1
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Barroso GT, Garcia AA, Knapp M, Boggs DG, Bridwell-Rabb J. Purification and characterization of a Rieske oxygenase and its NADH-regenerating partner proteins. Methods Enzymol 2024; 703:215-242. [PMID: 39260997 DOI: 10.1016/bs.mie.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The Rieske non-heme iron oxygenases (Rieske oxygenases) comprise a class of metalloenzymes that are involved in the biosynthesis of complex natural products and the biodegradation of aromatic pollutants. Despite this desirable catalytic repertoire, industrial implementation of Rieske oxygenases has been hindered by the multicomponent nature of these enzymes and their requirement for expensive reducing equivalents in the form of a reduced nicotinamide adenine dinucleotide cosubstrate (NAD(P)H). Fortunately, however, some Rieske oxygenases co-occur with accessory proteins, that through a downstream reaction, recycle the needed NAD(P)H for catalysis. As these pathways and accessory proteins are attractive for bioremediation applications and enzyme engineering campaigns, herein, we describe methods for assembling Rieske oxygenase pathways in vitro. Further, using the TsaMBCD pathway as a model system, in this chapter, we provide enzymatic, spectroscopic, and crystallographic methods that can be adapted to explore both Rieske oxygenases and their co-occurring accessory proteins.
Collapse
Affiliation(s)
- Gage T Barroso
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | | | - Madison Knapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
3
|
Kawazoe M, Takahashi K, Tokue Y, Hishiyama S, Seki H, Higuchi Y, Kamimura N, Masai E. Catabolic System of 5-Formylferulic Acid, a Downstream Metabolite of a β-5-Type Lignin-Derived Dimer, in Sphingobium lignivorans SYK-6. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19663-19671. [PMID: 38038961 DOI: 10.1021/acs.jafc.3c06128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Sphingobium lignivorans SYK-6 can assimilate various lignin-derived aromatic compounds, including a β-5-type (phenylcoumaran-type) dimer, dehydrodiconiferyl alcohol (DCA). SYK-6 converts DCA to a stilbene-type intermediate via multiple reaction steps and then to vanillin and 5-formylferulic acid (FFA). Here, we first elucidated the catabolic pathway of FFA, which is the only unknown pathway in DCA catabolism. Then, we identified and characterized the enzyme-encoding genes responsible for this pathway. Analysis of the metabolites revealed that FFA was converted to 5-carboxyferulic acid (CFA) through oxidation of the formyl group, followed by conversion to ferulic acid by decarboxylation. A comprehensive analysis of the aldehyde dehydrogenase genes in SYK-6 indicated that NAD+-dependent FerD (SLG_12800) is crucial for the conversion of FFA to CFA. LigW and LigW2, which are 5-carboxyvanillic acid decarboxylases involved in the catabolism of a 5,5-type dimer, were found to be involved in the conversion of CFA to ferulic acid, and LigW2 played a significant role. The ligW2 gene forms an operon with ferD, and their transcription was induced during growth in DCA.
Collapse
Affiliation(s)
- Mitsuru Kawazoe
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Kenji Takahashi
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Yosuke Tokue
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Shojiro Hishiyama
- Department of Forest Resource Chemistry, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Ibaraki, Japan
| | - Hayato Seki
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Yudai Higuchi
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Niigata, Japan
| |
Collapse
|
4
|
Tian J, Boggs DG, Donnan PH, Barroso GT, Garcia AA, Dowling DP, Buss JA, Bridwell-Rabb J. The NADH recycling enzymes TsaC and TsaD regenerate reducing equivalents for Rieske oxygenase chemistry. J Biol Chem 2023; 299:105222. [PMID: 37673337 PMCID: PMC10579966 DOI: 10.1016/j.jbc.2023.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Many microorganisms use both biological and nonbiological molecules as sources of carbon and energy. This resourcefulness means that some microorganisms have mechanisms to assimilate pollutants found in the environment. One such organism is Comamonas testosteroni, which metabolizes 4-methylbenzenesulfonate and 4-methylbenzoate using the TsaMBCD pathway. TsaM is a Rieske oxygenase, which in concert with the reductase TsaB consumes a molar equivalent of NADH. Following this step, the annotated short-chain dehydrogenase/reductase and aldehyde dehydrogenase enzymes TsaC and TsaD each regenerate a molar equivalent of NADH. This co-occurrence ameliorates the need for stoichiometric addition of reducing equivalents and thus represents an attractive strategy for integration of Rieske oxygenase chemistry into biocatalytic applications. Therefore, in this work, to overcome the lack of information regarding NADH recycling enzymes that function in partnership with Rieske non-heme iron oxygenases (Rieske oxygenases), we solved the X-ray crystal structure of TsaC to a resolution of 2.18 Å. Using this structure, a series of substrate analog and protein variant combination reactions, and differential scanning fluorimetry experiments, we identified active site features involved in binding NAD+ and controlling substrate specificity. Further in vitro enzyme cascade experiments demonstrated the efficient TsaC- and TsaD-mediated regeneration of NADH to support Rieske oxygenase chemistry. Finally, through in-depth bioinformatic analyses, we illustrate the widespread co-occurrence of Rieske oxygenases with TsaC-like enzymes. This work thus demonstrates the utility of these NADH recycling enzymes and identifies a library of short-chain dehydrogenase/reductase enzyme prospects that can be used in Rieske oxygenase pathways for in situ regeneration of NADH.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gage T Barroso
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Joshua A Buss
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
5
|
Tian J, Liu J, Knapp M, Donnan PH, Boggs DG, Bridwell-Rabb J. Custom tuning of Rieske oxygenase reactivity. Nat Commun 2023; 14:5858. [PMID: 37730711 PMCID: PMC10511449 DOI: 10.1038/s41467-023-41428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Rieske oxygenases use a Rieske-type [2Fe-2S] cluster and a mononuclear iron center to initiate a range of chemical transformations. However, few details exist regarding how this catalytic scaffold can be predictively tuned to catalyze divergent reactions. Therefore, in this work, using a combination of structural analyses, as well as substrate and rational protein-based engineering campaigns, we elucidate the architectural trends that govern catalytic outcome in the Rieske monooxygenase TsaM. We identify structural features that permit a substrate to be functionalized by TsaM and pinpoint active-site residues that can be targeted to manipulate reactivity. Exploiting these findings allowed for custom tuning of TsaM reactivity: substrates are identified that support divergent TsaM-catalyzed reactions and variants are created that exclusively catalyze dioxygenation or sequential monooxygenation chemistry. Importantly, we further leverage these trends to tune the reactivity of additional monooxygenase and dioxygenase enzymes, and thereby provide strategies to custom tune Rieske oxygenase reaction outcomes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jianxin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madison Knapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
6
|
Tian J, Garcia AA, Donnan PH, Bridwell-Rabb J. Leveraging a Structural Blueprint to Rationally Engineer the Rieske Oxygenase TsaM. Biochemistry 2023. [PMID: 37188334 DOI: 10.1021/acs.biochem.3c00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rieske nonheme iron oxygenases use two metallocenters, a Rieske-type [2Fe-2S] cluster and a mononuclear iron center, to catalyze oxidation reactions on a broad range of substrates. These enzymes are widely used by microorganisms to degrade environmental pollutants and to build complexity in a myriad of biosynthetic pathways that are industrially interesting. However, despite the value of this chemistry, there is a dearth of understanding regarding the structure-function relationships in this enzyme class, which limits our ability to rationally redesign, optimize, and ultimately exploit the chemistry of these enzymes. Therefore, in this work, by leveraging a combination of available structural information and state-of-the-art protein modeling tools, we show that three "hotspot" regions can be targeted to alter the site selectivity, substrate preference, and substrate scope of the Rieske oxygenase p-toluenesulfonate methyl monooxygenase (TsaM). Through mutation of six to 10 residues distributed between three protein regions, TsaM was engineered to behave as either vanillate monooxygenase (VanA) or dicamba monooxygenase (DdmC). This engineering feat means that TsaM was rationally engineered to catalyze an oxidation reaction at the meta and ortho positions of an aromatic substrate, rather than its favored native para position, and that TsaM was redesigned to perform chemistry on dicamba, a substrate that is not natively accepted by the enzyme. This work thus contributes to unlocking our understanding of structure-function relationships in the Rieske oxygenase enzyme class and expands foundational principles for future engineering of these metalloenzymes.
Collapse
Affiliation(s)
- Jiayi Tian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Patrick H Donnan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Aksu D, Diallo MM, Şahar U, Uyaniker TA, Ozdemir G. High expression of ring-hydroxylating dioxygenase genes ensure efficient degradation of p-toluate, phthalate, and terephthalate by Comamonas testosteroni strain 3a2. Arch Microbiol 2021; 203:4101-4112. [PMID: 34057546 DOI: 10.1007/s00203-021-02395-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
Para-toluic acid, a major pollutant in industrial wastewater, is hazardous to human health. It has been demonstrated that Gram-negative bacteria are among the most effective degraders of para-toluic acid. In this study, the ability of Comamonas testosteroni strain 3a2, isolated from a petrochemical industry wastewater, to degrade para-toluic acid was investigated. The effect of different carbon (glucose and ethylene glycol) and nitrogen sources (urea, yeast extract, peptone, NaNO3, NH4NO3) on the biodegradation of para-toluic acid by the isolate 3a2 was evaluated. Furthermore, ring hydroxylating dioxygenase genes were amplified by PCR and their expression was evaluated during the biodegradation of para-toluic acid. The results indicated that strain 3a2 was able to degrade up to 1000 mg/L of para-toluic acid after 14 h. The highest degradation yield was recorded in the presence of yeast extract as nitrogen source. However, the formation of terephthalic acid and phthalic acid was noted during para-toluic acid degradation by the isolate 3a2. Toluate 1,2-dioxygenase, terephthalate 1,2 dioxygenase, and phthalate 4,5 dioxygenase genes were detected in the genomic DNA of 3a2. The induction of ring hydroxylating dioxygenase genes was proportional to the concentration of each hydrocarbon. This study showed that the isolate 3a2 can produce terephthalate and phthalate during the para-toluic acid biodegradation, which were also degraded after 24 h.
Collapse
Affiliation(s)
- Didem Aksu
- Application and Research Center for Testing and Analysis, Ege University, Izmir, Turkey.
| | | | - Umut Şahar
- Biology Department, Faculty of Science, Ege University, Izmir, Turkey
| | | | - Guven Ozdemir
- Biology Department, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Salvador M, Abdulmutalib U, Gonzalez J, Kim J, Smith AA, Faulon JL, Wei R, Zimmermann W, Jimenez JI. Microbial Genes for a Circular and Sustainable Bio-PET Economy. Genes (Basel) 2019; 10:E373. [PMID: 31100963 PMCID: PMC6562992 DOI: 10.3390/genes10050373] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 02/03/2023] Open
Abstract
Plastics have become an important environmental concern due to their durability and resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate (PET) are amenable to biological degradation due to the action of microbial polyester hydrolases. The hydrolysis products obtained from PET can thereby be used for the synthesis of novel PET as well as become a potential carbon source for microorganisms. In addition, microorganisms and biomass can be used for the synthesis of the constituent monomers of PET from renewable sources. The combination of both biodegradation and biosynthesis would enable a completely circular bio-PET economy beyond the conventional recycling processes. Circular strategies like this could contribute to significantly decreasing the environmental impact of our dependence on this polymer. Here we review the efforts made towards turning PET into a viable feedstock for microbial transformations. We highlight current bottlenecks in degradation of the polymer and metabolism of the monomers, and we showcase fully biological or semisynthetic processes leading to the synthesis of PET from sustainable substrates.
Collapse
Affiliation(s)
- Manuel Salvador
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Umar Abdulmutalib
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jaime Gonzalez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Juhyun Kim
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Alex A Smith
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| | - Jean-Loup Faulon
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
- SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
- CNRS-UMR8030/Laboratoire iSSB, Université Paris-Saclay, 91000 Évry, France.
| | - Ren Wei
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Wolfgang Zimmermann
- Department of Microbiology and Bioprocess Technology, Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Jose I Jimenez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
9
|
D'Ambrosio V, Jensen MK. Lighting up yeast cell factories by transcription factor-based biosensors. FEMS Yeast Res 2018; 17:4157790. [PMID: 28961766 PMCID: PMC5812511 DOI: 10.1093/femsyr/fox076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Our ability to rewire cellular metabolism for the sustainable production of chemicals, fuels and therapeutics based on microbial cell factories has advanced rapidly during the last two decades. Especially the speed and precision by which microbial genomes can be engineered now allow for more advanced designs to be implemented and tested. However, compared to the methods developed for engineering cell factories, the methods developed for testing the performance of newly engineered cell factories in high throughput are lagging far behind, which consequently impacts the overall biomanufacturing process. For this purpose, there is a need to develop new techniques for screening and selection of best-performing cell factory designs in multiplex. Here we review the current status of the sourcing, design and engineering of biosensors derived from allosterically regulated transcription factors applied to the biotechnology work-horse budding yeast Saccharomyces cerevisiae. We conclude by providing a perspective on the most important challenges and opportunities lying ahead in order to harness the full potential of biosensor development for increasing both the throughput of cell factory development and robustness of overall bioprocesses.
Collapse
Affiliation(s)
- Vasil D'Ambrosio
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat Commun 2017; 8:15689. [PMID: 28561070 PMCID: PMC5460024 DOI: 10.1038/ncomms15689] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Abstract
Terephthalic acid (TPA) is an important industrial chemical currently produced by energy intensive and potentially hazardous p-xylene (pX) oxidation process. Here we report the development of metabolically engineered Escherichia coli system for biological transformation of pX into TPA. The engineered E. coli strain harbours a synthetic TPA pathway optimized through manipulation of expression levels of upstream and downstream modules. The upstream pathway converts pX to p-toluic acid (pTA) and the downstream pathway transforms pTA to TPA. In a two-phase partitioning fermentation, the engineered strain converts 8.8 g pX into 13.3 g TPA, which corresponds to a conversion yield of 96.7 mol%. These results suggest that the E. coli system presented here might be a promising alternative for the large-scale biotechnological production of TPA and lays the foundations for the future development of sustainable approaches for TPA production.
Collapse
|
11
|
Yang Q, Cai S, Dong S, Chen L, Chen J, Cai T. Biodegradation of 3-methyldiphenylether (MDE) by Hydrogenophaga atypical strain QY7-2 and cloning of the methy-oxidation gene mdeABCD. Sci Rep 2016; 6:39270. [PMID: 27995977 PMCID: PMC5172442 DOI: 10.1038/srep39270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022] Open
Abstract
3-Methyldiphenylether (MDE) is an important alkyl-substituted diphenyl ether compound that is widely used as an intermediate in the synthesis of pyrethroid insecticides. An efficient MDE-degrading strain QY7-2, identified as Hydrogenophaga atypical, was isolated from activated sludge for the first time. Strain QY7-2 can utilize MDE as the sole carbon and energy source and completely mineralize MDE. The degradation pathway of MDE was proposed in the strain through metabolites identification. A gene cluster involving in methy-oxidation of MDE was cloned from QY7-2 and expressed in Escherichia coli BL21 (DE3), and the products were purified by SDS-PAGE. The specific activities of the recombinant enzymes MdeAB, MdeC and MdeD were 113.8 ± 3.5, 274.5 ± 6.2 and 673.4 ± 8.7 nmol min−1 mg−1, respectively. These results provide the biochemical and genetic foundation of microbial degradation pathway of MDE and benefit the bioremediation of MDE-contaminated environments.
Collapse
Affiliation(s)
- Qian Yang
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shu Cai
- Jiangsu Academy of Agriculture Science, Nanjing 210014, People's Republic of China
| | - Shaowei Dong
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lulu Chen
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jifei Chen
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tianming Cai
- The College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
12
|
Palevsky N, Shemer B, Connolly JPR, Belkin S. The Highly Conserved Escherichia coli Transcription Factor YhaJ Regulates Aromatic Compound Degradation. Front Microbiol 2016; 7:1490. [PMID: 27713734 PMCID: PMC5031710 DOI: 10.3389/fmicb.2016.01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/07/2016] [Indexed: 11/21/2022] Open
Abstract
The aromatic compound 2,4-dinitrotoluene (DNT), a common impurity in 2,4,6-trinitrotoluene (TNT) production, has been suggested as a tracer for the presence of TNT-based landmines due to its stability and high volatility. We have previously described an Escherichia coli bioreporter capable of detecting the presence of DNT vapors, harboring a fusion of the yqjF gene promoter to a reporter element. However, the DNT metabolite which is the direct inducer of yqjF, has not yet been identified, nor has the regulatory mechanism of the induction been clarified. We demonstrate here that the YhaJ protein, a member of the LysR type family, acts as a transcriptional regulator of yqjF activation, as well as of a panel of additional E. coli genes. This group of genes share a common sequence motif in their promoters, which is suggested here as a putative YhaJ-box. In addition, we have linked YhaJ to the regulation of quinol-like compound degradation in the cell, and identified yhaK as playing a role in the degradation of DNT.
Collapse
Affiliation(s)
- Noa Palevsky
- Institute of Life Sciences, Hebrew University of Jerusalem Jerusalem, Israel
| | - Benjamin Shemer
- Institute of Life Sciences, Hebrew University of Jerusalem Jerusalem, Israel
| | - James P R Connolly
- College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, UK
| | - Shimshon Belkin
- Institute of Life Sciences, Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
13
|
Monferrer D, Tralau T, Kertesz MA, Dix I, Solà M, Usón I. Structural studies on the full-length LysR-type regulator TsaR from Comamonas testosteroni T-2 reveal a novel open conformation of the tetrameric LTTR fold. Mol Microbiol 2010; 75:1199-214. [PMID: 20059681 DOI: 10.1111/j.1365-2958.2010.07043.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LysR-type transcriptional regulators (LTTRs) constitute the largest family of regulators in prokaryotes. The full-length structures of the LTTR TsaR from Comamonas testosteroni T-2 and its complex with the natural inducer para-toluensulfonate have been characterized by X-ray diffraction. Both ligand-free and complexed forms reveal a dramatically different quaternary structure from that of CbnR from Ralstonia eutropha, or a putative LysR-type regulator from Pseudomonas aeruginosa, the only other determined full-length structures of tetrameric LTTRs. Although all three show a head-to-head tetrameric ring, TsaR displays an open conformation, whereas CbnR and PA01-PR present additional contacts in opposing C-terminal domains that close the ring. Such large differences may be due to a broader structural versatility than previously assumed or either, reflect the intrinsic flexibility of tetrameric LTTRs. On the grounds of the sliding dimer hypothesis of LTTR activation, we propose a structural model in which the closed structures could reflect the conformation of a ligand-free LTTR, whereas inducer binding would bring about local changes to disrupt the interface linking the two compact C-terminal domains. This could lead to a TsaR-like, open structure, where the pairs of recognition helices are closer to each other by more than 10 A.
Collapse
Affiliation(s)
- Dominique Monferrer
- IBMB-CSIC, Baldiri Reixach 15, Barcelona Science Park, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
D'Ordine RL, Rydel TJ, Storek MJ, Sturman EJ, Moshiri F, Bartlett RK, Brown GR, Eilers RJ, Dart C, Qi Y, Flasinski S, Franklin SJ. Dicamba monooxygenase: structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. J Mol Biol 2009; 392:481-97. [PMID: 19616009 DOI: 10.1016/j.jmb.2009.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 11/29/2022]
Abstract
Dicamba (2-methoxy-3,6-dichlorobenzoic acid) O-demethylase (DMO) is the terminal Rieske oxygenase of a three-component system that includes a ferredoxin and a reductase. It catalyzes the NADH-dependent oxidative demethylation of the broad leaf herbicide dicamba. DMO represents the first crystal structure of a Rieske non-heme iron oxygenase that performs an exocyclic monooxygenation, incorporating O(2) into a side-chain moiety and not a ring system. The structure reveals a 3-fold symmetric trimer (alpha(3)) in the crystallographic asymmetric unit with similar arrangement of neighboring inter-subunit Rieske domain and non-heme iron site enabling electron transport consistent with other structurally characterized Rieske oxygenases. While the Rieske domain is similar, differences are observed in the catalytic domain, which is smaller in sequence length than those described previously, yet possessing an active-site cavity of larger volume when compared to oxygenases with larger substrates. Consistent with the amphipathic substrate, the active site is designed to interact with both the carboxylate and aromatic ring with both key polar and hydrophobic interactions observed. DMO structures were solved with and without substrate (dicamba), product (3,6-dichlorosalicylic acid), and either cobalt or iron in the non-heme iron site. The substitution of cobalt for iron revealed an uncommon mode of non-heme iron binding trapped by the non-catalytic Co(2+), which, we postulate, may be transiently present in the native enzyme during the catalytic cycle. Thus, we present four DMO structures with resolutions ranging from 1.95 to 2.2 A, which, in sum, provide a snapshot of a dynamic enzyme where metal binding and substrate binding are coupled to observed structural changes in the non-heme iron and catalytic sites.
Collapse
|
16
|
Abstract
Azospirillum brasilense possesses an alternative pathway of l-arabinose metabolism, which is different from the known bacterial and fungal pathways. In a previous paper (Watanabe, S., Kodaki, T., and Makino, K. (2006) J. Biol. Chem. 281, 2612-2623), we identified and characterized l-arabinose 1-dehydrogenase, which catalyzes the first reaction step in this pathway, and we cloned the corresponding gene. Here we focused on the fifth enzyme, alpha-ketoglutaric semialdehyde (alphaKGSA) dehydrogenase, catalyzing the conversion of alphaKGSA to alpha-ketoglutarate. alphaKGSA dehydrogenase was purified tentatively as a NAD(+)-preferring aldehyde dehydrogenase (ALDH) with high activity for glutaraldehyde. The gene encoding this enzyme was cloned and shown to be located on the genome of A. brasilense separately from a gene cluster containing the l-arabinose 1-dehydrogenase gene, in contrast with Burkholderia thailandensis in which both genes are located in the same gene cluster. Higher catalytic efficiency of ALDH was found with alphaKGSA and succinic semialdehyde among the tested aldehyde substrates. In zymogram staining analysis with the cell-free extract, a single active band was found at the same position as the purified enzyme. Furthermore, a disruptant of the gene did not grow on l-arabinose. These results indicated that this ALDH gene was the only gene of the NAD(+)-preferring alphaKGSA dehydrogenase in A. brasilense. In the phylogenetic tree of the ALDH family, alphaKGSA dehydrogenase from A. brasilense falls into the succinic semialdehyde dehydrogenase (SSALDH) subfamily. Several putative alphaKGSA dehydrogenases from other bacteria belong to a different ALDH subfamily from SSALDH, suggesting strongly that their substrate specificities for alphaKGSA are acquired independently during the evolutionary stage. This is the first evidence of unique "convergent evolution" in the ALDH family.
Collapse
Affiliation(s)
- Seiya Watanabe
- Faculty of Engineering, Kyoto University, Kyotodaigakukatsura, Saikyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
17
|
Providenti MA, O'Brien JM, Ruff J, Cook AM, Lambert IB. Metabolism of isovanillate, vanillate, and veratrate by Comamonas testosteroni strain BR6020. J Bacteriol 2006; 188:3862-9. [PMID: 16707678 PMCID: PMC1482911 DOI: 10.1128/jb.01675-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 03/23/2006] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni strain BR6020, metabolism of isovanillate (iVan; 3-hydroxy-4-methoxybenzoate), vanillate (Van; 4-hydroxy-3-methoxybenzoate), and veratrate (Ver; 3,4-dimethoxybenzoate) proceeds via protocatechuate (Pca; 3,4-dihydroxybenzoate). A 13.4-kb locus coding for the catabolic enzymes that channel the three substrates to Pca was cloned. O demethylation is mediated by the phthalate family oxygenases IvaA (converts iVan to Pca and Ver to Van) and VanA (converts Van to Pca and Ver to iVan). Reducing equivalents from NAD(P)H are transferred to the oxygenases by the class IA oxidoreductase IvaB. Studies using whole cells, cell extracts, and reverse transcriptase PCR showed that degradative activity and expression of vanA, ivaA, and ivaB are inducible. In succinate- and Pca-grown cells, there is negligible degradative activity towards Van, Ver, and iVan and little to no expression of vanA, ivaA, and ivaB. Growth on Van or Ver results in production of oxygenases with activity towards Van, Ver, and iVan and expression of vanA, ivaA, and ivaB. With iVan-grown cultures, ivaA and ivaB are expressed, and in assays with whole cells, production of the iVan oxygenase is observed, but there is little activity towards Van or Ver. In cell extracts, though, Ver metabolism is observed, which suggests that the system mediating iVan uptake in whole cells does not mediate Ver uptake.
Collapse
Affiliation(s)
- Miguel A Providenti
- Institute of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | | | |
Collapse
|
18
|
Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J, Weeks DP. A three-component dicamba O-demethylase from Pseudomonas maltophilia, strain DI-6: gene isolation, characterization, and heterologous expression. J Biol Chem 2005; 280:24759-67. [PMID: 15855162 DOI: 10.1074/jbc.m500597200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dicamba O-demethylase is a multicomponent enzyme from Pseudomonas maltophilia, strain DI-6, that catalyzes the conversion of the widely used herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) to DCSA (3,6-dichlorosalicylic acid). We recently described the biochemical characteristics of the three components of this enzyme (i.e. reductase(DIC), ferredoxin(DIC), and oxygenase(DIC)) and classified the oxygenase component of dicamba O-demethylase as a member of the Rieske non-heme iron family of oxygenases. In the current study, we used N-terminal and internal amino acid sequence information from the purified proteins to clone the genes that encode dicamba O-demethylase. Two reductase genes (ddmA1 and ddmA2) with predicted amino acid sequences of 408 and 409 residues were identified. The open reading frames encode 43.7- and 43.9-kDa proteins that are 99.3% identical to each other and homologous to members of the FAD-dependent pyridine nucleotide reductase family. The ferredoxin coding sequence (ddmB) specifies an 11.4-kDa protein composed of 105 residues with similarity to the adrenodoxin family of [2Fe-2S] bacterial ferredoxins. The oxygenase gene (ddmC) encodes a 37.3-kDa protein composed of 339 amino acids that is homologous to members of the Phthalate family of Rieske non-heme iron oxygenases that function as monooxygenases. Southern analysis localized the oxygenase gene to a megaplasmid in cells of P. maltophilia. Mixtures of the three highly purified recombinant dicamba O-demethylase components overexpressed in Escherichia coli converted dicamba to DCSA with an efficiency similar to that of the native enzyme, suggesting that all of the components required for optimal enzymatic activity have been identified. Computer modeling suggests that oxygenase(DIC) has strong similarities with the core alphasubunits of naphthalene 1,2-dioxygenase. Nonetheless, the present studies point to dicamba O-demethylase as an enzyme system with its own unique combination of characteristics.
Collapse
Affiliation(s)
- Patricia L Herman
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 65888-0664, USA
| | | | | | | | | | | |
Collapse
|
19
|
Mampel J, Maier E, Tralau T, Ruff J, Benz R, Cook A. A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochem J 2004; 383:91-9. [PMID: 15176949 PMCID: PMC1134047 DOI: 10.1042/bj20040652] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 06/01/2004] [Accepted: 06/04/2004] [Indexed: 11/17/2022]
Abstract
Inducible mineralization of TSA (4-toluenesulphonate) by Comamonas testosteroni T-2 is initiated by a secondary transport system, followed by oxygenation and oxidation by TsaMBCD to 4-sulphobenzoate under the regulation of TsaR and TsaQ. Evidence is presented for a novel, presumably two-component transport system (TsaST). It is proposed that TsaT, an outer-membrane porin, formed an anion-selective channel that works in co-operation with the putative secondary transporter, TsaS, located in the inner membrane. tsaT was identified as a 1017-bp ORF (open reading frame) on plasmid pTSA upstream of the TSA-catabolic genes in the tsa operon. Expression of tsaT was regulated by TsaR, the transcriptional activator of the tsa regulon. The presence of tsaT was concomitant with the presence of the tsa operon in different TSA-degrading isolates. tsaT was expressed in Escherichia coli and was detected in the outer membrane. A 22-amino-acid leader peptide was identified. Purified protein reconstituted in lipid bilayer membranes formed anion-selective channels with a single-channel conductance of 3.5 nS in 1 M KCl. Downstream of tsaT, a constitutively expressed 720-bp ORF (tsaS) was identified. tsaS coded for a hydrophobic protein predicted to have six transmembrane helices and which is most likely localized in the cytoplasmic membrane. tsaS is adjacent to tsaT, but showed a different transcriptional profile.
Collapse
Affiliation(s)
- Jörg Mampel
- *Department of Biology, The University, D-78457 Konstanz, Germany
| | - Elke Maier
- †Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut der Universität Würzburg, D-97074 Würzburg, Germany
| | - Tewes Tralau
- *Department of Biology, The University, D-78457 Konstanz, Germany
| | - Jürgen Ruff
- *Department of Biology, The University, D-78457 Konstanz, Germany
| | - Roland Benz
- †Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut der Universität Würzburg, D-97074 Würzburg, Germany
| | - Alasdair M. Cook
- *Department of Biology, The University, D-78457 Konstanz, Germany
| |
Collapse
|
20
|
Tralau T, Mampel J, Cook AM, Ruff J. Characterization of TsaR, an oxygen-sensitive LysR-type regulator for the degradation of p-toluenesulfonate in Comamonas testosteroni T-2. Appl Environ Microbiol 2003; 69:2298-305. [PMID: 12676713 PMCID: PMC154824 DOI: 10.1128/aem.69.4.2298-2305.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 01/23/2003] [Indexed: 11/20/2022] Open
Abstract
TsaR is the putative LysR-type regulator of the tsa operon (tsaMBCD) which encodes the first steps in the degradation of p-toluenesulfonate (TSA) in Comamonas testosteroni T-2. Transposon mutagenesis was used to knock out tsaR. The resulting mutant lacked the ability to grow with TSA and p-toluenecarboxylate (TCA). Reintroduction of tsaR in trans on an expression vector reconstituted growth with TSA and TCA. The tsaR gene was cloned into Escherichia coli with a C-terminal His tag and overexpressed as TsaR(His). TsaR(His) was subject to reversible inactivation by oxygen, which markedly influenced the experimental approaches used. Gel filtration showed TsaR(His) to be a monomer in solution. Overexpressed TsaR(His) bound specifically to three regions within the promoter between the divergently transcribed tsaR and tsaMBCD. The dissociation constant (K(D)) for the whole promoter region was about 0.9 micro M, and the interaction was a function of the concentration of the ligand TSA. A regulatory model for this LysR-type regulator is proposed on the basis of these data.
Collapse
Affiliation(s)
- Tewes Tralau
- Department of Biology, The University of Konstanz, Germany
| | | | | | | |
Collapse
|
21
|
van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 2002; 45:1007-18. [PMID: 12180920 DOI: 10.1046/j.1365-2958.2002.03069.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
9 alpha-Hydroxylation of 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD) is catalysed by 3-ketosteroid 9 alpha-hydroxylase (KSH), a key enzyme in microbial steroid catabolism. Very limited knowledge is presently available on the KSH enzyme. Here, we report for the first time the identification and molecular characterization of genes encoding KSH activity. The kshA and kshB genes, encoding KSH in Rhodococcus erythropolis strain SQ1, were cloned by functional complementation of mutant strains blocked in AD(D) 9 alpha-hydroxylation. Analysis of the deduced amino acid sequences of kshA and kshB showed that they contain domains typically conserved in class IA terminal oxygenases and class IA oxygenase reductases respectively. By definition, class IA oxygenases are made up of two components, thus classifying the KSH enzyme system in R. erythropolis strain SQ1 as a two-component class IA monooxygenase composed of KshA and KshB. Unmarked in frame gene deletion mutants of parent strain R. erythropolis SQ1, designated strains RG2 (kshA mutant) and RG4 (kshB mutant), were unable to grow on steroid substrates AD(D), whereas growth on 9 alpha-hydroxy-4-androstene-3,17-dione (9OHAD) was not affected. Incubation of these mutant strains with AD resulted in the accumulation of ADD (30-50% conversion), confirming the involvement of KshA and KshB in AD(D) 9 alpha-hydroxylation. Strain RG4 was also impaired in sterol degradation, suggesting a dual role for KshB in both sterol and steroid degradation.
Collapse
Affiliation(s)
- R van der Geize
- Department of Microbiology, Groningen Bimolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Providenti MA, Mampel J, MacSween S, Cook AM, Wyndham RC. Comamonas testosteroni BR6020 possesses a single genetic locus for extradiol cleavage of protocatechuate. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2157-2167. [PMID: 11495993 DOI: 10.1099/00221287-147-8-2157] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A key intermediate for biodegradation of various distinct aromatic growth substrates in Comamonas testosteroni is protocatechuate (Pca), which is metabolized by the 4,5-extradiol (meta) ring fission pathway. A locus harbouring genes from C. testosteroni BR6020 was cloned, dubbed pmd, which encodes the enzymes that degrade Pca. The identity of pmdAB, encoding respectively the alpha- and beta-subunit of the Pca ring-cleavage enzyme, was confirmed by N-terminal sequencing and molecular mass determination of both subunits from the separated enzyme. Disruption of pmdA resulted in a strain unable to grow on Pca and a variety of aromatic substrates funnelled through this compound (m- and p-hydroxybenzoate, p-sulfobenzoate, phthalate, isophthalate, terephthalate, vanillate, isovanillate and veratrate). Growth on benzoate and o-aminobenzoate (anthranilate) was not affected in this strain, indicating that these substrates are metabolized via a different lower pathway. Tentative functions for the products of other pmd genes were assigned based on sequence identity and/or similarity to proteins from other proteobacteria involved in uptake or metabolism of aromatic compounds. This study provides evidence for a single lower pathway in C. testosteroni for metabolism of Pca, which is generated by different upper pathways acting on a variety of aromatic substrates.
Collapse
Affiliation(s)
- Miguel A Providenti
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| | - Jörg Mampel
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
| | - Scott MacSween
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| | - Alasdair M Cook
- Faculty of Biology, The University, D-78457, Konstanz, Germany2
| | - R Campbell Wyndham
- Institute of Biology, College of Natural Sciences, Carleton University, Ottawa, Ontario, CanadaK1S 5B61
| |
Collapse
|
23
|
Tralau T, Cook AM, Ruff J. Map of the IncP1beta plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 2001; 67:1508-16. [PMID: 11282598 PMCID: PMC92762 DOI: 10.1128/aem.67.4.1508-1516.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catabolic IncP1beta plasmid pTSA from Comamonas testosteroni T-2 was mapped by subtractive analysis of restriction digests, by sequencing outwards from the tsa operon (toluenesulfonate degradation), and by generating overlapping, long-distance-PCR amplification products. The plasmid was estimated to comprise 72 +/- 4 kb. The tsa region was found to be a composite transposon flanked by two IS1071 elements. A cryptic tsa operon was also present in the tsa transposon. Those backbone genes and regions which we sequenced were in the same order as the corresponding genes in resistance plasmid R751, and identities of about 99% were observed. Enrichment cultures with samples from four continents were done to obtain organisms able to utilize p-toluenesulfonate as the sole source of carbon and energy for aerobic growth. Most (15) of the 16 cultures (13 of them isolates) were obtained from contaminated sites and were attributed to three metabolic groups, depending on their metabolism of p-toluenesulfonate. The largest group contained the tsa transposon, usually (six of seven isolates) with negligible differences in sequence from strain T-2.
Collapse
Affiliation(s)
- T Tralau
- Department of Biology, The University of Konstanz, Universitätstrasse 10, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
24
|
Schmidt CL, Shaw L. A comprehensive phylogenetic analysis of Rieske and Rieske-type iron-sulfur proteins. J Bioenerg Biomembr 2001; 33:9-26. [PMID: 11460929 DOI: 10.1023/a:1005616505962] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Rieske iron-sulfur center consists of a [2Fe-2S] cluster liganded to a protein via two histidine and two cysteine residues present in conserved sequences called Rieske motifs. Two protein families possessing Rieske centers have been defined. The Rieske proteins occur as subunits in the cytochrome bc1 and cytochrome b6f complexes of prokaryotes and eukaryotes or form components of archaeal electron transport systems. The Rieske-type proteins encompass a group of bacterial oxygenases and ferredoxins. Recent studies have uncovered several new proteins containing Rieske centers, including archaeal Rieske proteins, bacterial oxygenases, bacterial ferredoxins, and, intriguingly, eukaryotic Rieske oxygenases. Since all these proteins contain a Rieske motif, they probably form a superfamily with one common ancestor. Phylogenetic analyses have, however, been generally limited to similar sequences, providing little information about relationships within the whole group of these proteins. The aim of this work is, therefore, to construct a dendrogram including representatives from all Rieske and Rieske-type protein classes in order to gain insight into their evolutionary relationships and to further define the phylogenetic niches occupied by the recently discovered proteins mentioned above.
Collapse
Affiliation(s)
- C L Schmidt
- Institut für Biochemie der Medizinischen Universität Lübeck, Germany.
| | | |
Collapse
|
25
|
Cowles CE, Nichols NN, Harwood CS. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 2000; 182:6339-46. [PMID: 11053377 PMCID: PMC94779 DOI: 10.1128/jb.182.22.6339-6346.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida converts benzoate to catechol using two enzymes that are encoded on the chromosome and whose expression is induced by benzoate. Benzoate also binds to the regulator XylS to induce expression of the TOL (toluene degradation) plasmid-encoded meta pathway operon for benzoate and methylbenzoate degradation. Finally, benzoate represses the ability of P. putida to transport 4-hydroxybenzoate (4-HBA) by preventing transcription of pcaK, the gene encoding the 4-HBA permease. Here we identified a gene, benR, as a regulator of benzoate, methylbenzoate, and 4-HBA degradation genes. A benR mutant isolated by random transposon mutagenesis was unable to grow on benzoate. The deduced amino acid sequence of BenR showed high similarity (62% identity) to the sequence of XylS, a member of the AraC family of regulators. An additional seven genes located adjacent to benR were inferred to be involved in benzoate degradation based on their deduced amino acid sequences. The benABC genes likely encode benzoate dioxygenase, and benD likely encodes 2-hydro-1,2-dihydroxybenzoate dehydrogenase. benK and benF were assigned functions as a benzoate permease and porin, respectively. The possible function of a final gene, benE, is not known. benR activated expression of a benA-lacZ reporter fusion in response to benzoate. It also activated expression of a meta cleavage operon promoter-lacZ fusion inserted in an E. coli chromosome. Third, benR was required for benzoate-mediated repression of pcaK-lacZ fusion expression. The benA promoter region contains a direct repeat sequence that matches the XylS binding site previously defined for the meta cleavage operon promoter. It is likely that BenR binds to the promoter region of chromosomal benzoate degradation genes and plasmid-encoded methylbenzoate degradation genes to activate gene expression in response to benzoate. The action of BenR in repressing 4-HBA uptake is probably indirect.
Collapse
Affiliation(s)
- C E Cowles
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
26
|
Cheng Q, Thomas SM, Kostichka K, Valentine JR, Nagarajan V. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. Strain SE19 by in vitro transposition. J Bacteriol 2000; 182:4744-51. [PMID: 10940013 PMCID: PMC111349 DOI: 10.1128/jb.182.17.4744-4751.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological oxidation of cyclic alcohols normally results in formation of the corresponding dicarboxylic acids, which are further metabolized and enter the central carbon metabolism in the cell. We isolated an Acinetobacter sp. from an industrial wastewater bioreactor that utilized cyclohexanol as a sole carbon source. A cosmid library was constructed from Acinetobacter sp. strain SE19, and oxidation of cyclohexanol to adipic acid was demonstrated in recombinant Escherichia coli carrying a SE19 DNA segment. A region that was essential for cyclohexanol oxidation was localized to a 14-kb fragment on the cosmid DNA. Several putative open reading frames (ORFs) that were expected to encode enzymes catalyzing the conversion of cyclohexanol to adipic acid were identified. Whereas one ORF showed high homology to cyclohexanone monooxygenase from Acinetobacter sp. strain NCIB 9871, most of the ORFs showed only moderate homology to proteins in GenBank. In order to assign functions of the various ORFs, in vitro transposon mutagenesis was performed using the cosmid DNA as a target. A set of transposon mutants with a single insertion in each of the ORFs was screened for cyclohexanol oxidation in E. coli. Several of the transposon mutants accumulated a variety of cyclohexanol oxidation intermediates. The in vitro transposon mutagenesis technique was shown to be a powerful tool for rapidly assigning gene functions to all ORFs in the pathway.
Collapse
Affiliation(s)
- Q Cheng
- Biological and Chemical Sciences and Engineering, Central Research and Development, E. I. DuPont de Nemours Inc., Wilmington, Delaware 19880-0328, USA.
| | | | | | | | | |
Collapse
|
27
|
Kertesz MA. Riding the sulfur cycle â metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 2000. [DOI: 10.1111/j.1574-6976.2000.tb00537.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Kertesz MA. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 2000; 24:135-75. [PMID: 10717312 DOI: 10.1016/s0168-6445(99)00033-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfonates and sulfate esters are widespread in nature, and make up over 95% of the sulfur content of most aerobic soils. Many microorganisms can use sulfonates and sulfate esters as a source of sulfur for growth, even when they are unable to metabolize the carbon skeleton of the compounds. In these organisms, expression of sulfatases and sulfonatases is repressed in the presence of sulfate, in a process mediated by the LysR-type regulator protein CysB, and the corresponding genes therefore constitute an extension of the cys regulon. Additional regulator proteins required for sulfonate desulfonation have been identified in Escherichia coli (the Cbl protein) and Pseudomonas putida (the AsfR protein). Desulfonation of aromatic and aliphatic sulfonates as sulfur sources by aerobic bacteria is oxygen-dependent, carried out by the alpha-ketoglutarate-dependent taurine dioxygenase, or by one of several FMNH(2)-dependent monooxygenases. Desulfurization of condensed thiophenes is also FMNH(2)-dependent, both in the rhodococci and in two Gram-negative species. Bacterial utilization of aromatic sulfate esters is catalyzed by arylsulfatases, most of which are related to human lysosomal sulfatases and contain an active-site formylglycine group that is generated post-translationally. Sulfate-regulated alkylsulfatases, by contrast, are less well characterized. Our increasing knowledge of the sulfur-regulated metabolism of organosulfur compounds suggests applications in practical fields such as biodesulfurization, bioremediation, and optimization of crop sulfur nutrition.
Collapse
Affiliation(s)
- M A Kertesz
- Institute of Microbiology, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092, Zürich, Switzerland.
| |
Collapse
|
29
|
Morawski B, Segura A, Ornston LN. Substrate range and genetic analysis of Acinetobacter vanillate demethylase. J Bacteriol 2000; 182:1383-9. [PMID: 10671462 PMCID: PMC94427 DOI: 10.1128/jb.182.5.1383-1389.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Acinetobacter sp. genetic screen was used to probe structure-function relationships in vanillate demethylase, a two-component monooxygenase. Mutants with null, leaky, and heat-sensitive phenotypes were isolated. Missense mutations tended to be clustered in specific regions, most of which make known contributions to catalytic activity. The vanillate analogs m-anisate, m-toluate, and 4-hydroxy-3,5-dimethylbenzoate are substrates of the enzyme and weakly inhibit the metabolism of vanillate by wild-type Acinetobacter bacteria. PCR mutagenesis of vanAB, followed by selection for strains unable to metabolize vanillate, yielded mutant organisms in which vanillate metabolism is more strongly inhibited by the vanillate analogs. Thus, the procedure opens for investigation amino acid residues that may contribute to the binding of either vanillate or its chemical analogs to wild-type and mutant vanillate demethylases. Selection of phenotypic revertants following PCR mutagenesis gave an indication of the extent to which amino acid substitutions can be tolerated at specified positions. In some cases, only true reversion to the original amino acid was observed. In other examples, a range of amino acid substitutions was tolerated. In one instance, phenotypic reversion failed to produce a protein with the original wild-type sequence. In this example, constraints favoring certain nucleotide substitutions appear to be imposed at the DNA level.
Collapse
Affiliation(s)
- B Morawski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
30
|
Galán B, Díaz E, Prieto MA, García JL. Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new Flavin:NAD(P)H reductase subfamily. J Bacteriol 2000; 182:627-36. [PMID: 10633095 PMCID: PMC94324 DOI: 10.1128/jb.182.3.627-636.2000] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli W uses the aromatic compound 4-hydroxyphenylacetate (4-HPA) as a sole source of carbon and energy for growth. The monooxygenase which converts 4-HPA into 3,4-dihydroxyphenylacetate, the first intermediate of the pathway, consists of two components, HpaB (58.7 kDa) and HpaC (18.6 kDa), encoded by the hpaB and hpaC genes, respectively, that form a single transcription unit. Overproduction of the small HpaC component in E. coli K-12 cells has facilitated the purification of the protein, which was revealed to be a homodimer that catalyzes the reduction of free flavins by NADH in preference to NADPH. Subsequently, the reduced flavins diffuse to the large HpaB component or to other electron acceptors such as cytochrome c and ferric ion. Amino acid sequence comparisons revealed that the HpaC reductase could be considered the prototype of a new subfamily of flavin:NAD(P)H reductases. The construction of a fusion protein between the large HpaB oxygenase component and the choline-binding domain of the major autolysin of Streptococcus pneumoniae allowed us to develop a rapid method to efficiently purify this highly unstable enzyme as a chimeric CH-HpaB protein, which exhibited a 4-HPA hydroxylating activity only when it was supplemented with the HpaC reductase. These results suggest the 4-HPA 3-monooxygenase of E. coli W as a representative member of a novel two-component flavin-diffusible monooxygenase (TC-FDM) family. Relevant features on the evolution and structure-function relationships of these TC-FDM proteins are discussed.
Collapse
Affiliation(s)
- B Galán
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Park HS, Kim HS. Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J Bacteriol 2000; 182:573-80. [PMID: 10633088 PMCID: PMC94317 DOI: 10.1128/jb.182.3.573-580.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida HS12, which is able to grow on nitrobenzene, was found to carry two plasmids, pNB1 and pNB2. The activity assay experiments of wild-type HS12(pNB1 and pNB2), a spontaneous mutant HS121(pNB2), and a cured derivative HS124(pNB1) demonstrated that the catabolic genes coding for the nitrobenzene-degrading enzymes, designated nbz, are located on two plasmids, pNB1 and pNB2. The genes nbzA, nbzC, nbzD, and nbzE, encoding nitrobenzene nitroreductase, 2-aminophenol 1,6-dioxygenase, 2-aminomuconic 6-semialdehyde dehydrogenase, and 2-aminomuconate deaminase, respectively, are located on pNB1 (59.1 kb). Meanwhile, the nbzB gene encoding hydroxylaminobenzene mutase, a second-step enzyme in the nitrobenzene catabolic pathway, was found in pNB2 (43.8 kb). Physical mapping, cloning, and functional analysis of the two plasmids and their subclones in Escherichia coli strains revealed in more detail the genetic organization of the catabolic plasmids pNB1 and pNB2. The genes nbzA and nbzB are located on the 1.1-kb SmaI-SnaBI fragment of pNB1 and the 1.0-kb SspI-SphI fragment of pNB2, respectively, and their expressions were not tightly regulated. On the other hand, the genes nbzC, nbzD, and nbzE, involved in the ring cleavage pathway of 2-aminophenol, are localized on the 6.6-kb SnaBI-SmaI fragment of pNB1 and clustered in the order nbzC-nbzD-nbzE as an operon. The nbzCDE genes, which are transcribed in the opposite direction of the nbzA gene, are coordinately regulated by both nitrobenzene and a positive transcriptional regulator that seems to be encoded on pNB2.
Collapse
Affiliation(s)
- H S Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusung-dong, Yusong-gu, Taejon 305-701, Korea
| | | |
Collapse
|
32
|
Mampel J, Ruff J, Junker F, Cook AM. The oxygenase component of the 2-aminobenzenesulfonate dioxygenase system from Alcaligenes sp. strain O-1. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3255-3264. [PMID: 10589735 DOI: 10.1099/00221287-145-11-3255] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth of Alcaligenes sp. strain O-1 with 2-aminobenzenesulfonate (ABS; orthanilate) as sole source of carbon and energy requires expression of the soluble, multicomponent 2-aminobenzenesulfonate 2,3-dioxygenase system (deaminating) (ABSDOS) which is plasmid-encoded. ABSDOS was separated by anion-exchange chromatography to yield a flavin-dependent reductase component and an iron-dependent oxygenase component. The oxygenase component was purified to about 98% homogeneity and an alpha2beta2 subunit structure was deduced from the molecular masses of 134,45 and 16 kDa for the native complex, and the alpha and beta subunits, respectively. Analysis of the amount of acid labile sulfur and total iron, and the UV spectrum of the purified oxygenase component indicated one [2Fe-2S] Rieske centre per alpha subunit. The inhibition of activity by the iron-specific chelator o-phenanthroline indicated the presence of an additional iron-binding site. Recovery of active protein required strictly anoxic conditions during all purification steps. The FAD-containing reductase could not be purified. ABSDOS oxygenated nine sulfonated compounds; no oxygen uptake was detected with carboxylated aromatic compounds or with aliphatic sulfonated compounds. Km values of 29, 18 and 108 microM and Vmax values of 140, 110 and 72 pkat for ABS, benzenesulfonate and 4-toluenesulfonate, respectively, were observed. The N-terminal amino acid sequences of the alpha- and beta-subunits of the oxygenase component allowed PCR primers to be deduced and the DNA sequence of the alpha-subunit was thereafter determined. Both redox centres were detected in the deduced amino acid sequence. Sequence data and biochemical properties of the enzyme system indicate a novel member of the class IB ring-hydroxylating dioxygenases.
Collapse
Affiliation(s)
- Jörg Mampel
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Jürgen Ruff
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Frank Junker
- Department of Biology, The University, D-78457 Konstanz, Germany1
| | - Alasdair M Cook
- Department of Biology, The University, D-78457 Konstanz, Germany1
| |
Collapse
|
33
|
Vermeij P, Wietek C, Kahnert A, Wüest T, Kertesz MA. Genetic organization of sulphur-controlled aryl desulphonation in Pseudomonas putida S-313. Mol Microbiol 1999; 32:913-26. [PMID: 10361295 DOI: 10.1046/j.1365-2958.1999.01398.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas putida S-313 is able to desulphonate a broad range of aromatic sulphonates to provide sulphur for growth by monooxygenolytic cleavage to yield the corresponding phenol. After miniTn5 transposon mutagenesis of this strain, 11 mutants were isolated that were no longer able to utilize benzenesulphonate as a sulphur source. Three of these mutants were defective in the utilization of all aromatic sulphonates tested, but they grew normally with other sulphur sources. These strains contained independent insertions in the novel 4.2 kb asfRABC gene cluster, encoding a putative reductase (AsfA), a ferredoxin (AsfB), a putative periplasmic binding protein (AsfC), which was localized to the periplasm using alkaline phosphatase fusions, and a divergently oriented fourth gene, asfR, that encoded a LysR-type regulator protein. A further mutant was interrupted in the ssu locus, which includes the gene for a putative desulphonative monooxygenase. Transformation of Pseudomonas aeruginosa with the asfRAB genes was sufficient to allow arylsulphonate utilization by this species, which does not normally use these compounds, suggesting that the AsfAB proteins may constitute an arylsulphonate-specific electron transport system that interacts with a less specific oxygenase. Expression of the asfABC genes in P. putida was induced by benzenesulphonate or toluenesulphonate, and it was repressed in the presence of sulphate in the growth medium. AsfR was a negative regulator of asfABC expression, and toluenesulphonate induced expression of these genes indirectly by reducing the expression of the asfR gene.
Collapse
Affiliation(s)
- P Vermeij
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum/LFV, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Segura A, Bünz PV, D'Argenio DA, Ornston LN. Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. J Bacteriol 1999; 181:3494-504. [PMID: 10348863 PMCID: PMC93818 DOI: 10.1128/jb.181.11.3494-3504.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VanA and VanB form an oxygenative demethylase that converts vanillate to protocatechuate in microorganisms. Ferulate, an abundant phytochemical, had been shown to be metabolized through a vanillate intermediate in several Pseudomonas isolates, and biochemical evidence had indicated that vanillate also is an intermediate in ferulate catabolism by Acinetobacter. Genetic evidence supporting this conclusion was obtained by characterization of mutant Acinetobacter strains blocked in catabolism of both ferulate and vanillate. Cloned Acinetobacter vanA and vanB were shown to be members of a chromosomal segment remote from a supraoperonic cluster containing other genes required for completion of the catabolism of ferulate and its structural analogs, caffeate and coumarate, through protocatechuate. The nucleotide sequence of DNA containing vanA and vanB demonstrated the presence of genes that, on the basis of nucleotide sequence similarity, appeared to be associated with transport of aromatic compounds, metabolism of such compounds, or iron scavenging. Spontaneous deletion of 100 kb of DNA containing this segment does not impede the growth of cells with simple carbon sources other than vanillate or ferulate. Additional spontaneous mutations blocking vanA and vanB expression were shown to be mediated by IS1236, including insertion of the newly discovered composite transposon Tn5613. On the whole, vanA and vanB appear to be located within a nonessential genetic region that exhibits considerable genetic malleability in Acinetobacter. The overall organization of genes neighboring Acinetobacter vanA and vanB, including a putative transcriptional regulatory gene that is convergently transcribed and overlaps vanB, is conserved in Pseudomonas aeruginosa but has undergone radical rearrangement in other Pseudomonas species.
Collapse
Affiliation(s)
- A Segura
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
35
|
de Marco P, Moradas-Ferreira P, Higgins TP, McDonald I, Kenna EM, Murrell JC. Molecular analysis of a novel methanesulfonic acid monooxygenase from the methylotroph Methylosulfonomonas methylovora. J Bacteriol 1999; 181:2244-51. [PMID: 10094704 PMCID: PMC93639 DOI: 10.1128/jb.181.7.2244-2251.1999] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1998] [Accepted: 01/26/1999] [Indexed: 11/20/2022] Open
Abstract
Methylosulfonomonas methylovora M2 is an unusual gram-negative methylotrophic bacterium that can grow on methanesulfonic acid (MSA) as the sole source of carbon and energy. Oxidation of MSA by this bacterium is carried out by a multicomponent MSA monooxygenase (MSAMO). Cloning and sequencing of a 7.5-kbp SphI fragment of chromosomal DNA revealed four tightly linked genes encoding this novel monooxygenase. Analysis of the deduced MSAMO polypeptide sequences indicated that the enzyme contains a two-component hydroxylase of the mononuclear-iron-center type. The large subunit of the hydroxylase, MsmA (48 kDa), contains a typical Rieske-type [2Fe-2S] center with an unusual iron-binding motif and, together with the small subunit of the hydroxylase, MsmB (20 kDa), showed a high degree of identity with a number of dioxygenase enzymes. However, the other components of the MSAMO, MsmC, the ferredoxin component, and MsmD, the reductase, more closely resemble those found in other classes of oxygenases. MsmC has a high degree of identity to ferredoxins from toluene and methane monooxygenases, which are enzymes characterized by possessing hydroxylases containing mu-oxo bridge binuclear iron centers. MsmD is a reductase of 38 kDa with a typical chloroplast-like [2Fe-2S] center and conserved flavin adenine dinucleotide- and NAD-binding motifs and is similar to a number of mono- and dioxygenase reductase components. Preliminary analysis of the genes encoding MSAMO from a marine MSA-degrading bacterium, Marinosulfonomonas methylotropha, revealed the presence of msm genes highly related to those found in Methylosulfonomonas, suggesting that MSAMO is a novel type of oxygenase that may be conserved in all MSA-utilizing bacteria.
Collapse
Affiliation(s)
- P de Marco
- ICBAS and IBMC, University of Porto, 4150 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
36
|
Sprusanský O, Homérová D, Sevcíková B, Kormanec J. Cloning of the putative aldehyde dehydrogenase, aldA, gene from Streptomyces aureofaciens. Folia Microbiol (Praha) 1999; 44:491-502. [PMID: 10997131 DOI: 10.1007/bf02816249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Streptomyces aureofaciens gene, gap, encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was previously identified. Hybridization studies suggested the presence of a second gap gene in S. aureofaciens. To clone the gene, S. aureofaciens subgenomic library was screened with an oligonucleotide probe encoding a peptide motif conserved in all GAPDH. 3352 bp positive BamHI fragment was identified, the length of which correlated with the hybridization signal. The nucleotide sequence of the fragment was determined, and analysis of the sequence revealed the presence of three open reading frames (ORF). However, none of the genes coded for GAPDH. All three genes formed an operon, consisting of gene orf251, with a high homology to a conserved gene present only in archaeabacteria, and the aldA and adhA genes homologous to various eukaryotic and prokaryotic aldehyde- and alcohol-dehydrogenases, with maximum homology to the phenylacetaldehyde dehydrogenases and arylalcohol dehydrogenases, respectively.
Collapse
Affiliation(s)
- O Sprusanský
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
37
|
Abstract
Organosulfonates are widespread compounds, be they natural products of low or high molecular weight, or xenobiotics. Many commonly found compounds are subject to desulfonation, even if it is not certain whether all the corresponding enzymes are widely expressed in nature. Sulfonates require transport systems to cross the cell membrane, but few physiological data and no biochemical data on this topic are available, though the sequences of some of the appropriate genes are known. Desulfonative enzymes in aerobic bacteria are generally regulated by induction, if the sulfonate is serving as a carbon and energy source, or by a global network for sulfur scavenging (sulfate-starvation-induced (SSI) stimulon) if the sulfonate is serving as a source of sulfur. It is unclear whether an SSI regulation is found in anaerobes. The anaerobic bacteria examined can express the degradative enzymes constitutively, if the sulfonate is being utilized as a carbon source, but enzyme induction has also been observed. At least three general mechanisms of desulfonation are recognisable or postulated in the aerobic catabolism of sulfonates: (1) activate the carbon neighboring the C-SO3- bond and release of sulfite assisted by a thiamine pyrophosphate cofactor; (2) destabilize the C-SO3- bond by addition of an oxygen atom to the same carbon, usually directly by oxygenation, and loss of the good leaving group, sulfite; (3) an unidentified, formally reductive reaction. Under SSIS control, different variants of mechanism (2) can be seen. Catabolism of sulfonates by anaerobes was discovered recently, and the degradation of taurine involves mechanism (1). When anaerobes assimilate sulfonate sulfur, there is one common, unknown mechanism to desulfonate the inert aromatic compounds and another to desulfonate inert aliphatic compounds; taurine seems to be desulfonated by mechanism (1).
Collapse
Affiliation(s)
- A M Cook
- Fakultät für Biologie der Universität, Konstanz, Germany.
| | | | | |
Collapse
|
38
|
Chang HK, Zylstra GJ. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 1998; 180:6529-37. [PMID: 9851995 PMCID: PMC107754 DOI: 10.1128/jb.180.24.6529-6537.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cepacia DBO1 is able to utilize phthalate as the sole source of carbon and energy for growth. Two overlapping cosmid clones containing the genes for phthalate degradation were isolated from this strain. Subcloning and activity analysis localized the genes for phthalate degradation to two separate regions on the cosmid clones. Analysis of the nucleotide sequence of these two regions showed that the genes for phthalate degradation are arranged in at least three transcriptional units. The gene for phthalate dioxygenase reductase (ophA1) is present by itself, while the genes for an inactive transporter (ophD) and 4,5-dihydroxyphthalate decarboxylase (ophC) are linked and the genes for phthalate dioxygenase oxygenase (ophA2) and cis-phthalate dihydrodiol dehydrogenase (ophB) are linked. ophA1 and ophDC are adjacent to each other but are transcribed in opposite directions, while ophA2B is located 4 kb away. The genes for the oxygenase and reductase components of phthalate dioxygenase are located approximately 7 kb away from each other. The gene for the putative phthalate permease contains a frameshift mutation in contrast to genes for other permeases. Strains deleted for ophD are able to transport phthalate into the cell at rates equivalent to that of the wild-type organism, showing that this gene is not required for growth on phthalate.
Collapse
Affiliation(s)
- H K Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
39
|
Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci U S A 1998; 95:12719-23. [PMID: 9770552 PMCID: PMC22897 DOI: 10.1073/pnas.95.21.12719] [Citation(s) in RCA: 268] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlorophyll b is an ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. Its biosynthesis plays a key role in the adaptation to various light environments. We isolated six chlorophyll b-less mutants by insertional mutagenesis by using the nitrate reductase or argininosuccinate lyase genes as tags and examined the rearrangement of mutant genomes. We found that an overlapping region of a nuclear genome was deleted in all mutants and that this encodes a protein whose sequence is similar to those of methyl monooxygenases. This coding sequence also contains putative binding domains for a [2Fe-2S] Rieske center and for a mononuclear iron. The results demonstrate that a chlorophyll a oxygenase is involved in chlorophyll b formation. The reaction mechanism of chlorophyll b formation is discussed.
Collapse
Affiliation(s)
- A Tanaka
- The Institute of Low Temperature Science, Hokkaido University, Sapporo 0600819, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Junker F, Cook AM. Conjugative plasmids and the degradation of arylsulfonates in Comamonas testosteroni. Appl Environ Microbiol 1997; 63:2403-10. [PMID: 9172362 PMCID: PMC168534 DOI: 10.1128/aem.63.6.2403-2410.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Comamonas testosteroni T-2 degrades p-toluenesulfonate (TSA) via p-sulfobenzoate (PSB) and protocatechuate and degrades toluenecarboxylate via terephthalate (TER) and protocatechuate. The appropriate genes are expressed in at least five regulatory units, some of which are also found in C. testosteroni PSB-4 (F. Junker, R. Kiewitz, and A. M. Cook, J. Bacteriol. 179:919-927, 1997). C. testosteroni T-2 was found to contain two plasmids, pTSA (85 kbp) and pT2T (50 kbp); a TSA- mutant (strain TER-1) contained only plasmid pT2T. C. testosteroni PSB-4, which does not degrade TSA, contained one plasmid, pPSB (85 kbp). The type strain contained no plasmids. Conjugation experiments showed that plasmid pTSA (possibly in conjunction with pT2T) was conjugative, and the single copy of the TSA operon (tsaMBCD) with its putative regulator gene (tsaR) in strain T-2 was found on plasmid pTSA, which also carried the PSB genes (psbAC) and presumably transport for both substrates. Plasmid pTSA was assigned to the IncP1 beta group and was found to carry two copies of insertion element IS1071. Plasmid pPSB (of strain PSB-4), which could be maintained in strains with plasmid pTSA or pT2T, was also conjugative and was found to carry the PSB genes as well as to contain two copies of IS1071. In attempted conjugations with the type strain, no plasmid was recovered, but the PSB+ transconjugant carried two copies of IS1071 in the chromosome. We presume the PSB genes to be located in a composite transposon. The genes encoding the putative TER operon and degradation of protocatechuate, with the meta cleavage pathway, were attributed a chromosomal location in strains T-2 and PSB-4.
Collapse
Affiliation(s)
- F Junker
- Microbiology Institute, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | |
Collapse
|