1
|
Park S, Nam EW, Kim Y, Lee S, Kim SI, Yoon H. Transcriptomic Approach for Understanding the Adaptation of Salmonella enterica to Contaminated Produce. J Microbiol Biotechnol 2020; 30:1729-1738. [PMID: 32830190 PMCID: PMC9728351 DOI: 10.4014/jmb.2007.07036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Salmonellosis is a form of gastroenteritis caused by Salmonella infection. The main transmission route of salmonellosis has been identified as poorly cooked meat and poultry products contaminated with Salmonella. However, in recent years, the number of outbreaks attributed to contaminated raw produce has increased dramatically. To understand how Salmonella adapts to produce, transcriptomic analysis was conducted on Salmonella enterica serovar Virchow exposed to fresh-cut radish greens. Considering the different Salmonella lifestyles in contact with fresh produce, such as motile and sessile lifestyles, total RNA was extracted from planktonic and epiphytic cells separately. Transcriptomic analysis of S. Virchow cells revealed different transcription profiles between lifestyles. During bacterial adaptation to fresh-cut radish greens, planktonic cells were likely to shift toward anaerobic metabolism, exploiting nitrate as an electron acceptor of anaerobic respiration, and utilizing cobalamin as a cofactor for coupled metabolic pathways. Meanwhile, Salmonella cells adhering to plant surfaces showed coordinated upregulation in genes associated with translation and ribosomal biogenesis, indicating dramatic cellular reprogramming in response to environmental changes. In accordance with the extensive translational response, epiphytic cells showed an increase in the transcription of genes that are important for bacterial motility, nucleotide transporter/metabolism, cell envelope biogenesis, and defense mechanisms. Intriguingly, Salmonella pathogenicity island (SPI)-1 and SPI-2 displayed up- and downregulation, respectively, regardless of lifestyles in contact with the radish greens, suggesting altered Salmonella virulence during adaptation to plant environments. This study provides molecular insights into Salmonella adaptation to plants as an alternative environmental reservoir.
Collapse
Affiliation(s)
- Sojung Park
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Eun woo Nam
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Seohyeon Lee
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon16499 Republic of Korea
| | - Seul I Kim
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon6499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon16499 Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
2
|
Liao Z, Suo Y, Xue C, Fu H, Wang J. Improving the fermentation performance of Clostridium acetobutylicum ATCC 824 by strengthening the VB1 biosynthesis pathway. Appl Microbiol Biotechnol 2018; 102:8107-8119. [DOI: 10.1007/s00253-018-9208-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
|
3
|
Duval M, Simonetti A, Caldelari I, Marzi S. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015; 114:18-29. [PMID: 25792421 DOI: 10.1016/j.biochi.2015.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/15/2022]
Abstract
To adapt their metabolism rapidly and constantly in response to environmental variations, bacteria often target the translation initiation process, during which the ribosome assembles on the mRNA. Here, we review different mechanisms of regulation mediated by cis-acting elements, sRNAs and proteins, showing, when possible, their intimate connection with the translational apparatus. Indeed the ribosome itself could play a direct role in several regulatory mechanisms. Different features of the regulatory signals (sequences, structures and their positions on the mRNA) are contributing to the large variety of regulatory mechanisms. Ribosome heterogeneity, variation of individual cells responses and the spatial and temporal organization of the translation process add more layers of complexity. This hampers to define manageable set of rules for bacterial translation initiation control.
Collapse
Affiliation(s)
- Mélodie Duval
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Angelita Simonetti
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, IBMC-CNRS, F-67084 Strasbourg, France
| |
Collapse
|
4
|
The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol 2012; 78:7792-7. [PMID: 22904061 DOI: 10.1128/aem.02052-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate mutualist Wigglesworthia morsitans provisions nutrients to tsetse flies. The symbiont's response to thiamine (B(1)) supplementation of blood meals, specifically towards the regulation of thiamine biosynthesis and population density, is described. Despite an ancient symbiosis and associated genome tailoring, Wigglesworthia responds to nutrient availability, potentially accommodating a decreased need.
Collapse
|
5
|
Abstract
Thiamine (vitamin B(1)) is an essential compound for organisms. It contains a pyrimidine ring structure and a thiazole ring structure. These two moieties of thiamine are synthesized independently and then coupled together. Here we report the molecular characterization of AtTHIC, which is involved in thiamine biosynthesis in Arabidopsis. AtTHIC is similar to Escherichia coli ThiC, which is involved in pyrimidine biosynthesis in prokaryotes. Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E. coli. Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thic1 showed albino (white leaves) and lethal phenotypes under the normal culture conditions. The thic1 mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression of AtTHIC cDNA. Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts. AtTHIC was strongly expressed in leaves, flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine. In conclusion, AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis, and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.
Collapse
|
6
|
Abstract
Metabolism encompasses the biochemical basis of life and as such spans all biological disciplines. Many decades of basic research, primarily in microbes, have resulted in extensive characterization of metabolic components and regulatory paradigms. With this basic knowledge in hand and the technologies currently available, it has become feasible to move toward an understanding of microbial metabolism as a system rather than as a collection of component parts. Insight into the system will be generated by continued efforts to rigorously define metabolic components combined with renewed efforts to discover components and connections using in vivo-driven approaches. On the tail of a detailed understanding of components and connections that comprise metabolism will come the ability to generate a comprehensive mathematical model that describes the system. While microbes provide the logical organism for this work, the value of such a model would span biological disciplines. Described herein are approaches that can provide insight into metabolism and caveats of their use. The goal of this review is to emphasize that in silico, in vitro, and in vivo approaches must be used in combination to achieve a full understanding of microbial metabolism.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
7
|
Karunakaran R, Ebert K, Harvey S, Leonard ME, Ramachandran V, Poole PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841. J Bacteriol 2006; 188:6661-8. [PMID: 16952958 PMCID: PMC1595474 DOI: 10.1128/jb.00641-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/10/2006] [Indexed: 12/21/2022] Open
Abstract
In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.
Collapse
Affiliation(s)
- R Karunakaran
- School of Biological Sciences, University of Reading, Whiteknights, P.O. Box 228, Reading RG6 6AJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Dubuis C, Rolli J, Lutz M, Défago G, Haas D. Thiamine-auxotrophic mutants of Pseudomonas fluorescens CHA0 are defective in cell-cell signaling and biocontrol factor expression. Appl Environ Microbiol 2006; 72:2606-13. [PMID: 16597964 PMCID: PMC1449068 DOI: 10.1128/aem.72.4.2606-2613.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 02/02/2006] [Indexed: 11/20/2022] Open
Abstract
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.
Collapse
Affiliation(s)
- Christophe Dubuis
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Abstract
Essential isoprenoid compounds are synthesized using the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in many gram-negative bacteria, some gram-positive bacteria, some apicomplexan parasites, and plant chloroplasts. The alternative mevalonate pathway is found in archaea and eukaryotes, including cytosolic biosynthesis in plants. The existence of orthogonal essential pathways in eukaryotes and bacteria makes the MEP pathway an attractive target for the development of antimicrobial agents. A system is described for identifying mutations in the MEP pathway of Salmonella enterica serovar Typhimurium. Using this system, point mutations induced by diethyl sulfate were found in the all genes of the essential MEP pathway and also in genes involved in uptake of methylerythritol. Curiously, none of the MEP pathway genes could be identified in the same parent strain by transposon mutagenesis, despite extensive searches. The results complement the biochemical and bioinformatic approaches to the elucidation of the genes involved in the MEP pathway and also identify key residues for activity in the enzymes of the pathway.
Collapse
Affiliation(s)
- Rita M Cornish
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
10
|
Schyns G, Potot S, Geng Y, Barbosa TM, Henriques A, Perkins JB. Isolation and characterization of new thiamine-deregulated mutants of Bacillus subtilis. J Bacteriol 2005; 187:8127-36. [PMID: 16291685 PMCID: PMC1291275 DOI: 10.1128/jb.187.23.8127-8136.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, thiamine pyrophosphate (TPP) is an essential cofactor that is synthesized de novo. Thiamine, however, is not an intermediate in the biosynthetic pathway but is salvaged from the environment and phosphorylated to TPP. We have isolated and characterized new mutants of Bacillus subtilis that deregulate thiamine biosynthesis and affect the export of thiamine products from the cell. Deletion of the ydiA gene, which shows significant similarity to the thiamine monophosphate kinase gene of Escherichia coli (thiL), did not generate the expected thiamine auxotroph but instead generated a thiamine bradytroph that grew to near-wild-type levels on minimal medium. From this DeltathiL deletion mutant, two additional ethyl methanesulfonate-induced mutants that derepressed the expression of a thiC-lacZ transcriptional reporter were isolated. One mutant, Tx1, contained a nonsense mutation within the B. subtilis yloS (thiN) gene that encodes a thiamine pyrophosphokinase, a result which confirmed that B. subtilis contains a single-step, yeast-like thiamine-to-TPP pathway in addition to the bacterial TPP de novo pathway. A second mutant, strain Tx26, was shown to contain two lesions. Genetic mapping and DNA sequencing indicated that the first mutation affected yuaJ, which encodes a thiamine permease. The second mutation was located within the ykoD cistron of the ykoFEDC operon, which putatively encodes the ATPase component of a unique thiamine-related ABC transporter. Genetic and microarray studies indicated that both the mutant yuaJ and ykoD genes were required for the derepression of thiamine-regulated genes. Moreover, the combination of the four mutations (the DeltathiL, thiN, yuaJ, and ykoD mutations) into a single strain significantly increased the production and excretion of thiamine products into the culture medium. These results are consistent with the proposed "riboswitch" mechanism of thiamine gene regulation (W. C. Winkler, A. Nahvi, and R. R. Breaker, Nature 419:952-956, 2002).
Collapse
Affiliation(s)
- Ghislain Schyns
- Biotechnology R&D, DSM Nutritional Products, Ltd., Kaiseraugst, Switzerland.
| | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Wade C Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, Kline Biology Tower 506, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | |
Collapse
|
12
|
Leonardi R, Roach PL. Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J Biol Chem 2004; 279:17054-62. [PMID: 14757766 DOI: 10.1074/jbc.m312714200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of thiamine in Escherichia coli requires the formation of an intermediate thiazole from tyrosine, 1-deoxy-d-xylulose-5-phosphate (Dxp), and cysteine using at least six structural proteins, ThiFSGH, IscS, and ThiI. We describe for the first time the reconstitution of thiazole synthase activity using cell-free extracts and proteins derived from adenosine-treated E. coli 83-1 cells. The addition of adenosine or adenine to growing cultures of Aerobacter aerogenes, Salmonella typhimurium, and E. coli has been shown previously to relieve the repression by thiamine of its own biosynthesis and increase the expression levels of the thiamine biosynthetic enzymes. By exploiting this effect, we show that the in vitro thiazole synthase activity of cleared lysates or desalted proteins from E. coli 83-1 cells is dependent upon the addition of purified ThiGH-His complex, tyrosine (but not cysteine or 1-deoxy-d-xylulose-5-phosphate), and an as yet unidentified intermediate present in the protein fraction from these cells. The activity is strongly stimulated by the addition of S-adenosylmethionine and NADPH.
Collapse
Affiliation(s)
- Roberta Leonardi
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | |
Collapse
|
13
|
Ramos I, Downs DM. Anthranilate synthase can generate sufficient phosphoribosyl amine for thiamine synthesis in Salmonella enterica. J Bacteriol 2003; 185:5125-32. [PMID: 12923085 PMCID: PMC180985 DOI: 10.1128/jb.185.17.5125-5132.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, the biosynthetic pathway for the hydroxymethyl pyrimidine moiety of thiamine shares metabolic intermediates with purine biosynthesis. The two pathways branch after the compound aminoimidazole ribotide. Past work has shown that the first common metabolite, phosphoribosyl amine (PRA), can be generated in the absence of the first enzyme in purine biosynthesis, PurF. PurF-independent PRA synthesis is dependent on both strain background and growth conditions. Standard genetic approaches have not identified a gene product singly responsible for PurF-independent PRA formation. This result has led to the hypothesis that multiple enzymes contribute to PRA synthesis, possibly as the result of side products from their dedicated reaction. A mutation that was able to restore PRA synthesis in a purF gnd mutant strain was identified and found to map in the gene coding for the TrpD subunit of the anthranilate synthase (AS)-phosphoribosyl transferase (PRT) complex. Genetic analyses indicated that wild-type AS-PRT was able to generate PRA in vivo and that the P362L mutant of TrpD facilitated this synthesis. In vitro activity assays showed that the mutant AS was able to generate PRA from ammonia and phosphoribosyl pyrophosphate. This work identifies a new reaction catalyzed by AS-PRT and considers it in the context of cellular thiamine synthesis and metabolic flexibility.
Collapse
Affiliation(s)
- I Ramos
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
14
|
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem 2002; 277:48949-59. [PMID: 12376536 DOI: 10.1074/jbc.m208965200] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin B(1) in its active form thiamin pyrophosphate is an essential coenzyme that is synthesized by coupling of pyrimidine (hydroxymethylpyrimidine; HMP) and thiazole (hydroxyethylthiazole) moieties in bacteria. Using comparative analysis of genes, operons, and regulatory elements, we describe the thiamin biosynthetic pathway in available bacterial genomes. The previously detected thiamin-regulatory element, thi box (Miranda-Rios, J., Navarro, M., and Soberon, M. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9736-9741), was extended, resulting in a new, highly conserved RNA secondary structure, the THI element, which is widely distributed in eubacteria and also occurs in some archaea. Search for THI elements and analysis of operon structures identified a large number of new candidate thiamin-regulated genes, mostly transporters, in various prokaryotic organisms. In particular, we assign the thiamin transporter function to yuaJ in the Bacillus/Clostridium group and the HMP transporter function to an ABC transporter thiXYZ in some proteobacteria and firmicutes. By analogy to the model of regulation of the riboflavin biosynthesis, we suggest thiamin-mediated regulation based on formation of alternative RNA structures involving the THI element. Either transcriptional or translational attenuation mechanism may operate in different taxonomic groups, dependent on the existence of putative hairpins that either act as transcriptional terminators or sequester translation initiation sites. Based on analysis of co-occurrence of the thiamin biosynthetic genes in complete genomes, we predict that eubacteria, archaea, and eukaryota have different pathways for the HMP and hydroxyethylthiazole biosynthesis.
Collapse
|
15
|
Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 2002; 111:747-56. [PMID: 12464185 DOI: 10.1016/s0092-8674(02)01134-0] [Citation(s) in RCA: 523] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thiamin and riboflavin are precursors of essential coenzymes-thiamin pyrophosphate (TPP) and flavin mononucleotide (FMN)/flavin adenine dinucleotide (FAD), respectively. In Bacillus spp, genes responsible for thiamin and riboflavin biosynthesis are organized in tightly controllable operons. Here, we demonstrate that the feedback regulation of riboflavin and thiamin genes relies on a novel transcription attenuation mechanism. A unique feature of this mechanism is the formation of specific complexes between a conserved leader region of the cognate RNA and FMN or TPP. In each case, the complex allows the termination hairpin to form and interrupt transcription prematurely. Thus, sensing small molecules by nascent RNA controls transcription elongation of riboflavin and thiamin operons and possibly other bacterial operons as well.
Collapse
Affiliation(s)
- Alexander S Mironov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 113545, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002; 419:952-6. [PMID: 12410317 DOI: 10.1038/nature01145] [Citation(s) in RCA: 934] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Accepted: 09/20/2002] [Indexed: 01/31/2023]
Abstract
Although proteins fulfil most of the requirements that biology has for structural and functional components such as enzymes and receptors, RNA can also serve in these capacities. For example, RNA has sufficient structural plasticity to form ribozyme and receptor elements that exhibit considerable enzymatic power and binding specificity. Moreover, these activities can be combined to create allosteric ribozymes that are modulated by effector molecules. It has also been proposed that certain messenger RNAs might use allosteric mechanisms to mediate regulatory responses depending on specific metabolites. We report here that mRNAs encoding enzymes involved in thiamine (vitamin B(1)) biosynthesis in Escherichia coli can bind thiamine or its pyrophosphate derivative without the need for protein cofactors. The mRNA-effector complex adopts a distinct structure that sequesters the ribosome-binding site and leads to a reduction in gene expression. This metabolite-sensing regulatory system provides an example of a 'riboswitch' whose evolutionary origin might pre-date the emergence of proteins.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Allosteric Site/drug effects
- Bacterial Proteins/genetics
- Base Sequence
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli Proteins/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Genes, Bacterial/genetics
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Protein Biosynthesis/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Regulatory Sequences, Ribonucleic Acid/genetics
- Ribosomes/drug effects
- Ribosomes/metabolism
- Substrate Specificity
- Thiamine/analogs & derivatives
- Thiamine/biosynthesis
- Thiamine/metabolism
- Thiamine/pharmacology
- Thiamine Pyrophosphate/metabolism
- Thiamine Pyrophosphate/pharmacology
Collapse
Affiliation(s)
- Wade Winkler
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
17
|
Miranda-Ríos J, Navarro M, Soberón M. A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci U S A 2001; 98:9736-41. [PMID: 11470904 PMCID: PMC55522 DOI: 10.1073/pnas.161168098] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thiCOGE genes of Rhizobium etli code for enzymes involved in thiamin biosynthesis. These genes are transcribed with a 211-base untranslated leader that contains the thi box, a 38-base sequence highly conserved in the 5' regions of thiamin biosynthetic and transport genes of Gram-positive and Gram-negative organisms. A deletion analysis of thiC-lacZ fusions revealed an unexpected relationship between the degree of repression shown by the deleted derivatives and the length of the thiC sequences present in the transcript. Three regions were found to be important for regulation: (i) the thi box sequence, which is absolutely necessary for high-level expression of thiC; (ii) the region immediately upstream to the translation start codon of thiC, which can be folded into a stem-loop structure that would mask the Shine-Dalgarno sequence; and (iii) the proximal part of the coding region of thiC, which was shown to contain a putative Rho-independent terminator. A comparative phylogenetic analysis revealed a possible folding of the thi box sequence into a hairpin structure composed of a hairpin loop, two helices, and an interior loop. Our results show that thiamin regulation of gene expression involves a complex posttranscriptional mechanism and that the thi box RNA structure is indispensable for thiCOGE expression.
Collapse
MESH Headings
- 5' Untranslated Regions/chemistry
- 5' Untranslated Regions/genetics
- 5' Untranslated Regions/metabolism
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/genetics
- Genome, Bacterial
- Lac Operon
- Models, Genetic
- Nucleic Acid Conformation
- Operon
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Rhizobium/genetics
- Sequence Deletion
- Structure-Activity Relationship
- Thiamine/biosynthesis
- Thiamine/pharmacology
Collapse
Affiliation(s)
- J Miranda-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos.
| | | | | |
Collapse
|
18
|
Abstract
In the cyanobacterium Synechococcus elongatus, cell division is regulated by a circadian clock. Deletion of the circadian clock gene, kaiC, abolishes rhythms of gene expression and cell division timing. Overexpression of the ftsZ gene halted cell division but not growth, causing cells to grow as filaments without dividing. The nondividing filamentous cells still exhibited robust circadian rhythms of gene expression. This result indicates that the circadian timing system is independent of rhythmic cell division and, together with other results, suggests that the cyanobacterial circadian system is stable and well sustained under a wide range of intracellular conditions.
Collapse
Affiliation(s)
- T Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
19
|
McGhee GC, Jones AL. Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Appl Environ Microbiol 2000; 66:4897-907. [PMID: 11055941 PMCID: PMC92397 DOI: 10.1128/aem.66.11.4897-4907.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of plasmid pEA29 from Erwinia amylovora strain Ea88 consists of 28,185 bp with a 50.2% G+C content. As deletions and insertions were detected in other derivatives of pEA29, its size actually varied from 27.6 to 34.9 kb. Thirteen open reading frames that encoded predicted proteins with similarities to known proteins from other bacteria were identified along with two open reading frames related to hypothetical proteins found in GenBank and six open reading frames with no similarities to existing GenBank entries. Predicted products of open reading frames with similarity to the thiamine biosynthetic genes thiO, thiG, and thiF; a betT gene coding for choline transport; an msrA gene for the enzyme methionine sulfoxide reductase; a putative methyl-accepting chemotaxis gene; an aldehyde dehydrogenase gene; an hns DNA binding gene; a LysR-type transcriptional regulator; and parA and parB partitioning genes were identified. A putative iteron-containing theta-type origin of replication with an AT-rich region and a gene for a RepA protein was identified. PstI and KpnI restriction patterns for pEA29 isolated from tree fruit strains of E. amylovora were homogenous and different from those for pEA29 isolated from Rubus (raspberry) strains. All Rubus derivatives of pEA29 contained a point mutation that eliminated a PstI site and a 1,264-bp region that replaced 1, 890 bp of sequence found in pEA29 from strain Ea88. This change eliminated a second PstI site and increased the length of a KpnI fragment. An insertion sequence, ISEam1, was detected in one Rubus strain, and transposon Tn5393 was detected in three apple strains in two separate locations on the plasmid. Plasmid-cured strains exhibited reduced virulence and modified colony morphology on minimal medium without thiamine, indicating that some of the genes in pEA29 play a role in the physiology or metabolism of E. amylovora.
Collapse
Affiliation(s)
- G C McGhee
- Department of Botany and Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1312, USA
| | | |
Collapse
|
20
|
Christian T, Downs DM. Defects in pyruvate kinase cause a conditional increase of thiamine synthesis in Salmonella typhimurium. Can J Microbiol 1999. [DOI: 10.1139/w99-042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As genomic sequence data become more prevalent, the challenges in microbial physiology shift from identifying biochemical pathways to understanding the interactions that occur between them to create a robust but responsive metabolism. One of the most powerful methods to identify such interactions is in vivo phenotypic analysis. We have utilized thiamine synthesis as a model to detect subtle metabolic interactions due to the sensitivity allowed by the small cellular requirement for this vitamin. Although purine biosynthesis produces an intermediate in thiamine synthesis, mutants blocked in the first step of de novo purine biosynthesis (PurF) are able to grow in the absence of thiamine owing to an alternative synthesis. A number of general metabolic defects have been found to prevent PurF-independent thiamine synthesis. Here we report stimulation of thiamine-independent growth caused by a mutation in one or both genes encoding the pyruvate kinase isozymes. The results presented herein represent the first phenotype described for mutants defective in pykA or pykF, and thus identify metabolic interactions that exist in vivo.Key words: thiamine synthesis, metabolic integration.
Collapse
|
21
|
Enos-Berlage JL, Downs DM. Biosynthesis of the pyrimidine moiety of thiamine independent of the PurF enzyme (Phosphoribosylpyrophosphate amidotransferase) in Salmonella typhimurium: incorporation of stable isotope-labeled glycine and formate. J Bacteriol 1999; 181:841-8. [PMID: 9922247 PMCID: PMC93450 DOI: 10.1128/jb.181.3.841-848.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1998] [Accepted: 11/11/1998] [Indexed: 11/20/2022] Open
Abstract
Genetic analyses have suggested that the pyrimidine moiety of thiamine can be synthesized independently of the first enzyme of de novo purine synthesis, phosphoribosylpyrophosphate amidotransferase (PurF), in Salmonella typhimurium. To obtain biochemical evidence for and to further define this proposed synthesis, stable isotope labeling experiments were performed with two compounds, [2-13C]glycine and [13C]formate. These compounds are normally incorporated into thiamine pyrophosphate (TPP) via steps in the purine pathway subsequent to PurF. Gas chromatography-mass spectrometry analyses indicated that both of these compounds were incorporated into the pyrimidine moiety of TPP in a purF mutant. This result clearly demonstrated that the pyrimidine moiety of thiamine was being synthesized in the absence of the PurF enzyme and strongly suggested that this synthesis utilized subsequent enzymes of the purine pathway. These results were consistent with an alternative route to TPP that bypassed only the first enzyme in the purine pathway. Experiments quantitating cellular thiamine monophosphate (TMP) and TPP levels suggested that the alternative route to TPP did not function at the same capacity as the characterized pathway and determined that levels of TMP and TPP in the wild-type strain were significantly altered by the presence of purines in the medium.
Collapse
Affiliation(s)
- J L Enos-Berlage
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
22
|
Enos-Berlage JL, Langendorf MJ, Downs DM. Complex metabolic phenotypes caused by a mutation in yjgF, encoding a member of the highly conserved YER057c/YjgF family of proteins. J Bacteriol 1998; 180:6519-28. [PMID: 9851994 PMCID: PMC107753 DOI: 10.1128/jb.180.24.6519-6528.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxidative pentose phosphate pathway is required for function of the alternative pyrimidine biosynthetic pathway, a pathway that allows thiamine synthesis in the absence of the PurF enzyme in Salmonella typhimurium. Mutants that no longer required function of the oxidative pentose phosphate pathway for thiamine synthesis were isolated. Further phenotypic analyses of these mutants demonstrated that they were also sensitive to the presence of serine in the medium, suggesting a partial defect in isoleucine biosynthesis. Genetic characterization showed that these pleiotropic phenotypes were caused by null mutations in yjgF, a previously uncharacterized open reading frame encoding a hypothetical 13.5-kDa protein. The YjgF protein belongs to a class of proteins of unknown function that exhibit striking conservation across a wide range of organisms, from bacteria to humans. This work represents the first detailed phenotypic characterization of yjgF mutants in any organism and provides important clues as to the function of this highly conserved class of proteins. Results also suggest a connection between function of the isoleucine biosynthetic pathway and the requirement for the pentose phosphate pathway in thiamine synthesis.
Collapse
Affiliation(s)
- J L Enos-Berlage
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
23
|
Frodyma ME, Downs D. The panE gene, encoding ketopantoate reductase, maps at 10 minutes and is allelic to apbA in Salmonella typhimurium. J Bacteriol 1998; 180:4757-9. [PMID: 9721324 PMCID: PMC107496 DOI: 10.1128/jb.180.17.4757-4759.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/1998] [Accepted: 06/21/1998] [Indexed: 11/20/2022] Open
Abstract
In Salmonella typhimurium, precursors to the pyrimidine moiety of thiamine are synthesized de novo by the purine biosynthetic pathway or the alternative pyrimidine biosynthetic (APB) pathway. The apbA gene was the first locus defined as required for function of the APB pathway (D. M. Downs and L. Petersen, J. Bacteriol. 176:4858-4864, 1994). Recent work showed the ApbA protein catalyzes the NADPH-specific reduction of ketopantoic acid to pantoic acid. This activity had previously been associated with the pantothenate biosynthetic gene panE. Although previous reports placed panE at 87 min on the Escherichia coli chromosome, we show herein that apbA and panE are allelic and map to 10 min on both the S. typhimurium and E. coli chromosomes. Results presented here suggest that the role of ApbA in thiamine synthesis is indirect since in vivo labeling studies showed that pantoic acid, the product of the ApbA-catalyzed reaction, is not a direct precursor to thiamine via the APB pathway.
Collapse
Affiliation(s)
- M E Frodyma
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
24
|
Kim YS, Nosaka K, Downs DM, Kwak JM, Park D, Chung IK, Nam HG. A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thiamin-phosphate pyrophosphorylase involved in thiamin biosynthesis. PLANT MOLECULAR BIOLOGY 1998; 37:955-66. [PMID: 9700068 DOI: 10.1023/a:1006030617502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report the characterization of a Brassica napus cDNA clone (pBTHI) encoding a protein (BTHI) with two enzymatic activities in the thiamin biosynthetic pathway, thiamin-phosphate pyrophosphorylase (TMP-PPase) and 2-methyl-4-amino-5-hydroxymethylpyrimidine-monophosphate kinase (HMP-P kinase). The cDNA clone was isolated by a novel functional complementation strategy employing an Escherichia coli mutant deficient in the TMP-PPase activity. A biochemical assay showed the clone to confer recovery of TMP-PPase activity in the E. coli mutant strain. The cDNA clone is 1746 bp long and contains an open reading frame encoding a peptide of 524 amino acids. The C-terminal part of BTH1 showed 53% and 59% sequence similarity to the N-terminal TMP-PPase region of the bifunctional yeast proteins Saccharomyces THI6 and Schizosaccharomyces pombe THI4, respectively. The N-terminal part of BTH1 showed 58% sequence similarity to HMP-P kinase of Salmonella typhimurium. The cDNA clone functionally complemented the S. typhimurium and E. coli thiD mutants deficient in the HMP-P kinase activity. These results show that the clone encodes a bifunctional protein with TMP-PPase at the C-terminus and HMP-P kinase at the N-terminus. This is in contrast to the yeast bifunctional proteins that encode TMP-PPase at the N-terminus and 4-methyl-5-(2-hydroxyethyl)thiazole kinase at the C-terminus. Expression of the BTH1 gene is negatively regulated by thiamin, as in the cases for the thiamin biosynthetic genes of microorganisms. This is the first report of a plant thiamin biosynthetic gene on which a specific biochemical activity is assigned. The Brassica BTH1 gene may correspond to the Arabidopsis TH-1 gene.
Collapse
Affiliation(s)
- Y S Kim
- Department of Life Science and School of Environmental Engineering, Pohang University of Science and Technology, Kyungbuk, South Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Webb E, Claas K, Downs D. thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J Biol Chem 1998; 273:8946-50. [PMID: 9535878 DOI: 10.1074/jbc.273.15.8946] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Salmonella typhimurium, thiamine pyrophosphate (TPP) is a required cofactor for several enzymes in central metabolism. Herein we identify a new thi operon, thiBPQ (designated sfuABC in Escherichia coli), required for the transport of thiamine and TPP into the cell. Insertions in the operon result in strains that are phenotypically and biochemically defective in thiamine and TPP transport. Data presented herein show that this operon is transcriptionally repressed in the presence of exogenous thiamine, with TPP the likely regulatory molecule. This work represents the first identification of thiamine transport genes in bacteria and demonstrates the function of a proposed ABC transporter in E. coli.
Collapse
Affiliation(s)
- E Webb
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
26
|
Pekovich SR, Martin PR, Singleton CK. Thiamine deficiency decreases steady-state transketolase and pyruvate dehydrogenase but not alpha-ketoglutarate dehydrogenase mRNA levels in three human cell types. J Nutr 1998; 128:683-7. [PMID: 9521628 DOI: 10.1093/jn/128.4.683] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reductions in the levels and activities of enzymes that utilize thiamine diphosphate (ThDP) as a cofactor are thought to be responsible for the tissue damage suffered during thiamine deficiency. Although loss of cofactor can account in part for loss of enzyme activity, thiamine and its phosphorylated derivatives may also regulate the expression of the genes encoding these proteins. To examine this possibility, steady-state mRNA levels for three ThDP-dependent enzymes were measured in human fibroblasts, lymphoblasts and neuroblastoma cells cultured under conditions of thiamine sufficiency and deficiency. In all three cell types, the mRNA levels of transketolase and the E1beta subunit of pyruvate dehydrogenase complex were lower in thiamine-deficient cultures. In contrast, mRNA levels for a ThDP-binding subunit of alpha-ketoglutarate dehydrogenase, the E1 subunit did not differ. These results indicate that thiamine or a thiamine metabolite regulates the expression in humans of some, but not all, genes encoding ThDP-utilizing enzymes.
Collapse
Affiliation(s)
- S R Pekovich
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|
27
|
Beck BJ, Downs DM. The apbE gene encodes a lipoprotein involved in thiamine synthesis in Salmonella typhimurium. J Bacteriol 1998; 180:885-91. [PMID: 9473043 PMCID: PMC106968 DOI: 10.1128/jb.180.4.885-891.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/1997] [Accepted: 12/06/1997] [Indexed: 02/06/2023] Open
Abstract
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella typhimurium. The biochemical steps and gene products involved in the conversion of aminoimidazole ribotide (AIR), a purine intermediate, to the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine have yet to be elucidated. We have isolated mutations in a new locus (Escherichia coli open reading frame designation yojK) at 49 min on the S. typhimurium chromosome. Two significant phenotypes associated with lesions in this locus (apbE) were identified. First, apbE purF double mutants require thiamine, specifically the HMP moiety. Second, in the presence of adenine, apbE single mutants require thiamine, specifically both the HMP and the thiazole moieties. Together, the phenotypes associated with apbE mutants suggest that flux through the purine pathway has a role in regulating synthesis of the thiazole moiety of thiamine and are consistent with ApbE being involved in the conversion of AIR to HMP. The product of the apbE gene was found to be a 36-kDa membrane-associated lipoprotein, making it the second membrane protein implicated in thiamine synthesis.
Collapse
Affiliation(s)
- B J Beck
- Department of Bacteriology, University of Wisconsin--Madison, 53706, USA
| | | |
Collapse
|
28
|
Miranda-Ríos J, Morera C, Taboada H, Dávalos A, Encarnación S, Mora J, Soberón M. Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli. J Bacteriol 1997; 179:6887-93. [PMID: 9371431 PMCID: PMC179625 DOI: 10.1128/jb.179.22.6887-6893.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this paper we report the cloning and sequence analysis of four genes, located on plasmid pb, which are involved in the synthesis of thiamin in Rhizobium etli (thiC, thiO, thiG, and thiE). Two precursors, 4-methyl-5-(beta-hydroxyethyl)thiazole monophosphate and 4-amino-5-hydroxymethylpyrimidine pyrophosphate, are coupled to form thiamin monophosphate, which is then phosphorylated to make thiamin pyrophosphate. The first open reading frame (ORF) product, of 610 residues, has significant homology (69% identity) with the product of thiC from Escherichia coli, which is involved in the synthesis of hydroxymethylpyrimidine. The second ORF product, of 327 residues, is the product of a novel gene denoted thiO. A protein motif involved in flavin adenine dinucleotide binding was found in the amino-terminal part of ThiO; also, residues involved in the catalytic site of D-amino acid oxidases are conserved in ThiO, suggesting that it catalyzes the oxidative deamination of some intermediate of thiamin biosynthesis. The third ORF product, of 323 residues, has significant homology (38% identity) with ThiG from E. coli, which is involved in the synthesis of the thiazole. The fourth ORF product, of 204 residues, has significant homology (47% identity) with the product of thiE from E. coli, which is involved in the condensation of hydroxymethylpyrimidine and thiazole. Strain CFN037 is an R. etli mutant induced by a single Tn5mob insertion in the promoter region of the thiCOGE gene cluster. The Tn5mob insertion in CFN037 occurred within a 39-bp region which is highly conserved in all of the thiC promoters analyzed and promotes constitutive expression of thiC. Primer extension analysis showed that thiC transcription in strain CFN037 originates within the Tn5 element. Analysis of c-type protein content and expression of the fixNOQP operon, which codes for the symbiotic terminal oxidase cbb3, revealed that CFN037 produces the cbb3 terminal oxidase. These data show a direct relationship between expression of thiC and production of the cbb3 terminal oxidase. This is consistent with the proposition that a purine-related metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide, is a negative effector of the production of the symbiotic terminal oxidase cbb3 in R. etli.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Cytochrome c Group/analysis
- Cytochrome c Group/metabolism
- DNA Transposable Elements
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Gene Expression
- Genes, Reporter
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Molecular Sequence Data
- Mutagenesis, Insertional
- Open Reading Frames
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Plasmids
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- Rhizobium/genetics
- Rhizobium/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Symbiosis/genetics
- Thiamine/genetics
- Thiamine/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- J Miranda-Ríos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, U.N.A.M., Cuernavaca, Morelos, México
| | | | | | | | | | | | | |
Collapse
|
29
|
Petersen LA, Downs DM. Identification and characterization of an operon in Salmonella typhimurium involved in thiamine biosynthesis. J Bacteriol 1997; 179:4894-900. [PMID: 9244280 PMCID: PMC179339 DOI: 10.1128/jb.179.15.4894-4900.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thiamine pyrophosphate (TPP) is synthesized de novo in Salmonella typhimurium and is a required cofactor for many enzymes in the cell. Five kinase activities have been implicated in TPP synthesis, which involves joining a 4-methyl-5-(beta-hydroxyethyl)thiazole (THZ) moiety and a 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety. We report here identification of a 2-gene operon involved in thiamine biosynthesis and present evidence that the genes in this operon, thiMD, encode two previously identified kinases, THZ kinase and HMP phosphate (HMP-P) kinase, respectively. We further show that this operon belongs to the growing class of genes involved in TPP synthesis that are transcriptionally regulated by TPP. Our data are consistent with ThiM being a salvage enzyme and ThiD being a biosynthetic enzyme involved in TPP synthesis, as previously suggested.
Collapse
Affiliation(s)
- L A Petersen
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
30
|
Webb E, Claas K, Downs DM. Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J Bacteriol 1997; 179:4399-402. [PMID: 9209060 PMCID: PMC179266 DOI: 10.1128/jb.179.13.4399-4402.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thiamine pyrophosphate (TPP) is a required cofactor in Salmonella typhimurium that is generated de novo by the condensation of 4-amino-5-hydroxymethyl pyrimidine (HMP) pyrophosphate and 4-methyl-5-(beta-hydroxyethyl)-thiazole (THZ) monophosphate. The THZ and HMP moieties are independently synthesized, and labeling studies have demonstrated probable metabolic precursors to both. We present herein the initial characterization of thiI, a gene required for THZ synthesis. We show that thiI is a 1,449-bp open reading frame located at minute 9.65 on the S. typhimurium chromosome and that it encodes a 483-amino-acid protein with a predicted molecular mass of 55 kDa. Unlike genes in the thiamine biosynthetic operon at minute 90, thiI is not transcriptionally regulated by TPP.
Collapse
Affiliation(s)
- E Webb
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
31
|
Webb E, Downs D. Characterization of thiL, encoding thiamin-monophosphate kinase, in Salmonella typhimurium. J Biol Chem 1997; 272:15702-7. [PMID: 9188462 DOI: 10.1074/jbc.272.25.15702] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Thiamin pyrophosphate is an essential cofactor that is synthesized de novo by Salmonella typhimurium. In bacteria, the end product of the de novo biosynthetic pathway is thiamin monophosphate, which is then phosphorylated by thiamin-monophosphate kinase (EC 2.7.4.16) to form thiamin pyrophosphate. We have isolated and characterized the thiL gene of S. typhimurium and showed that thiL is a 978-base pair open reading frame encoding a 35-kDa protein with thiamin-monophosphate kinase activity. thiL was located in the 10-centisome region of the S. typhimurium chromosome. We demonstrated that altered thiamin-monophosphate kinase activity resulted in decreased repression of transcription of thiamin pyrophosphate-regulated thiamin biosynthetic genes. In contrast to other thi loci, thiL is not transcriptionally regulated by thiamin pyrophosphate. This result is consistent with a dual role for ThiL in de novo biosynthesis and in salvage of exogenous thiamin.
Collapse
Affiliation(s)
- E Webb
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
32
|
Enos-Berlage JL, Downs DM. Mutations in sdh (succinate dehydrogenase genes) alter the thiamine requirement of Salmonella typhimurium. J Bacteriol 1997; 179:3989-96. [PMID: 9190816 PMCID: PMC179209 DOI: 10.1128/jb.179.12.3989-3996.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutants lacking the first enzyme in de novo purine synthesis (PurF) can synthesize thiamine if increased levels of pantothenate are present in the culture medium (J. L. Enos-Berlage and D. M. Downs, J. Bacteriol. 178:1476-1479, 1996). Derivatives of purF mutants that no longer required pantothenate for thiamine-independent growth were isolated. Analysis of these mutants demonstrated that they were defective in succinate dehydrogenase (Sdh), an enzyme of the tricarboxylic acid cycle. Results of phenotypic analyses suggested that a defect in Sdh decreased the thiamine requirement of Salmonella typhimurium. This reduced requirement correlated with levels of succinyl-coenzyme A (succinyl-CoA), which is synthesized in a thiamine pyrophosphate-dependent reaction. The effect of succinyl-CoA on thiamine metabolism was distinct from the role of pantothenate in thiamine synthesis.
Collapse
Affiliation(s)
- J L Enos-Berlage
- Department of Bacteriology, University of Wisconsin-Madison, 53706, USA
| | | |
Collapse
|
33
|
Spenser ID, White RL. Die Biosynthese von Vitamin B1 (Thiamin): ein Beispiel für biochemische Vielfalt. Angew Chem Int Ed Engl 1997. [DOI: 10.1002/ange.19971091005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Petersen L, Downs DM. Mutations in apbC (mrp) prevent function of the alternative pyrimidine biosynthetic pathway in Salmonella typhimurium. J Bacteriol 1996; 178:5676-82. [PMID: 8824612 PMCID: PMC178406 DOI: 10.1128/jb.178.19.5676-5682.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The alternative pyrimidine biosynthetic (APB) pathway can synthesize the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine in Salmonella typhimurium independently of de novo purine biosynthesis. When mutants defective in function of the APB pathway were isolated, the predominant class (40%) were defective in a single locus we have designated apbC. Mutations in apbC block function of the APB pathway since they prevent growth of a purF mutant in the absence of thiamine. Lesions in apbC also cause a thiamine auxotrophy in strains proficient in purine biosynthesis when fructose is provided as the sole carbon and energy source. Results presented here are consistent with ApbC being involved in the conversion of aminoimidazole ribonucleotide to HMP, and we suggest that ApbC performs a redundant step in thiamine synthesis. Sequence analysis demonstrated that apbC mutations were alleles of mrp, a locus previously reported in Escherichia coli as a metG-related protein. We propose that this locus in S. typhimurium be designated apbC to reflect its involvement in thiamine synthesis.
Collapse
Affiliation(s)
- L Petersen
- Department of Bacteriology, University of Wisconsin--Madison, 53706, USA
| | | |
Collapse
|