1
|
Weiner JM, Lee WH, Nolan EM, Oglesby AG. Calprotectin elicits aberrant iron starvation responses in Pseudomonas aeruginosa under anaerobic conditions. J Bacteriol 2025; 207:e0002925. [PMID: 40135923 PMCID: PMC12004955 DOI: 10.1128/jb.00029-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 03/27/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses several mechanisms to survive in the iron-limiting host environment. The innate immune protein calprotectin (CP) sequesters ferrous iron [Fe(II)], among other divalent transition metal ions, to limit its availability to pathogens. CP levels are increased in individuals with cystic fibrosis (CF), a hereditary disease that leads to chronic pulmonary infection by P. aeruginosa. We previously showed that aerobic CP treatment of P. aeruginosa induces a multi-metal starvation response that alters expression of several virulence properties. However, the CF lung is a hypoxic environment due to the growth of P. aeruginosa in dense biofilms. Here, we report that anaerobic CP treatment of P. aeruginosa induces many processes associated with an aerobic iron starvation response, including decreased phenazine production and increased expression of the PrrF small regulatory RNAs (sRNAs). However, the iron starvation response elicited by CP in anaerobic conditions shows characteristics that are distinct from responses observed in aerobic growth, including a lack of siderophore production and increased induction of genes for the FeoAB Fe(II) and Phu heme uptake systems. Also distinct from aerobic conditions, CP treatment induces expression of genes for predicted manganese transporters MntH1 and MntH2 during anaerobic growth while eliciting a less robust zinc starvation response compared to aerobic conditions. Induction of mntH2 is dependent on the PrrF sRNAs, suggesting a novel example of metal regulatory cross-talk. Thus, anaerobic CP treatment results in a multi-metal starvation response with key distinctions from aerobic conditions, revealing differences in P. aeruginosa metal homeostasis during anaerobic growth.IMPORTANCEIron is critical for most microbial pathogens, and the innate immune system sequesters this metal to limit microbial growth. Pathogens must overcome iron sequestration to survive during infection. For many pathogens, iron homeostasis has primarily been studied in aerobic conditions. Nevertheless, some host environments are hypoxic, including chronic lung infection sites in individuals with cystic fibrosis (CF). Here, we use the innate immune protein calprotectin, which sequesters divalent metal ions including Fe(II), to study the anaerobic iron starvation response of a common CF lung pathogen, Pseudomonas aeruginosa. We report several distinctions of this response during anaerobiosis, highlighting the importance of carefully considering the host environment when investigating the role of nutritional immunity in host-pathogen interactions.
Collapse
Affiliation(s)
- Jacob M. Weiner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Wei Hao Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Burch-Konda J, Kayastha BB, Achour M, Kubo A, Hull M, Braga R, Winton L, Rogers RR, Lutter EI, Patrauchan MA. EF-hand calcium sensor, EfhP, controls transcriptional regulation of iron uptake by calcium in Pseudomonas aeruginosa. mBio 2024; 15:e0244724. [PMID: 39436074 PMCID: PMC11559002 DOI: 10.1128/mbio.02447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca2+-binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca2+-regulated virulence in P. aeruginosa. Here, we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ), and several virulence factors, such as the production of pyocins. The Ca2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca2+ and Fe, and this regulation required a Ca2+-dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to the host.IMPORTANCEPseudomonas aeruginosa (Pa) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca2+ sensor, EfhP, is required for at least 1/3 of the Ca2+ response, including the majority of the iron uptake mechanisms and the production of pyocins. Transcription of efhP itself is regulated by Ca2+ and Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca2+ and associated regulatory mechanisms will serve in the development of future therapeutics targeting Pa's dangerous infections.
Collapse
Affiliation(s)
- Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Biraj B. Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Myriam Achour
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mackenzie Hull
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lorelei Winton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rendi R. Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Golden MM, Heppe AC, Zaremba CL, Wuest WM. Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii. RSC Chem Biol 2024; 5:d4cb00175c. [PMID: 39372678 PMCID: PMC11446287 DOI: 10.1039/d4cb00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
It is estimated that by 2050, bacterial infections will cause 1.8 million more deaths than cancer annually, and the current lack of antibiotic drug discovery is only exacerbating the crisis. Two pathogens in particular, Gram-negative bacteria A. baumannii and P. aeruginosa, are of grave concern because of their heightened multi-drug resistance due to a dense, impermeable outer membrane. However, targeting specific cellular processes may prove successful in overcoming bacterial resistance. This review will concentrate on a novel approach to combatting pathogenicity by disarming bacteria through the disruption of metal homeostasis to reduce virulence and enhance antibiotic uptake. The varying levels of success in bringing metallophores to clinical trials, with currently only one FDA-approved siderophore antibiotic to date, will also be detailed.
Collapse
Affiliation(s)
| | - Amelia C Heppe
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Cassandra L Zaremba
- Department of Chemistry and Biochemistry, Denison University Granville OH 43023 USA
| | - William M Wuest
- Department of Chemistry, Emory University Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory School of Medicine, Emory University Atlanta GA 30322 USA
| |
Collapse
|
4
|
Cianciulli Sesso A, Resch A, Moll I, Bläsi U, Sonnleitner E. The FinO/ProQ-like protein PA2582 impacts antimicrobial resistance in Pseudomonas aeruginosa. Front Microbiol 2024; 15:1422742. [PMID: 39011145 PMCID: PMC11247311 DOI: 10.3389/fmicb.2024.1422742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacteria employ small regulatory RNAs (sRNA) and/or RNA binding proteins (RBPs) to respond to environmental cues. In Enterobacteriaceae, the FinO-domain containing RBP ProQ associates with numerous sRNAs and mRNAs, impacts sRNA-mediated riboregulation or mRNA stability by binding to 5'- or 3'-untranslated regions as well as to internal stem loop structures. Global RNA-protein interaction studies and sequence comparisons identified a ProQ-like homolog (PA2582/ProQ Pae ) in Pseudomonas aeruginosa (Pae). To address the function of ProQ Pae , at first a comparative transcriptome analysis of the Pae strains PAO1 and PAO1ΔproQ was performed. This study revealed more than 100 differentially abundant transcripts, affecting a variety of cellular functions. Among these transcripts were pprA and pprB, encoding the PprA/PprB two component system, psrA, encoding a transcriptional activator of pprB, and oprI, encoding the outer membrane protein OprI. RNA co-purification experiments with Strep-tagged Pae ProQ protein corroborated an association of ProQ Pae with these transcripts. In accordance with the up-regulation of the psrA, pprA, and pprB genes in strain PAO1ΔproQ a phenotypic analysis revealed an increased susceptibility toward the aminoglycosides tobramycin and gentamicin in biofilms. Conversely, the observed down-regulation of the oprI gene in PAO1ΔproQ could be reconciled with a decreased susceptibility toward the synthetic cationic antimicrobial peptide GW-Q6. Taken together, these studies revealed that ProQ Pae is an RBP that impacts antimicrobial resistance in Pae.
Collapse
Affiliation(s)
- Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Lau MML, Kho CJY, Chung HH, Zulkharnain A. Isolation, identification and characterisation of Pseudomonas koreensis CM-01 isolated from diseased Malaysian mahseer (Tor tambroides). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109518. [PMID: 38513913 DOI: 10.1016/j.fsi.2024.109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Pseudomonas species are one of the most threatening fish pathogens which reside a wide range of environments. In this study, the dominant bacteria were isolated from diseased Malaysian mahseer (Tor tambroides) and tentatively named CM-01. It was identified as Pseudomonas koreensis based on its biochemical, morphological, genetic and physiological information. Its pathogenicity was found to be correlated with twelve virulence genes identified including iron uptake, protease, acylhomoserine lactone synthase gacS/gacA component regulation system, type IV secretion system, hydrogen cyanide production, exolysin, alginate biosynthesis, flagella and pili. The median lethal dose (LD50) for the CM-01 isolate on Malaysian mahseer was documented at 5.01 × 107 CFU/mL. The experimental infection revealed that CM-01 led to significant histological lesions in the fish, ultimately resulting in death. These lesions comprise necrosis, tissue thickening and aggregation. Drug sensitivity tests had shown its susceptibility to beta-lactam combination agents and further suggest its drug of choice. Its growing features had shown its growth at optimal temperature and pH. To the best of our knowledge, this is the first report of P. koreensis linked to diseased T. tambroides. STATEMENT OF RELEVANCE: In this research, a novel strain of Pseudomonas koreensis, CM-01 was isolated from diseased T. tambroides for the first time. The antimicrobial susceptibility, pathogenicity, virulence genes and growth characteristics of CM-01 were studied. These findings established a scientific foundation for the recognition of P. koreensis and the management of fish infections caused by this pathogen.
Collapse
Affiliation(s)
- Melinda Mei Lin Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Cindy Jia Yung Kho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Hung Hui Chung
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of system Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, 337-8570, Japan.
| |
Collapse
|
6
|
Burch-Konda J, Kayastha BB, Kubo A, Achour M, Hull M, Braga R, Winton L, Rogers RR, McCoy J, Lutter EI, Patrauchan MA. EF-Hand Calcium Sensor, EfhP, Controls Transcriptional Regulation of Iron Uptake by Calcium in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574892. [PMID: 38260268 PMCID: PMC10802428 DOI: 10.1101/2024.01.09.574892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The human pathogen Pseudomonas aeruginosa poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca 2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca 2+ -binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca 2+ -regulated virulence in P. aeruginosa . Here we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca 2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca 2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ) and several virulence factors, such as production of pyocins. The Ca 2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca 2+ and Fe, and this regulation required Ca 2+ -dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca 2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca 2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to host. IMPORTANCE Pseudomonas aeruginosa ( Pa ) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca 2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca 2+ sensor, EfhP, is required for at least 1/3 of the Ca 2+ response, including all the iron uptake mechanisms and production of pyocins. Transcription of efhP itself is regulated by Ca 2+ , Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca 2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca 2+ and associated regulatory mechanisms will serve the development of future therapeutics targeting Pa dangerous infections.
Collapse
|
7
|
Puja H, Mislin GLA, Rigouin C. Engineering Siderophore Biosynthesis and Regulation Pathways to Increase Diversity and Availability. Biomolecules 2023; 13:959. [PMID: 37371539 PMCID: PMC10296737 DOI: 10.3390/biom13060959] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Siderophores are small metal chelators synthesized by numerous organisms to access iron. These secondary metabolites are ubiquitously present on Earth, and because their production represents the main strategy to assimilate iron, they play an important role in both positive and negative interactions between organisms. In addition, siderophores are used in biotechnology for diverse applications in medicine, agriculture and the environment. The generation of non-natural siderophore analogs provides a new opportunity to create new-to-nature chelating biomolecules that can offer new properties to expand applications. This review summarizes the main strategies of combinatorial biosynthesis that have been used to generate siderophore analogs. We first provide a brief overview of siderophore biosynthesis, followed by a description of the strategies, namely, precursor-directed biosynthesis, the design of synthetic or heterologous pathways and enzyme engineering, used in siderophore biosynthetic pathways to create diversity. In addition, this review highlights the engineering strategies that have been used to improve the production of siderophores by cells to facilitate their downstream utilization.
Collapse
Affiliation(s)
- Hélène Puja
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Gaëtan L. A. Mislin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| | - Coraline Rigouin
- CNRS-UMR7242, Biotechnologie et Signalisation Cellulaire, 300 Bld Sébastien Brant, 67412 Illkirch, France (G.L.A.M.)
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Université de Strasbourg, 300 Bld Sébastien Brant, 67412 Illkirch, France
| |
Collapse
|
8
|
Sonnleitner E, Bassani F, Cianciulli Sesso A, Brear P, Lilic B, Davidovski L, Resch A, Luisi BF, Moll I, Bläsi U. Catabolite repression control protein antagonist, a novel player in Pseudomonas aeruginosa carbon catabolite repression control. Front Microbiol 2023; 14:1195558. [PMID: 37250041 PMCID: PMC10213629 DOI: 10.3389/fmicb.2023.1195558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
In the opportunistic human pathogen Pseudomonas aeruginosa (Pae), carbon catabolite repression (CCR) orchestrates the hierarchical utilization of N and C sources, and impacts virulence, antibiotic resistance and biofilm development. During CCR, the RNA chaperone Hfq and the catabolite repression control protein Crc form assemblies on target mRNAs that impede translation of proteins involved in uptake and catabolism of less preferred C sources. After exhaustion of the preferred C-source, translational repression of target genes is relieved by the regulatory RNA CrcZ, which binds to and acts as a decoy for Hfq. Here, we asked whether Crc action can be modulated to relieve CCR after exhaustion of a preferred carbon source. As Crc does not bind to RNA per se, we endeavored to identify an interacting protein. In vivo co-purification studies, co-immunoprecipitation and biophysical assays revealed that Crc binds to Pae strain O1 protein PA1677. Our structural studies support bioinformatics analyzes showing that PA1677 belongs to the isochorismatase-like superfamily. Ectopic expression of PA1677 resulted in de-repression of Hfq/Crc controlled target genes, while in the absence of the protein, an extended lag phase is observed during diauxic growth on a preferred and a non-preferred carbon source. This observations indicate that PA1677 acts as an antagonist of Crc that favors synthesis of proteins required to metabolize non-preferred carbon sources. We present a working model wherein PA1677 diminishes the formation of productive Hfq/Crc repressive complexes on target mRNAs by titrating Crc. Accordingly, we propose the name CrcA (catabolite repression control protein antagonist) for PA1677.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Flavia Bassani
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Anastasia Cianciulli Sesso
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Branislav Lilic
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
- Vienna BioCenter PhD Program, a doctoral School of the University of Vienna and Medical University of Vienna, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Lovro Davidovski
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, Center of Molecular Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Dendooven T, Sonnleitner E, Bläsi U, Luisi BF. Translational regulation by Hfq-Crc assemblies emerges from polymorphic ribonucleoprotein folding. EMBO J 2023; 42:e111129. [PMID: 36504222 PMCID: PMC9890229 DOI: 10.15252/embj.2022111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Ben F Luisi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Mridha S, Kümmerli R. Coordination of siderophore gene expression among clonal cells of the bacterium Pseudomonas aeruginosa. Commun Biol 2022; 5:545. [PMID: 35668142 PMCID: PMC9170778 DOI: 10.1038/s42003-022-03493-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThere has been great progress in understanding how bacterial groups coordinate social actions, such as biofilm formation and public-goods secretion. Less clear is whether the seemingly coordinated group-level responses actually mirror what individual cells do. Here, we use a microscopy approach to simultaneously quantify the investment of individual cells of the bacterium Pseudomonas aeruginosa into two public goods, the siderophores pyochelin and pyoverdine. Using gene expression as a proxy for investment, we initially observe no coordination but high heterogeneity and bimodality in siderophore investment across cells. With increasing cell density, gene expression becomes more homogenized across cells, accompanied by a moderate shift from pyochelin to pyoverdine expression. We find positive associations in the expression of pyochelin and pyoverdine genes across cells, with cell-to-cell variation correlating with cellular metabolic states. Our work suggests that siderophore-mediated signalling aligns behaviour of individuals over time and spurs a coordinated three-phase siderophore investment cycle.
Collapse
|
11
|
Tahmasebi H, Dehbashi S, Nasaj M, Arabestani MR. Molecular epidemiology and collaboration of siderophore-based iron acquisition with surface adhesion in hypervirulent Pseudomonas aeruginosa isolates from wound infections. Sci Rep 2022; 12:7791. [PMID: 35550578 PMCID: PMC9098452 DOI: 10.1038/s41598-022-11984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Iron/siderophore uptake may play an important role in the biofilm formation and secretion of extracellular proteins in Pseudomonas aeruginosa isolates. In the present study, the role of siderophores, heme, and iron regulatory genes in the virulence of Pseudomonas aeruginosa isolates collected from wound infection was investigated. Three hundred eighty-four (384) swab samples were collected from wound infection and identified by phenotypic methods. The quantitative real-time PCR (qRT-PCR) method was evaluated for the gene expressions study. Multi-locus sequence typing (MLST) was used to screen unique sequence types (ST) and clonal complexes (CC). Fifty-five (55) P. aeruginosa isolates were detected in all swab samples. Also, 38 (69.1%) isolates formed biofilm. The prevalence of virulence factor genes was as follows: plcN (67.2%), exoY (70.9%), exoA (60.0%), phzM (58.1%), plcH (50.9%), lasB (36.3%), aprA (69.1%), lasA (34.5%), nanI (74.5%), exoU (70.9%), exoS (60.0%), exoT (63.6%) and algD (65.4%). According to qRT-PCR, genes regulating iron uptake were highly expressed in the toxigenic isolate. The highest expressions levels were observed for hemO, hasR, and pvdA genes in the biofilm-forming isolates. The MLST data confirmed a high prevalence of ST1, ST111, and ST235, with six, five, and 12 clusters, respectively. ST235 and ST1 were the most present among the biofilm-forming and toxigenic strains. Also, the nuoD gene with 54 and guaA with 19 showed the highest and lowest number of unique alleles. We demonstrated that iron/siderophore uptake is sufficient for biofilm formation and an increase in the pathogenesis of P. aeruginosa. These results suggest that the iron/siderophore uptake system may alter the MLST types of P. aeruginosa and predispose to bacterial pathogenesis in wound infections.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Laboratory Sciences, Varastegan Institute of Medical Sciences, Mashhad, Iran
| | - Mona Nasaj
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Microbiology Department, Faculty of Medicine, Hamadan University of Medical Sciences, Pajoohesh Junction, Hamadan, Iran. .,Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
12
|
Mridha S, Kümmerli R. Enforced specialization fosters mutual cheating and not division of labour in the bacterium Pseudomonas aeruginosa. J Evol Biol 2022; 35:719-730. [PMID: 35380743 PMCID: PMC9323447 DOI: 10.1111/jeb.14001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/24/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
A common way for bacteria to cooperate is via the secretion of beneficial public goods (proteases, siderophores, biosurfactants) that can be shared amongst individuals in a group. Bacteria often simultaneously deploy multiple public goods with complementary functions. This raises the question whether natural selection could favour division of labour where subpopulations or species specialize in the production of a single public good, whilst sharing the complementary goods at the group level. Here we use an experimental system, where we mix engineered specialists of the bacterium Pseudomonas aeruginosa that can each only produce one of the two siderophores, pyochelin or pyoverdine and explore the conditions under which specialization can lead to division of labour. When growing pyochelin and pyoverdine specialists at different mixing ratios under different levels of iron limitation, we found that specialists could only successfully complement each other in environments with moderate iron limitation and grow as good as the generalist wildtype but not better. Under more stringent iron limitation, the dynamics in specialist communities was characterized by mutual cheating and with higher proportions of pyochelin producers greatly compromising group productivity. Nonetheless, specialist communities remained stable through negative frequency‐dependent selection. Our work shows that specialization in a bacterial community can be spurred by cheating and does not necessarily result in beneficial division of labour. We propose that natural selection might favour fine‐tuned regulatory mechanisms in generalists over division of labour because the former enables generalists to remain flexible and adequately adjust public good investments in fluctuating environments.
Collapse
Affiliation(s)
- Subham Mridha
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Grove A. Extracytoplasmic Function Sigma Factors Governing Production of the Primary Siderophores in Pathogenic Burkholderia Species. Front Microbiol 2022; 13:851011. [PMID: 35283809 PMCID: PMC8908255 DOI: 10.3389/fmicb.2022.851011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria respond to changing environments by modulating their gene expression programs. One of the mechanisms by which this may be accomplished is by substituting the primary σ factor with an alternative σ factor belonging to the family of extracytoplasmic function (ECF) σ factors. ECF σ factors are activated only in presence of specific signals, and they direct the RNA polymerase (RNAP) to transcribe a defined subset of genes. One condition, which may trigger the activation of an ECF σ factor, is iron limitation. To overcome iron starvation, bacteria produce and secrete siderophores, which chelate iron and facilitate its cellular uptake. In the genus Burkholderia, which includes several serious human pathogens, uptake of iron is critical for virulence, and expression of biosynthetic gene clusters encoding proteins involved in synthesis and transport of the primary siderophores are under control of an ECF σ factor. This review summarizes mechanisms involved in regulation of these gene clusters, including the role of global transcriptional regulators. Since siderophore-mediated iron acquisition is important for virulence, interference with this process constitutes a viable approach to the treatment of bacterial infections.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
14
|
Dent AT, Brimberry M, Albert T, Lanzilotta WN, Moënne-Loccoz P, Wilks A. Axial Heme Coordination by the Tyr-His Motif in the Extracellular Hemophore HasAp Is Critical for the Release of Heme to the HasR Receptor of Pseudomonas aeruginosa. Biochemistry 2021; 60:2549-2559. [PMID: 34324310 DOI: 10.1021/acs.biochem.1c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an H218O exchangeable FeIII-O stretching frequency with 16O/18O and H/D isotope shifts that support a two-body Fe-OH2 oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Marley Brimberry
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
15
|
Malecka EM, Bassani F, Dendooven T, Sonnleitner E, Rozner M, Albanese T, Resch A, Luisi B, Woodson S, Bläsi U. Stabilization of Hfq-mediated translational repression by the co-repressor Crc in Pseudomonas aeruginosa. Nucleic Acids Res 2021; 49:7075-7087. [PMID: 34139006 PMCID: PMC8266614 DOI: 10.1093/nar/gkab510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) govern translation of numerous transcripts during carbon catabolite repression. Here, Crc was shown to enhance Hfq-mediated translational repression of several mRNAs. We have developed a single-molecule fluorescence assay to quantitatively assess the cooperation of Hfq and Crc to form a repressive complex on a RNA, encompassing the translation initiation region and the proximal coding sequence of the P. aeruginosa amiE gene. The presence of Crc did not change the amiE RNA-Hfq interaction lifetimes, whereas it changed the equilibrium towards more stable repressive complexes. This observation is in accord with Cryo-EM analyses, which showed an increased compactness of the repressive Hfq/Crc/RNA assemblies. These biophysical studies revealed how Crc protein kinetically stabilizes Hfq/RNA complexes, and how the two proteins together fold a large segment of the mRNA into a more compact translationally repressive structure. In fact, the presence of Crc resulted in stronger translational repression in vitro and in a significantly reduced half-life of the target amiE mRNA in vivo. Although Hfq is well-known to act with small regulatory RNAs, this study shows how Hfq can collaborate with another protein to down-regulate translation of mRNAs that become targets for the degradative machinery.
Collapse
Affiliation(s)
- Ewelina M Malecka
- Department of Biophysics, 3400 N. Charles Street, Johns Hopkins University, Baltimore, MD-21218, USA
| | - Flavia Bassani
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Tom Dendooven
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Marlena Rozner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Tanino G Albanese
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Ben Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Sarah Woodson
- Department of Biophysics, 3400 N. Charles Street, Johns Hopkins University, Baltimore, MD-21218, USA
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
16
|
Kaplan AR, Wuest WM. Promiscuous Pseudomonas: Uptake of Non-Endogenous Ligands for Iron Acquisition. Tetrahedron Lett 2021; 75:153204. [PMID: 34248214 PMCID: PMC8262553 DOI: 10.1016/j.tetlet.2021.153204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
Abstract
Iron is an essential nutrient to nearly all living beings. However, its acquisition poses a significant challenge to many organisms, including most bacteria. One of the main iron uptake strategies employed by bacteria is the uptake of siderophores, small molecules that chelate extracellular iron. The pathogenic species Pseudomonas aeruginosa produces two different siderophores, pyochelin and pyoverdine. P. aeruginosa senses the amount of bioavailable extracellular iron in order to regulate the production levels of each of these two siderophores. In previous work, we found that a series of pyochelin biosynthetic shunt products enhanced the growth of P. aeruginosa in iron-depleted conditions when prechelated with iron. Thus, on the basis of these results, we investigated the physiochemical and biological properties of a series of non-native oxygen counterparts to these metabolites in the current study.
Collapse
Affiliation(s)
- Anna R Kaplan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Appl Environ Microbiol 2021; 87:AEM.02956-20. [PMID: 33608300 DOI: 10.1128/aem.02956-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple-gene expression at the single-cell level has limited the understanding of phenotypic heterogeneity. To investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple-gene expression at the single-cell level has been generated. This tool, named pRGC, consists of a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP), and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single-cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population without the need for image processing for spectral cross talk correction. In addition, two pRGC variants have been generated for either (i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome that is suitable for long-term experiments in the absence of antibiotic selection or (ii) replication in bacterial genera other than Pseudomonas The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple-gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity.IMPORTANCE Within a bacterial population, single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial subpopulations with distinct phenotypes. The analysis of gene expression at the single-cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation, and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple-gene expression at the single-cell level by fluorescence microscopy without the need for advanced image-processing procedures. A proof of concept has been provided by investigating iron uptake and iron storage gene expression in response to iron availability in P. aeruginosa.
Collapse
|
18
|
Kaplan AR, Musaev DG, Wuest WM. Pyochelin Biosynthetic Metabolites Bind Iron and Promote Growth in Pseudomonads Demonstrating Siderophore-like Activity. ACS Infect Dis 2021; 7:544-551. [PMID: 33577297 DOI: 10.1021/acsinfecdis.0c00897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonads employ several strategies to sequester iron vital for their survival including the use of siderophores such as pyoverdine and pyochelin. Similar in structure but significantly less studied are pyochelin biosynthetic byproducts, dihydroaeruginoic acid, aeruginoic acid, aeruginaldehyde (IQS), and aeruginol, along with two other structurally related molecules, aerugine and pyonitrins A-D, which have all been isolated from numerous Pseudomonad extracts. Because of the analogous substructure of these compounds to pyochelin, we hypothesized that they may play a role in iron homeostasis or have a biological effect on other bacterial species. Herein, we discuss the physiochemical evaluation of these molecules and disclose, for the first time, their ability to bind iron and promote growth in Pseudomonads.
Collapse
Affiliation(s)
- Anna R. Kaplan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Djamaladdin G. Musaev
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
González J, Salvador M, Özkaya Ö, Spick M, Reid K, Costa C, Bailey MJ, Avignone Rossa C, Kümmerli R, Jiménez JI. Loss of a pyoverdine secondary receptor in Pseudomonas aeruginosa results in a fitter strain suitable for population invasion. ISME JOURNAL 2020; 15:1330-1343. [PMID: 33323977 DOI: 10.1038/s41396-020-00853-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/27/2023]
Abstract
The rapid emergence of antibiotic resistant bacterial pathogens constitutes a critical problem in healthcare and requires the development of novel treatments. Potential strategies include the exploitation of microbial social interactions based on public goods, which are produced at a fitness cost by cooperative microorganisms, but can be exploited by cheaters that do not produce these goods. Cheater invasion has been proposed as a 'Trojan horse' approach to infiltrate pathogen populations with strains deploying built-in weaknesses (e.g., sensitiveness to antibiotics). However, previous attempts have been often unsuccessful because population invasion by cheaters was prevented by various mechanisms including the presence of spatial structure (e.g., growth in biofilms), which limits the diffusion and exploitation of public goods. Here we followed an alternative approach and examined whether the manipulation of public good uptake and not its production could result in potential 'Trojan horses' suitable for population invasion. We focused on the siderophore pyoverdine produced by the human pathogen Pseudomonas aeruginosa MPAO1 and manipulated its uptake by deleting and/or overexpressing the pyoverdine primary (FpvA) and secondary (FpvB) receptors. We found that receptor synthesis feeds back on pyoverdine production and uptake rates, which led to strains with altered pyoverdine-associated costs and benefits. Moreover, we found that the receptor FpvB was advantageous under iron-limited conditions but revealed hidden costs in the presence of an antibiotic stressor (gentamicin). As a consequence, FpvB mutants became the fittest strain under gentamicin exposure, displacing the wildtype in liquid cultures, and in biofilms and during infections of the wax moth larvae Galleria mellonella, which both represent structured environments. Our findings reveal that an evolutionary trade-off associated with the costs and benefits of a versatile pyoverdine uptake strategy can be harnessed for devising a Trojan-horse candidate for medical interventions.
Collapse
Affiliation(s)
- Jaime González
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Özhan Özkaya
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matt Spick
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Kate Reid
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Catia Costa
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Melanie J Bailey
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | | | - Rolf Kümmerli
- Department of Quantitative Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - José I Jiménez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK. .,Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
20
|
Y Ramírez-Rueda R, Salvador MJ. Phenotypic detection of quorum sensing inhibition in Pseudomonas aeruginosa pyoverdine and swarming by volatile organic products. Future Microbiol 2020; 15:1147-1156. [DOI: 10.2217/fmb-2020-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine phenotypically the anti quorum-sensing (QS) activity of 30 volatile organic products (VOPs) through the inhibition of swarming motility and pyoverdine production in Pseudomonas aeruginosa. Materials & methods: Twenty-four essential oils and six small volatile organic compounds randomly selected were screened for their anti-QS activity by violacein inhibition on Chromobacterium violaceum. The VOPs with positive results were subsequently evaluated for swarming motility and pyoverdine production on P. aeruginosa determining the colony diameter and fluorescence under UV light, respectively. Results: Fifty percent of VOPs tested showed strong violacein inhibition, 40% presented anti-swarming activity and 33% inhibited pyoverdine production. Conclusion: Our data demonstrate that VOPs have a great potential to inhibit virulence factors mediated by QS in P. aeruginosa
Collapse
Affiliation(s)
- Román Y Ramírez-Rueda
- Department of Plant Biology, PPG BTPB & PPG BV, Institute of Biology, University of Campinas - UNICAMP, Postal Box 6109, Campinas – SP 13083-970, Brazil
- Faculty of Health Sciences. Pedagogical & Technological University of Colombia, Postal Box 0387437173 Tunja, Calle 24 N° 5-63, Colombia
| | - Marcos J Salvador
- Department of Plant Biology, PPG BTPB & PPG BV, Institute of Biology, University of Campinas - UNICAMP, Postal Box 6109, Campinas – SP 13083-970, Brazil
| |
Collapse
|
21
|
Sonnleitner E, Wulf A, Campagne S, Pei XY, Wolfinger MT, Forlani G, Prindl K, Abdou L, Resch A, Allain FHT, Luisi BF, Urlaub H, Bläsi U. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Res 2019; 46:1470-1485. [PMID: 29244160 PMCID: PMC5815094 DOI: 10.1093/nar/gkx1245] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Alexander Wulf
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Xue-Yuan Pei
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Michael T Wolfinger
- Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria.,Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giada Forlani
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Konstantin Prindl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Laetitia Abdou
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Frederic H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Henning Urlaub
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
22
|
Proteomic Analysis of the Pseudomonas aeruginosa Iron Starvation Response Reveals PrrF Small Regulatory RNA-Dependent Iron Regulation of Twitching Motility, Amino Acid Metabolism, and Zinc Homeostasis Proteins. J Bacteriol 2019; 201:JB.00754-18. [PMID: 30962354 DOI: 10.1128/jb.00754-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
Iron is a critical nutrient for most microbial pathogens, and the immune system exploits this requirement by sequestering iron. The opportunistic pathogen Pseudomonas aeruginosa exhibits a high requirement for iron yet an exquisite ability to overcome iron deprivation during infection. Upon iron starvation, P. aeruginosa induces the expression of several high-affinity iron acquisition systems, as well as the PrrF small regulatory RNAs (sRNAs) that mediate an iron-sparing response. Here, we used liquid chromatography-tandem mass spectrometry to conduct proteomics of the iron starvation response of P. aeruginosa Iron starvation increased levels of multiple proteins involved in amino acid catabolism, providing the capacity for iron-independent entry of carbons into the tricarboxylic acid (TCA) cycle. Proteins involved in sulfur assimilation and cysteine biosynthesis were reduced upon iron starvation, while proteins involved in iron-sulfur cluster biogenesis were increased, highlighting the central role of iron in P. aeruginosa metabolism. Iron starvation also resulted in changes in the expression of several zinc-responsive proteins and increased levels of twitching motility proteins. Subsequent analyses provided evidence for the regulation of many of these proteins via posttranscriptional regulatory events, some of which are dependent upon the PrrF sRNAs. Moreover, we showed that iron-regulated twitching motility is partially dependent upon the prrF locus, highlighting a novel link between the PrrF sRNAs and motility. These findings add to the known impacts of iron starvation in P. aeruginosa and outline potentially novel roles for the PrrF sRNAs in iron homeostasis and pathogenesis.IMPORTANCE Iron is central for growth and metabolism of almost all microbial pathogens, and as such, this element is sequestered by the host innate immune system to restrict microbial growth. Here, we used label-free proteomics to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described. We further provide evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs. As such, this study demonstrates the power of proteomics for defining stress responses of microbial pathogens.
Collapse
|
23
|
Casas Garcia GP, Perugini MA, Lamont IL, Maher MJ. The purification of the σ FpvI/FpvR 20 and σ PvdS/FpvR 20 protein complexes is facilitated at room temperature. Protein Expr Purif 2019; 160:11-18. [PMID: 30878602 DOI: 10.1016/j.pep.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
Bacteria contain sigma (σ) factors that control gene expression in response to various environmental stimuli. The alternative sigma factors σFpvI and σPvdS bind specifically to the antisigma factor FpvR. These proteins are an essential component of the pyoverdine-based system for iron uptake in Pseudomonas aeruginosa. Due to the uniqueness of this system, where the activities of both the σFpvI and σPvdS sigma factors are regulated by the same antisigma factor, the interactions between the antisigma protein FpvR20 and the σFpvI and σPvdS proteins have been widely studied in vivo. However, difficulties in obtaining soluble, recombinant preparations of the σFpvI and σPvdS proteins have limited their biochemical and structural characterizations. In this study, we describe a purification protocol that resulted in the production of soluble, recombinant His6-σFpvI/FpvR1-67, His6-σFpvI/FpvR1-89, His6-σPvdS/FpvR1-67 and His6-σPvdS/FpvR1-89 protein complexes (where FpvR1-67 and FpvR1-89 are truncated versions of FpvR20) at high purities and concentrations, appropriate for biophysical analyses by circular dichroism spectroscopy and analytical ultracentrifugation. These results showed the proteins to be folded in solution and led to the determination of the affinities of the protein-protein interactions within the His6-σFpvI/FpvR1-67 and His6-σPvdS/FpvR1-67 complexes. A comparison of these values with those previously reported for the His6-σFpvI/FpvR1-89 and His6-σPvdS/FpvR1-89 complexes is made.
Collapse
Affiliation(s)
- G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
24
|
Dent AT, Mouriño S, Huang W, Wilks A. Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J Biol Chem 2018; 294:2771-2785. [PMID: 30593511 DOI: 10.1074/jbc.ra118.006185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/27/2018] [Indexed: 01/23/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that utilizes heme as a primary iron source within the host. Extracellular heme is sensed via a heme assimilation system (has) that encodes an extracytoplasmic function (ECF) σ factor system. Herein, using has deletion mutants, quantitative PCR analyses, and immunoblotting, we show that the activation of the σ factor HasI requires heme release from the hemophore HasAp to the outer-membrane receptor HasR. Using RT-PCR and 5'-RACE, we observed that following transcriptional activation of the co-transcribed hasRAp, it is further processed into specific mRNAs varying in stability. We noted that the processing and variation in stability of the hasAp and hasR mRNAs in response to heme provide a mechanism for differential expression from co-transcribed genes. The multiple layers of post-transcriptional regulation of the ECF signaling cascade, including the previously reported post-transcriptional regulation of HasAp by the heme metabolites biliverdin IXβ and IXδ, allow fine-tuning of the cell-surface signaling system in response to extracellular heme levels. We hypothesize that the complex post-transcriptional regulation of the Has system provides P. aeruginosa an advantage in colonizing a variety of physiological niches in the host.
Collapse
Affiliation(s)
- Alecia T Dent
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Susana Mouriño
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Weiliang Huang
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Angela Wilks
- From the Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
25
|
Thi Bach Nguyen H, Romero A D, Amman F, Sorger-Domenigg T, Tata M, Sonnleitner E, Bläsi U. Negative Control of RpoS Synthesis by the sRNA ReaL in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2488. [PMID: 30420839 PMCID: PMC6215814 DOI: 10.3389/fmicb.2018.02488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic human pathogen, able to resist host defense mechanisms and antibiotic treatment. In Pae, the master regulator of stress responses RpoS (σS) is involved in the regulation of quorum sensing and several virulence genes. Here, we report that the sRNA ReaL translationally silences rpoS mRNA, which results in a decrease of the RpoS levels. Our studies indicated that ReaL base-pairs with the Shine-Dalgarno region of rpoS mRNA. These studies are underlined by a highly similar transcription profile of a rpoS deletion mutant and a reaL over-expressing strain.
Collapse
Affiliation(s)
- Hue Thi Bach Nguyen
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - David Romero A
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Fabian Amman
- Institute of Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Theresa Sorger-Domenigg
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Muralidhar Tata
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna - Vienna Biocenter, Vienna, Austria
| |
Collapse
|
26
|
Leinweber A, Weigert M, Kümmerli R. The bacterium Pseudomonas aeruginosa senses and gradually responds to interspecific competition for iron. Evolution 2018; 72:1515-1528. [PMID: 29665015 PMCID: PMC6314444 DOI: 10.1111/evo.13491] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/07/2018] [Indexed: 12/20/2022]
Abstract
Phenotypic plasticity in response to competition is a well-described phenomenon in higher organisms. Here, we show that also bacteria have the ability to sense the presence of competitors and mount fine-tuned responses to match prevailing levels of competition. In our experiments, we studied interspecific competition for iron between the bacterium Pseudomonas aeruginosa (PA) and its competitor Burkholderia cenocepacia (BC). We focused on the ability of PA to phenotypically adjust the production of pyoverdine, an iron-scavenging siderophore. We found that PA upregulates pyoverdine production early on during competition under condition of low iron availability. This plastic upregulation was fine-tuned in response to the level of competition imposed by BC, and seems to confer a relative fitness benefit to PA in the form of an earlier initiation of growth. At later time points, however, PA showed reduced growth in mixed compared to monoculture, suggesting that competitive responses are costly. Altogether, our results demonstrate that phenotypic plasticity in siderophore production plays an important role in interspecific competition for iron. Upregulating siderophore production may be a powerful strategy to lock iron away from competing species, and to reserve this nutrient for strain members possessing the compatible receptor for uptake.
Collapse
Affiliation(s)
- Anne Leinweber
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
27
|
Weigert M, Kümmerli R. The physical boundaries of public goods cooperation between surface-attached bacterial cells. Proc Biol Sci 2018; 284:rspb.2017.0631. [PMID: 28701557 DOI: 10.1098/rspb.2017.0631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/02/2017] [Indexed: 01/17/2023] Open
Abstract
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa Using single-cell fluorescence microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections.
Collapse
Affiliation(s)
- Michael Weigert
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland .,Department of Biology I, Division of Microbiology, Ludwig Maximilians University Munich, Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, Oglesby-Sherrouse AG, Goldberg JB, Cody WL, Schurr MJ, Vasil ML, Schurr MJ. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. mBio 2018; 9:e02318-17. [PMID: 29382736 PMCID: PMC5790918 DOI: 10.1128/mbio.02318-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection.IMPORTANCE Pyoverdine and pyocyanin production are well-known P. aeruginosa virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state inversely controls pyoverdine and pyocyanin production and that this control is carbon source dependent. P. aeruginosa expressing AlgR D54N, mimicking the constitutively unphosphorylated state, produced more pyocyanin than cells expressing wild-type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the prrf2 small regulatory RNA and the pyoverdine sigma factor, PvdS. Abrogating pyoverdine or pyocyanin gene expression has been shown to attenuate virulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenuates virulence in three different models, a Drosophila melanogaster feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR-dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study.
Collapse
Affiliation(s)
- Alexander S. Little
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yuta Okkotsu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexandria A. Reinhart
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Brandon Barrett
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Amanda G. Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William L. Cody
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Michael J. Schurr
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael L. Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
29
|
Sonnleitner E, Prindl K, Bläsi U. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation. PLoS One 2017; 12:e0180887. [PMID: 28686727 PMCID: PMC5501646 DOI: 10.1371/journal.pone.0180887] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
The RNA chaperone Hfq regulates virulence and metabolism in the opportunistic pathogen Pseudomonas aeruginosa. During carbon catabolite repression (CCR) Hfq together with the catabolite repression control protein Crc can act as a translational repressor of catabolic genes. Upon relief of CCR, the level of the Hfq-titrating RNA CrcZ is increasing, which in turn abrogates Hfq-mediated translational repression. As the interdependence of Hfq-mediated and RNA based control mechanisms is poorly understood, we explored the possibility whether the regulatory RNA CrcZ can interfere with riboregulation. We first substantiate that the P. aeruginosa Hfq is proficient and required for riboregulation of the transcriptional activator gene antR by the small RNA PrrF1-2. Our studies further revealed that CrcZ can interfere with PrrF1-2/Hfq-mediated regulation of antR. The competition for Hfq can be rationalized by the higher affinity of Hfq for CrcZ than for antR mRNA.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| | - Konstantin Prindl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
30
|
Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection. Infect Immun 2016; 84:2324-2335. [PMID: 27271740 DOI: 10.1128/iai.00098-16] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and chronic lung infections in cystic fibrosis patients. Iron is essential for bacterial growth, and P. aeruginosa expresses multiple iron uptake systems, whose role in lung infection deserves further investigation. P. aeruginosa Fe(3+) uptake systems include the pyoverdine and pyochelin siderophores and two systems for heme uptake, all of which are dependent on the TonB energy transducer. P. aeruginosa also has the FeoB transporter for Fe(2+) acquisition. To assess the roles of individual iron uptake systems in P. aeruginosa lung infection, single and double deletion mutants were generated in P. aeruginosa PAO1 and characterized in vitro, using iron-poor media and human serum, and in vivo, using a mouse model of lung infection. The iron uptake-null mutant (tonB1 feoB) and the Fe(3+) transport mutant (tonB1) did not grow aerobically under low-iron conditions and were avirulent in the mouse model. Conversely, the wild type and the feoB, hasR phuR (heme uptake), and pchD (pyochelin) mutants grew in vitro and caused 60 to 90% mortality in mice. The pyoverdine mutant (pvdA) and the siderophore-null mutant (pvdA pchD) grew aerobically in iron-poor media but not in human serum, and they caused low mortality in mice (10 to 20%). To differentiate the roles of pyoverdine in iron uptake and virulence regulation, a pvdA fpvR double mutant defective in pyoverdine production but expressing wild-type levels of pyoverdine-regulated virulence factors was generated. Deletion of fpvR in the pvdA background partially restored the lethal phenotype, indicating that pyoverdine contributes to the pathogenesis of P. aeruginosa lung infection by combining iron transport and virulence-inducing capabilities.
Collapse
|
31
|
Avellan A, Auffan M, Masion A, Levard C, Bertrand M, Rose J, Santaella C, Achouak W. Remote Biodegradation of Ge-Imogolite Nanotubes Controlled by the Iron Homeostasis of Pseudomonas brassicacearum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7791-7798. [PMID: 27347687 DOI: 10.1021/acs.est.6b01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The toxicity of high-aspect-ratio nanomaterials (HARNs) is often associated with oxidative stress. The essential nutrient Fe may also be responsible of oxidative stress through the production of reactive oxygen species. In the present study, it has been examined to what extent adding Fenton reaction promoting Fe impacted the toxicity of an alumino-germanate model HARN. Structural addition of only 0.95% wt Fe to Ge-imogolite not only alleviated the toxicity observed in the case of Fe-free nanotubes but also stimulated bacterial growth. This was attributed to the metabolization of siderophore-mobilized Fe from the nanotube structure. This was evidenced by the regulation of the homeostasis-monitoring intracellular Fe levels. This was accompanied by a biodegradation of the nanotubes approaching 40%, whereas the Fe-free nanomaterial remained nearly untouched.
Collapse
Affiliation(s)
- Astrid Avellan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Melanie Auffan
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Armand Masion
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Clément Levard
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Marie Bertrand
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Jérôme Rose
- Aix-Marseille Université, CNRS, IRD, CEREGE UM34 , 13545 Aix en Provence, France
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
| | - Catherine Santaella
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| | - Wafa Achouak
- iCEINT, International Consortium for the Environmental Implications of NanoTechology, CNRS, Duke University , Europôle de l'Arbois, 13545 Aix-en-Provence, France
- Laboratory of Microbial Ecology of the Rhizosphere and Extreme Environments (LEMIRE), Aix-Marseille Université, CEA, CNRS, UMR 7265 Biosciences and Biotechnology Institute of Aix-Marseille (BIAM), ECCOREV FR 3098, CEA/Cadarache , 13108 St-Paul-lez-Durance, France
| |
Collapse
|
32
|
Chua SL, Hultqvist LD, Yuan M, Rybtke M, Nielsen TE, Givskov M, Tolker-Nielsen T, Yang L. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc 2015; 10:1165-80. [PMID: 26158442 DOI: 10.1038/nprot.2015.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global secondary bacterial messenger that controls the formation of drug-resistant multicellular biofilms. Lowering the intracellular c-di-GMP content can disperse biofilms, and it is proposed as a biofilm eradication strategy. However, freshly dispersed biofilm cells exhibit a physiology distinct from biofilm and planktonic cells, and they might have a clinically relevant role in infections. Here we present in vitro and in vivo protocols for the generation and characterization of dispersed cells from Pseudomonas aeruginosa biofilms by reducing the intracellular c-di-GMP content through modulation of phosphodiesterases (PDEs). Unlike conventional protocols that demonstrate biofilm dispersal by biomass quantification, our protocols enable physiological characterization of the dispersed cells. Biomarkers of dispersed cells are identified and quantified, serving as potential targets for treating the dispersed cells. The in vitro protocol can be completed within 4 d, whereas the in vivo protocol requires 7 d.
Collapse
Affiliation(s)
- Song Lin Chua
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore. [2] National University of Singapore (NUS) Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Louise D Hultqvist
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mingjun Yuan
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Morten Rybtke
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Nielsen
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore. [2] Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Department of International Health, Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liang Yang
- 1] Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore. [2] School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
33
|
Llamas MA, Imperi F, Visca P, Lamont IL. Cell-surface signaling inPseudomonas: stress responses, iron transport, and pathogenicity. FEMS Microbiol Rev 2014; 38:569-97. [DOI: 10.1111/1574-6976.12078] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 01/06/2023] Open
|
34
|
Wenner N, Maes A, Cotado-Sampayo M, Lapouge K. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 2014; 16:1053-68. [PMID: 24308329 PMCID: PMC4253122 DOI: 10.1111/1462-2920.12272] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.
Collapse
Affiliation(s)
- Nicolas Wenner
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
| | - Alexandre Maes
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
| | - Marta Cotado-Sampayo
- Fasteris SACh. du Pont-du-Centenaire 109, Case postale 28, Plan-les-Ouates, CH-1228, Switzerland
| | - Karine Lapouge
- Department of Fundamental Microbiology, University of LausanneLausanne, CH-1015, Switzerland
- *For correspondence. E-mail ; Tel. (+41) (0) 21 692 5601; Fax (+41) (0) 21 692 5605
| |
Collapse
|
35
|
Takeuchi K, Tsuchiya W, Noda N, Suzuki R, Yamazaki T, Haas D. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway inPseudomonas protegens. Environ Microbiol 2014; 16:2538-49. [DOI: 10.1111/1462-2920.12394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/24/2013] [Accepted: 01/04/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Kasumi Takeuchi
- Plant-Microbe Interactions Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Wataru Tsuchiya
- Biomolecular Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Naomi Noda
- Plant-Microbe Interactions Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Rintaro Suzuki
- Biomolecular Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Toshimasa Yamazaki
- Biomolecular Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Dieter Haas
- Département de Microbiologie Fondamentale; Université de Lausanne; CH-1015 Lausanne Switzerland
| |
Collapse
|
36
|
Frangipani E, Pérez-Martínez I, Williams HD, Cherbuin G, Haas D. A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:28-34. [PMID: 24596260 DOI: 10.1111/1758-2229.12105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/03/2013] [Accepted: 09/13/2013] [Indexed: 06/03/2023]
Abstract
Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P. aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100 μM KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.
Collapse
Affiliation(s)
- Emanuela Frangipani
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrob Agents Chemother 2013; 57:5629-41. [PMID: 24002091 DOI: 10.1128/aac.00955-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteria communicate by means of small signal molecules in a process termed quorum sensing (QS). QS enables bacteria to organize their activities at the population level, including the coordinated secretion of virulence factors. Certain small-molecule compounds, known as quorum-sensing inhibitors (QSIs), have been shown to effectively block QS and subsequently attenuate the virulence of Pseudomonas aeruginosa, as well as increasing its susceptibility to both antibiotics and the immune system. In this study, a structure-based virtual screening (SB-VS) approach was used for the discovery of novel QSI candidates. Three-dimensional structures of 3,040 natural compounds and their derivatives were obtained, after which molecular docking was performed using the QS receptor LasR as a target. Based on docking scores and molecular masses, 22 compounds were purchased to determine their efficacies as quorum-sensing inhibitors. Using a live reporter assay for quorum sensing, 5 compounds were found to be able to inhibit QS-regulated gene expression in P. aeruginosa in a dose-dependent manner. The most promising compound, G1, was evaluated by isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis, and it was found to significantly affect the abundance of 46 proteins (19 were upregulated; 27 were downregulated) in P. aeruginosa PAO1. It specifically reduced the expression of several quorum-sensing-regulated virulence factors, such as protease IV, chitinase, and pyoverdine synthetases. G1 was also able to reduce extracellular DNA release and inhibited the secretion of the virulence factor, elastase, whose expression is regulated by LasR. These results demonstrate the utility of SB-VS for the discovery of target-specific QSIs.
Collapse
|
38
|
Lee X, Azevedo MD, Armstrong DJ, Banowetz GM, Reimmann C. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:83-89. [PMID: 23757135 DOI: 10.1111/j.1758-2229.2012.00395.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 06/02/2023]
Abstract
The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwinia amylovora, the causal agent of the devastating orchard crop disease known as fire blight. AMB was active against a 4-formylaminooxyvinylglycine-resistant isolate of E. amylovora, suggesting that the molecular targets of the two oxyvinylglycines in Erwinia do not, or not entirely, overlap. The AMB biosynthesis and transport genes were shown to be organized in two separate transcriptional units, ambA and ambBCDE, which were successfully expressed from IPTG-inducible tac promoters in the heterologous host P. fluorescens CHA0. Engineered AMB production enabled this model biocontrol strain to become inhibitory against E. amylovora and to weakly interfere with the germination of several graminaceous seeds. We conclude that AMB production requires no additional genes besides ambABCDE and we speculate that their expression in marketed fire blight biocontrol strains could potentially contribute to disease control.
Collapse
Affiliation(s)
- Xiaoyun Lee
- Département de Microbiologie Fondamentale, Université de Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Valentini M, Lapouge K. Catabolite repression in Pseudomonas aeruginosa PAO1 regulates the uptake of C4 -dicarboxylates depending on succinate concentration. Environ Microbiol 2012; 15:1707-16. [PMID: 23253107 DOI: 10.1111/1462-2920.12056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/12/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
In Pseudomonas aeruginosa carbon catabolite repression (CCR) is exerted by the CbrA/B-CrcZ-Crc global regulatory system. Crc is a translational repressor that, in the presence of preferred carbon sources, such as C4 -dicarboxylates, impairs the utilization of less preferred substrates. When non-preferred substrates are present, the CrcZ sRNA levels increase leading to Crc capture, thereby allowing growth of the bacterium at the expense of the non-preferred substrates. The C4 -dicarboxylate transport (Dct) system in P. aeruginosa is composed of two main transporters: DctA, more efficient at mM succinate concentrations, and DctPQM, more important at μM. In this study, we demonstrate that the Dct transporters are differentially regulated by Crc, depending on the concentration of succinate. At high concentrations, Crc positively regulates the expression of the dctA transporter gene and negatively regulates dctPQM post-transcriptionally. The activation of dctA is explained by a Crc-mediated repression of dctR, encoding a transcriptional repressor of dctA. At low succinate concentrations, Crc regulation is impaired. In this condition, CrcZ levels are higher and therefore more Crc proteins are sequestered, decreasing the amount of Crc available to perform CCR on dctR and dctPQM. As a result, expression of dctA is reduced and that of dctPQM is increased.
Collapse
Affiliation(s)
- Martina Valentini
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
40
|
Elfarash A, Wei Q, Cornelis P. The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. Microbiologyopen 2012; 1:268-75. [PMID: 23170226 PMCID: PMC3496971 DOI: 10.1002/mbo3.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/08/2022] Open
Abstract
Soluble (S-type) pyocins are Pseudomonas aeruginosa bacteriocins that kill nonimmune P. aeruginosa cells by gaining entry via a specific receptor, which, in the case of pyocin S2, is the siderophore pyoverdine receptor FpvAI, and in the case of pyocin S3, FpvAII. The nucleic acid sequence at the positions 4327697-4327359 of P. aeruginosa PAO1 genome was not annotated, but it was predicted to encode the immunity gene of the flanking pyocin S4 gene (PA3866) based on our analysis of the genome sequence. Using RT-PCR, the expression of the immunity gene was detected, confirming the existence of an immunity gene overlapping the S4 pyocin gene. The PA3866 coding for pyocin S4 and the downstream gene coding for the immunity protein were cloned and expressed in Escherichia coli and the His-tagged S4 pyocin was obtained in pure form. Forty-three P. aeruginosa strains were typed via PCR to identify their ferripyoverdine receptor gene (fpvAI-III) and were tested for their sensitivity to pyocin S4. All S4-sensitive strains had the type I ferripyoverdine receptor fpvA gene. Some S4-resistant type I fpvA-positive strains were detected, but all of them had the S4 immunity gene, and, following the deletion of the immunity gene, became S4-sensitive. The fpvAI receptor gene was deleted in a S4-sensitive strain, and, as expected, the mutant became resistant to S4. The N-terminal receptor binding domain (RBD) of pyocin S2, which also uses the FpvAI receptor to enter the cell, was cloned in the pET-15b vector, and expressed in E. coli. When the purified RBD was mixed with pyocin S4 at different ratios, an inhibition of killing was observed, indicating that S2 RBD competes with the pyocin S4 for the binding to the FpvAI receptor. The S2 RBD was also shown to enhance the expression of the pvdA pyoverdine gene, suggesting that it, like pyoverdine, works via the known siderophore-mediated signalization pathway.
Collapse
Affiliation(s)
- Ameer Elfarash
- Department of Bioengineering Sciences, Research Group of Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel Pleinlaan 2, B-1050, Brussels, Belgium
| | | | | |
Collapse
|
41
|
The lipase LipA (PA2862) but not LipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS. J Bacteriol 2011; 193:5858-60. [PMID: 21840975 DOI: 10.1128/jb.05765-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key element in iron-dependent regulation of iron metabolism and virulence-related functions for Pseudomonas aeruginosa is the sigma factor PvdS. PvdS expression itself is also influenced by iron-independent stimuli. We show that pyoverdine production and pvdS expression depend on one of the two lipases of P. aeruginosa.
Collapse
|
42
|
Elias S, Degtyar E, Banin E. FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2011; 157:2172-2180. [PMID: 21546589 DOI: 10.1099/mic.0.044768-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria acquire iron through a highly specific mechanism involving iron-chelating molecules termed siderophores. The Gram-negative bacterium Pseudomonas aeruginosa can utilize siderophores produced by other micro-organisms to facilitate iron uptake. Here we show that a P. aeruginosa strain deficient in siderophore production can use the Vibrio cholerae siderophore vibriobactin as an iron source. In addition, we identified a P. aeruginosa gene, PA4156 (fvbA), encoding a protein highly homologous to the V. cholerae vibriobactin receptor (ViuA). A P. aeruginosa mutant in the two endogenous siderophores (pyoverdine and pyochelin) and in fvbA was unable to utilize vibriobactin as an iron source. Additionally, preliminary analyses revealed the involvement of vibriobactin, Fur protein and an IclR-type regulator, FvbR (PA4157), in fvbA regulation.
Collapse
Affiliation(s)
- Sivan Elias
- The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Elena Degtyar
- The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Ehud Banin
- The Bacterial Biofilm Research Laboratory, The Institute for Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
43
|
Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Hüttenhofer A, Haas D, Bläsi U. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 2011; 80:868-85. [PMID: 21375594 DOI: 10.1111/j.1365-2958.2011.07620.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quorum sensing, a cell-to-cell communication system based on small signal molecules, is employed by the human pathogen Pseudomonas aeruginosa to regulate virulence and biofilm development. Moreover, regulation by small trans-encoded RNAs has become a focal issue in studies of virulence gene expression of bacterial pathogens. In this study, we have identified the small RNA PhrS as an activator of PqsR synthesis, one of the key quorum-sensing regulators in P. aeruginosa. Genetic studies revealed a novel mode of regulation by a sRNA, whereby PhrS uses a base-pairing mechanism to activate a short upstream open reading frame to which the pqsR gene is translationally coupled. Expression of phrS requires the oxygen-responsive regulator ANR. Thus, PhrS is the first bacterial sRNA that provides a regulatory link between oxygen availability and quorum sensing, which may impact on oxygen-limited growth in P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr Bohrgasse 9, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Koch G, Nadal Jimenez P, Muntendam R, Chen Y, Papaioannou E, Heeb S, Cámara M, Williams P, Cool RH, Quax WJ. The acylase PvdQ has a conserved function among fluorescent Pseudomonas spp. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:433-439. [PMID: 23766117 DOI: 10.1111/j.1758-2229.2010.00157.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pyoverdine biosynthesis in fluorescent Pseudomonas spp. and especially in the opportunistic human pathogen Pseudomonas aeruginosa has been extensively studied. The acylase PvdQ is required for a maturation step in pyoverdine biosynthesis but also has been proven to be effective in degrading long-chain N-acyl homoserine lactones (AHLs). These molecules are used as quorum-sensing molecules by Gram-negative bacteria such as Pseudomonads themselves. Interestingly, the pvdQ gene is part of a pyoverdine cluster in P. aeruginosa and P. syringae but not in other fluorescent Pseudomonas spp. In this study we have compared the activities of PvdQ orthologues from various species and provide evidence for conserved functions in Pseudomonas fluorescens PfO-1, P. putida KT2440 and P. aeruginosa PA14. Despite large differences in genomic organization, expression of each of these pvdQ orthologues is regulated by iron availability. Moreover, PvdQ and its orthologues have conserved substrate specificity for AHLs and play a role in pyoverdine production in all tested Pseudomonas species. These data strongly suggest that the role of PvdQ in pyoverdine biosynthesis is conserved among Pseudomonas spp., while the control that PvdQ exerts in P. aeruginosa over its own quorum-sensing signals seems to be unique to this bacterium.
Collapse
Affiliation(s)
- Gudrun Koch
- Department of Pharmaceutical Biology, 9713AV Groningen, the Netherlands. School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Imperi F, Tiburzi F, Fimia GM, Visca P. Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa. Environ Microbiol 2010; 12:1630-42. [PMID: 20370820 DOI: 10.1111/j.1462-2920.2010.02210.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the Gram-negative pathogen Pseudomonas aeruginosa, the alternative sigma factor PvdS acts as a key regulator of the response to iron starvation. PvdS also controls P. aeruginosa virulence, as it drives the expression of a large set of genes primarily implicated in biogenesis and transport of the pyoverdine siderophore and synthesis of extracellular factors, such as protease PrpL and exotoxin A. Besides the ferric uptake regulatory protein Fur, which shuts off pvdS transcription under iron-replete conditions, no additional regulatory factor(s) controlling the pvdS promoter activity have been characterized so far. Here, we used the promoter region of pvdS as bait to tentatively capture, by DNA-protein affinity purification, P. aeruginosa proteins that are able to bind specifically to the pvdS promoter. This led to the identification and functional characterization of the LysR-like transcription factor CysB as a novel regulator of pvdS transcription. The CysB protein directly binds to the pvdS promoter in vitro and acts as a positive regulator of PvdS expression in vivo. The absence of a functional CysB protein results in about 50% reduction of expression of PvdS-dependent virulence phenotypes. Given the role of CysB as master regulator of sulfur metabolism, our findings establish a novel molecular link between the iron and sulfur regulons in P. aeruginosa.
Collapse
Affiliation(s)
- Francesco Imperi
- Department of Biology, University 'Roma Tre', Viale G. Marconi 446-00146 Rome, Italy
| | | | | | | |
Collapse
|
46
|
Takeuchi K, Kiefer P, Reimmann C, Keel C, Dubuis C, Rolli J, Vorholt JA, Haas D. Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens. J Biol Chem 2009; 284:34976-85. [PMID: 19840935 DOI: 10.1074/jbc.m109.052571] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas fluorescens CHA0, an antagonist of phytopathogenic fungi in the rhizosphere of crop plants, elaborates and excretes several secondary metabolites with antibiotic properties. Their synthesis depends on three small RNAs (RsmX, RsmY, and RsmZ), whose expression is positively controlled by the GacS-GacA two-component system at high cell population densities. To find regulatory links between primary and secondary metabolism in P. fluorescens and in the related species Pseudomonas aeruginosa, we searched for null mutations that affected central carbon metabolism as well as the expression of rsmY-gfp and rsmZ-gfp reporter constructs but without slowing down the growth rate in rich media. Mutation in the pycAB genes (for pyruvate carboxylase) led to down-regulation of rsmXYZ and secondary metabolism, whereas mutation in fumA (for a fumarase isoenzyme) resulted in up-regulation of the three small RNAs and secondary metabolism in the absence of detectable nutrient limitation. These effects required the GacS sensor kinase but not the accessory sensors RetS and LadS. An analysis of intracellular metabolites in P. fluorescens revealed a strong positive correlation between small RNA expression and the pools of 2-oxoglutarate, succinate, and fumarate. We conclude that Krebs cycle intermediates (already known to control GacA-dependent virulence factors in P. aeruginosa) exert a critical trigger function in secondary metabolism via the expression of GacA-dependent small RNAs.
Collapse
Affiliation(s)
- Kasumi Takeuchi
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sheikh MA, Taylor GL. Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 2009; 72:1208-20. [PMID: 19400801 DOI: 10.1111/j.1365-2958.2009.06718.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur. Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.
Collapse
Affiliation(s)
- Md Arif Sheikh
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | |
Collapse
|
48
|
The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 2009; 191:3517-25. [PMID: 19329644 DOI: 10.1128/jb.00010-09] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyochelin (Pch) is one of the two major siderophores produced and secreted by Pseudomonas aeruginosa PAO1 to assimilate iron. It chelates iron in the extracellular medium and transports it into the cell via a specific outer membrane transporter, FptA. We used the fluorescent properties of Pch to show that this siderophore chelates, in addition to Fe(3+) albeit with substantially lower affinities, Ag(+), Al(3+), Cd(2+), Co(2+), Cr(2+), Cu(2+), Eu(3+), Ga(3+), Hg(2+), Mn(2+), Ni(2+), Pb(2+), Sn(2+), Tb(3+), Tl(+), and Zn(2+). Surprisingly, the Pch complexes with all these metals bound to FptA with affinities in the range of 10 nM to 4.8 microM (the affinity of Pch-Fe is 10 nM) and were able to inhibit, with various efficiencies, Pch-(55)Fe uptake in vivo. We used inductively coupled plasma atomic emission spectrometry to follow metal uptake by P. aeruginosa. Energy-dependent metal uptake, in the presence of Pch, was efficient only for Fe(3+). Co(2+), Ga(3+), and Ni(2+) were also transported, but the uptake rates were 23- to 35-fold lower than that for Fe(3+). No uptake was seen for all the other metals. Thus, cell surface FptA has broad metal specificity at the binding stage but is much more selective for the metal uptake process. This uptake pathway does not appear to efficiently assimilate any metal other than Fe(3+).
Collapse
|
49
|
Kümmerli R, Jiricny N, Clarke LS, West SA, Griffin AS. Phenotypic plasticity of a cooperative behaviour in bacteria. J Evol Biol 2008; 22:589-98. [PMID: 19170825 DOI: 10.1111/j.1420-9101.2008.01666.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is strong evidence that natural selection can favour phenotypic plasticity as a mechanism to maximize fitness in animals. Here, we aim to investigate phenotypic plasticity of a cooperative trait in bacteria--the production of an iron-scavenging molecule (pyoverdin) by Pseudomonas aeruginosa. Pyoverdin production is metabolically costly to the individual cell, but provides a benefit to the local group and can potentially be exploited by nonpyoverdin-producing cheats. Here, we subject bacteria to changes in the social environment in media with different iron availabilities and test whether cells can adjust pyoverdin production in response to these changes. We found that pyoverdin production per cell significantly decreased at higher cell densities and increased in the presence of cheats. This phenotypic plasticity significantly influenced the costs and benefits of cooperation. Specifically, the investment of resources into pyoverdin production was reduced in iron-rich environments and at high cell densities, but increased under iron limitation, and when pyoverdin was exploited by cheats. Our study demonstrates that phenotypic plasticity in a cooperative trait as a response to changes in the environment occurs in even the simplest of organisms, a bacterium.
Collapse
Affiliation(s)
- R Kümmerli
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK Food Microbiology Research Group, University of Ulster, UK.
| | | | | | | | | |
Collapse
|
50
|
Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation. J Bacteriol 2008; 190:6706-17. [PMID: 18708503 DOI: 10.1128/jb.00450-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.
Collapse
|