identify factors that control the expression of these genes. The mcjA gene was found to be dramatically induced as cells entered the stationary phase. Expression of mcjA could be induced by resuspending uninduced exponential-phase cells in spent supernatant obtained from an early-stationary-phase culture. Induction of mcjA expression was not dependent on high cell density, pH changes, anaerobiosis, or the buildup of some inducer. A starvation for carbon and inorganic phosphate induced mcjA expression, while under nitrogen limitation there was no induction at all. These results taken together suggest that stationary-phase induction of mcjA is triggered by nutrient depletion. The mcjB and mcjC genes were also regulated by the growth phase of the culture, but in contrast to mcjA, they showed substantial expression already during exponential growth. Induction of the microcin genes was demonstrated to be independent of RpoS, the cyclic AMP-Crp complex, OmpR, and H-NS. Instead, we found that the growth-phase-dependent expression of mcjA, mcjB, and mcjC may be explained by the concerted action of the positively acting transition state regulators ppGpp, Lrp, and integration host factor. Measurements of microcin J25 production by strains defective in these global regulators showed a good correlation with the reduced expression of the fusions in such mutant backgrounds.
Collapse
Affiliation(s)
- M J Chiuchiolo
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | |
Collapse
|
20
|
Kuhar I, Zgur-Bertok D. Transcription regulation of the colicin K cka gene reveals induction of colicin synthesis by differential responses to environmental signals. J Bacteriol 1999; 181:7373-80. [PMID: 10572143 PMCID: PMC103702 DOI: 10.1128/jb.181.23.7373-7380.1999] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicin-producing strains occur frequently in natural populations of Escherichia coli, and colicinogenicity seems to provide a competitive advantage in the natural habitat. A cka-lacZ fusion was used to study the regulation of expression of the colicin K structural gene. Expression is growth phase dependent, with high activity in the late stationary phase. Nutrient depletion induces the expression of cka due to an increase in ppGpp. Temperature is a strong signal for cka expression, since only basal-level activity was detected at 22 degrees C. Mitomycin C induction demonstrates that cka expression is regulated to a lesser extent by the SOS response independently of ppGpp. Increased osmolarity induces a partial increase, while the global regulator integration host factor inhibits expression in the late stationary phase. Induction of cka was demonstrated to be independent of the cyclic AMP-Crp complex, carbon source, RpoS, Lrp, H-NS, pH, and short-chain fatty acids. In contrast to colicin E1, cka expression is independent of catabolite repression and is partially affected by anaerobiosis only upon SOS induction. These results indicate that while different colicins are expressed in response to some common signals such as nutrient depletion, the expression of individual colicins could be further influenced by specific environmental cues.
Collapse
Affiliation(s)
- I Kuhar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
21
|
|
22
|
Grossman TH, Kawasaki ES, Punreddy SR, Osburne MS. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 1998; 209:95-103. [PMID: 9524234 DOI: 10.1016/s0378-1119(98)00020-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
E. coli recombinant expression systems that utilize lac operon control elements to modulate gene expression are known to produce some amount of uninduced (leaky) gene expression. Previously, we showed that high levels of uninduced gene expression was a major cause of instability in the pET expression system. We show here that the pET system, in which the phage T7 RNA polymerase gene is expressed via lac operon control elements, exhibits leaky expression that increases markedly as cells grown in complex medium enter stationary phase. Moreover, we found that this phenomenon occurs with the chromosomal lac operon as well. Further investigation revealed that stationary phase leaky expression requires cyclic AMP, and that substantial leaky expression could be effected in log phase cells by adding cyclic AMP and acetate at pH6.0. Finally, a comparison of otherwise isogenic cya and wild-type hosts showed that expression stability and plasmid maintenance in the cya host is greatly enhanced, even when cells are passaged repeatedly in non-selection medium. These findings both provide a method to enhance the stability of lac-based recombinant expression systems, and suggest that derepression of the lac operon in the absence of inducer may be part of a general cellular response to nutrient limitation.
Collapse
Affiliation(s)
- T H Grossman
- Procept, Inc., Department of Molecular Biology, 840 Memorial Drive, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Colicins are toxic exoproteins produced by bacteria of colicinogenic strains of Escherichia coli and some related species of Enterobacteriaceae, during the growth of their cultures. They inhibit sensitive bacteria of the same family. About 35% E. coli strains appearing in human intestinal tract are colicinogenic. Synthesis of colicins is coded by genes located on Col plasmids. Until now more than 34 types of colicins have been described, 21 of them in greater detail, viz. colicins A, B, D, E1-E9, Ia, Ib, JS, K, M, N, U, 5, 10. In general, their interaction with sensitive bacteria includes three steps: (1) binding of the colicin molecule to a specific receptor in the bacterial outer membrane; (2) its translocation through the cell envelope; and (3) its lethal interaction with the specific molecular target in the cell. The classification of colicins is based on differences in the molecular events of these three steps.
Collapse
Affiliation(s)
- J Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
24
|
Cavard D. Role of the colicin A lysis protein in the expression of the colicin A operon. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2295-2303. [PMID: 9245818 DOI: 10.1099/00221287-143-7-2295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The involvement of the cal gene, which encodes the colicin A lysis protein, in the expression of the colicin A operon is demonstrated. Colicin A synthesis by Escherichia coli was studied at various temperatures in cells containing either the wild-type colicin A operon or the colicin A operon with the cal gene deleted. The amount of colicin A produced was lower in cells containing the colicin A operon devoid of the cal gene than in wild-type cells. In cells treated with the antibiotic globomycin, the synthesis of colicin A was blocked in null cal mutants at all temperatures. It was blocked only at low temperature in cells containing the wild-type colicin A operon, but not in cells subjected to heat shock or azide treatment. The cal gene product may be an activator of colicin A expression and of its own expression. An unidentified product, possibly a heat-shock protein, may also be involved and could complement the cal gene product in some situations.
Collapse
Affiliation(s)
- Danièle Cavard
- Laboratoire d'Ingénierie des Systémes Macromoléculaires, CNRS, 31 chemin Joseph Aiguier, BP 71, 13402 Marseille Cedex 20, France
| |
Collapse
|