1
|
Camakaris H, Yang J, Fujii T, Pittard J. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. J Bacteriol 2021; 203:e0025221. [PMID: 34309399 PMCID: PMC8425403 DOI: 10.1128/jb.00252-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
A novel selection was developed for mutants of the C-terminal domain of RpoA (α-CTD) altered in activation by the TyrR regulatory protein of Escherichia coli K-12. This allowed the identification of an aspartate to asparagine substitution at residue 250 (DN250) as an activation-defective (Act-) mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and the substitutions DR250, RE310, and RD310 were all shown to be defective in activation. None of these mutations caused defects in regulation of the upstream promoter (UP) element. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. The TyrR mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77, and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, and EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act-tyrR mutants were isolated in an rpoA+ strain, adding positions R77, D97, K101, D118, R119, R121, and E141 to known residues S95 and D103 and defining the activation patch on the amino-terminal domain (NTD) of TyrR. These results support a model for activation of TyrR-regulated genes where the activation patch on the TyrR NTD interacts with the TyrR-specific patch on the α-CTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants as activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene tyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore, TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence and important plant interactions.
Collapse
Affiliation(s)
- Helen Camakaris
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ji Yang
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James Pittard
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
3
|
The phage Mu middle promoter Pm contains a partial UP element. G3-GENES GENOMES GENETICS 2015; 5:507-16. [PMID: 25645531 PMCID: PMC4390567 DOI: 10.1534/g3.114.013607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
There are three phases of transcription during lytic development of bacteriophage Mu: early, middle, and late. Transcription from the middle phase promoter Pm requires the activator protein Mor. In the presence of Mor, transcription from Pm is carried out by the Escherichia coli RNA polymerase holoenzyme containing σ70. A Mor dimer binds to two 5-bp inverted repeats within a 16-bp element centered at −43.5 in Pm, replacing the normal −35 element contacted by RNA polymerase (RNAP). In this study random and targeted mutagenesis of the sequence upstream (−88 to −52) of the Mor binding site was performed to determine whether Pm also contains an UP element for binding of the RNAP α subunit, thereby stimulating transcription. The results demonstrated that mutations upstream of −57 had no effect on Pm activity in vivo, assayed by expression of lacZ fused downstream of a wild-type or mutant Pm. Mutations at positions −57 through −52 led to decreased transcription from Pm, consistent with the presence of an UP element. In DNase I footprinting and gel mobility shift assays, paired mutations at positions −55 and −54 did not affect Mor binding but decreased the synergistic binding of Mor with histidine tagged α (His-α), indicating that His-α binds to Pm in a sequence- and/or structure-specific manner. Taken together, these results demonstrate that Pm has a strong proximal UP element subsite, but lacks a distal subsite.
Collapse
|
4
|
Liu M, Tolstorukov M, Zhurkin V, Garges S, Adhya S. A mutant spacer sequence between -35 and -10 elements makes the Plac promoter hyperactive and cAMP receptor protein-independent. Proc Natl Acad Sci U S A 2004; 101:6911-6. [PMID: 15118087 PMCID: PMC406441 DOI: 10.1073/pnas.0401929101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether the spacer region between the -35 and -10 elements plays any sequence-specific role, we randomized the GC-rich sequence ((-20)CCGGCTCG(-13)) within the spacer region of the cAMP-dependent lac promoter and selected an activator-independent mutant, which showed extraordinarily high intrinsic activity. The hyperactive promoter is obtained by incorporation of a specific 10-bp-long AT-rich DNA sequence within the spacer, referred to as the -15 sequence, which must be juxtaposed to the upstream end of the -10 sequence for the hyperactivity. The transcription enhancement functions only in the presence of a -35 element. The spacer sequence enhanced both RNA polymerase binding and open complex formation. Isolated in the lac promoter, it also enhanced transcription when placed at two other unrelated promoters. Sequence analysis shows a low GC content and an abundance of stereochemically flexible TG:CA and TA:TA dimeric steps in the -18/-9 region and a strong correlation between the presence of flexible dimeric steps in this region and the intrinsic strength of the promoter.
Collapse
Affiliation(s)
- Mofang Liu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Benoff B, Yang H, Lawson CL, Parkinson G, Liu J, Blatter E, Ebright YW, Berman HM, Ebright RH. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 2002; 297:1562-6. [PMID: 12202833 DOI: 10.1126/science.1076376] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Escherichia coli catabolite activator protein (CAP) activates transcription at P(lac), P(gal), and other promoters through interactions with the RNA polymerase alpha subunit carboxyl-terminal domain (alphaCTD). We determined the crystal structure of the CAP-alphaCTD-DNA complex at a resolution of 3.1 angstroms. CAP makes direct protein-protein interactions with alphaCTD, and alphaCTD makes direct protein-DNA interactions with the DNA segment adjacent to the DNA site for CAP. There are no large-scale conformational changes in CAP and alphaCTD, and the interface between CAP and alphaCTD is small. These findings are consistent with the proposal that activation involves a simple "recruitment" mechanism.
Collapse
Affiliation(s)
- Brian Benoff
- Waksman Institute and Department of Chemistry, Howard Hughes Medical Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Transcription activation by Escherichia coli catabolite activator protein (CAP) at each of two classes of simple CAP-dependent promoters is understood in structural and mechanistic detail. At class I CAP-dependent promoters, CAP activates transcription from a DNA site located upstream of the DNA site for RNA polymerase holoenzyme (RNAP); at these promoters, transcription activation involves protein-protein interactions between CAP and the RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex. At class II CAP-dependent promoters, CAP activates transcription from a DNA site that overlaps the DNA site for RNAP; at these promoters, transcription activation involves both: (i) protein-protein interactions between CAP and RNAP alpha subunit C-terminal domain that facilitate binding of RNAP to promoter DNA to form the RNAP-promoter closed complex; and (ii) protein-protein interactions between CAP and RNAP alpha subunit N-terminal domain that facilitates isomerization of the RNAP-promoter closed complex to the RNAP-promoter open complex. Straightforward combination of the mechanisms for transcription activation at class I and class II CAP-dependent promoters permits synergistic transcription activation by multiple molecules of CAP, or by CAP and other activators. Interference with determinants of CAP or RNAP involved in transcription activation at class I and class II CAP-dependent promoters permits "anti-activation" by negative regulators. Basic features of transcription activation at class I and class II CAP-dependent promoters appear to be generalizable to other activators.
Collapse
Affiliation(s)
- S Busby
- School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
7
|
Law EC, Savery NJ, Busby SJ. Interactions between the Escherichia coli cAMP receptor protein and the C-terminal domain of the alpha subunit of RNA polymerase at class I promoters. Biochem J 1999; 337 ( Pt 3):415-23. [PMID: 9895284 PMCID: PMC1219992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The Escherichia coli cAMP receptor protein (CRP) is a factor that activates transcription at over 100 target promoters. At Class I CRP-dependent promoters, CRP binds immediately upstream of RNA polymerase and activates transcription by making direct contacts with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). Since alphaCTD is also known to interact with DNA sequence elements (known as UP elements), we have constructed a series of semi-synthetic Class I CRP-dependent promoters, carrying both a consensus DNA-binding site for CRP and a UP element at different positions. We previously showed that, at these promoters, the CRP-alphaCTD interaction and the CRP-UP element interaction contribute independently and additively to transcription initiation. In this study, we show that the two halves of the UP element can function independently, and that, in the presence of the UP element, the best location for the DNA site for CRP is position -69.5. This suggests that, at Class I CRP-dependent promoters where the DNA site for CRP is located at position -61.5, the two alphaCTDs of RNA polymerase are not optimally positioned. Two experiments to test this hypothesis are presented.
Collapse
Affiliation(s)
- E C Law
- School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | | | |
Collapse
|
8
|
Ryu S, Fujita N, Ishihama A, Adhya S. GalR-mediated repression and activation of hybrid lacUV5 promoter: differential contacts with RNA polymerase. Gene 1998; 223:235-45. [PMID: 9858739 DOI: 10.1016/s0378-1119(98)00237-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The GalR repressor regulates expression of genes of the gal regulon in Escherichia coli. We studied the regulatory effect of GalR in vitro on a heterologous promoter, lacUV5, by placing the GalR-binding site, OE, at different locations upstream of this promoter. Despite the fact that the lacUV5 promoter is transcribed efficiently by RNA polymerase (RNP) alone, GalR modulated transcription from many of the PlacUV5 variants. Depending on the location of OE and the neighboring DNA sequence, GalR repressed, activated or had no effect on the promoter. Both repression and activation involved formation of GalR-RNP-DNA ternary complexes and required an intact c-domain of the alpha subunit of the holoenzyme. These results support the differential contact model of a regulator action, in which a regulator differentially binds to, and lowers the energy of, intermediates of transcription initiation either to hinder or to facilitate a step of initiation. The nature of the contacts depends upon the context, i.e. the geometry of the ternary complex. The observed repression and activation effect of GalR on a heterologous promoter also underscores the point that a regulator is not a dedicated protein for repression or for activation.
Collapse
Affiliation(s)
- S Ryu
- Laboratory of Molecular Biology, National Cancer Institute, Bldg. 37/2E16, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
9
|
Ross W, Aiyar SE, Salomon J, Gourse RL. Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 1998; 180:5375-83. [PMID: 9765569 PMCID: PMC107586 DOI: 10.1128/jb.180.20.5375-5383.1998] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 08/17/1998] [Indexed: 11/20/2022] Open
Abstract
The alpha subunit of Escherichia coli RNA polymerase (RNAP) participates in promoter recognition through specific interactions with UP element DNA, a region upstream of the recognition hexamers for the sigma subunit (the -10 and -35 hexamers). UP elements have been described in only a small number of promoters, including the rRNA promoter rrnB P1, where the sequence has a very large (30- to 70-fold) effect on promoter activity. Here, we analyzed the effects of upstream sequences from several additional E. coli promoters (rrnD P1, rrnB P2, lambda pR, lac, merT, and RNA II). The relative effects of different upstream sequences were compared in the context of their own core promoters or as hybrids to the lac core promoter. Different upstream sequences had different effects, increasing transcription from 1.5- to approximately 90-fold, and several had the properties of UP elements: they increased transcription in vitro in the absence of accessory protein factors, and transcription stimulation required the C-terminal domain of the RNAP alpha subunit. The effects of the upstream sequences correlated generally with their degree of similarity to an UP element consensus sequence derived previously. Protection of upstream sequences by RNAP in footprinting experiments occurred in all cases and was thus not a reliable indicator of UP element strength. These data support a modular view of bacterial promoters in which activity reflects the composite effects of RNAP interactions with appropriately spaced recognition elements (-10, -35, and UP elements), each of which contributes to activity depending on its similarity to the consensus.
Collapse
Affiliation(s)
- W Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
10
|
Nègre D, Bonod-Bidaud C, Oudot C, Prost JF, Kolb A, Ishihama A, Cozzone AJ, Cortay JC. DNA flexibility of the UP element is a major determinant for transcriptional activation at the Escherichia coli acetate promoter. Nucleic Acids Res 1997; 25:713-8. [PMID: 9016619 PMCID: PMC146490 DOI: 10.1093/nar/25.4.713] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The specific interaction of the upstream element-containing promoter of the Escherichia coli acetate operon with either the RNA polymerase holoenzyme or its alpha subunit has been analyzed by the base removal method. Our results indicate that: (i) direct and specific base contacts can be detected in the acetate promoter-alpha subunit complex; (ii) base elimination in the upstream element of the acetate promoter enhances the binding of RNA polymerase. A similar effect is observed when studying the interactions between RNA polymerase and the rrnB ribosomal operon P1 promoter.
Collapse
Affiliation(s)
- D Nègre
- Institut de Biologie et Chimie des Proteines, Centre National de la Recherche Scientifique, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Czarniecki D, Noel RJ, Reznikoff WS. The -45 region of the Escherichia coli lac promoter: CAP-dependent and CAP-independent transcription. J Bacteriol 1997; 179:423-9. [PMID: 8990294 PMCID: PMC178712 DOI: 10.1128/jb.179.2.423-429.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The lactose (lac) operon promoter is positively regulated by the catabolite gene activator-cyclic AMP complex (CAP) that binds to the DNA located 61.5 bp upstream of the transcription start site. Between the CAP binding site and the core promoter sequence is a 13-bp sequence (from -38 to -50 [the -45 region]). The possible roles of the -45 region in determining the CAP-independent level of lac expression and in the CAP activation process were studied by isolating and characterizing random multisite mutations. Only a small percentage of mutants have dramatic effects on lac promoter activity. Among the mutations that did affect expression, a 26-fold range in lac promoter activity in vivo was observed in the CAP-independent activity. The highest level of CAP-independent lac expression (13-fold the level of the wild-type lac promoter) correlated with changes in the -40 to -45 sequence and required an intact RNA polymerase alpha subunit for in vitro expression, as expected for an upstream DNA recognition element. Mutant promoters varied in their ability to be stimulated by CAP in vivo, with levels ranging from 2-fold to the wild-type level of 22-fold. Only a change of twofold in responsiveness to CAP could be attributed to direct DNA sequence effects. The -40 to -45 sequence-dependent enhancement of promoter activity and CAP stimulation of promoter activity did not act additively. The mutant promoters also displayed other characteristics, such as the activation of nascent promoter-like activities overlapping lac P1 and, in one case, replicon-dependent changes in promoter activity.
Collapse
Affiliation(s)
- D Czarniecki
- Department of Biochemistry, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|