1
|
Mitra R, Xu T, Chen GQ, Xiang H, Han J. An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis. Microb Biotechnol 2021; 15:1446-1470. [PMID: 34473895 PMCID: PMC9049629 DOI: 10.1111/1751-7915.13915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are a promising and sustainable alternative to the petroleum‐based synthetic plastics. Regulation of PHA synthesis is receiving considerable importance as engineering the regulatory factors might help developing strains with improved PHA‐producing abilities. PHA synthesis is dedicatedly regulated by a number of regulatory networks. They tightly control the PHA content, granule size and their distribution in cells. Most PHA‐accumulating microorganisms have multiple regulatory networks that impart a combined effect on PHA metabolism. Among them, several factors ranging from global to specific regulators, have been identified and characterized till now. This review is an attempt to categorically summarize the diverse regulatory circuits that operate in some important PHA‐producing microorganisms. However, in several organisms, the detailed mechanisms involved in the regulation of PHA synthesis is not well‐explored and hence further research is needed. The information presented in this review might help researcher to identify the prevailing research gaps in PHA regulation.
Collapse
Affiliation(s)
- Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,International College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
3
|
Velázquez-Sánchez C, Espín G, Peña C, Segura D. The Modification of Regulatory Circuits Involved in the Control of Polyhydroxyalkanoates Metabolism to Improve Their Production. Front Bioeng Biotechnol 2020; 8:386. [PMID: 32426348 PMCID: PMC7204398 DOI: 10.3389/fbioe.2020.00386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Poly-(3-hydroxyalkanoates) (PHAs) are bacterial carbon and energy storage compounds. These polymers are synthesized under conditions of nutritional imbalance, where a nutrient is growth-limiting while there is still enough carbon source in the medium. On the other side, the accumulated polymer is mobilized under conditions of nutrient accessibility or by limitation of the carbon source. Thus, it is well known that the accumulation of PHAs is affected by the availability of nutritional resources and this knowledge has been used to establish culture conditions favoring high productivities. In addition to this effect of the metabolic status on PHAs accumulation, several genetic regulatory networks have been shown to drive PHAs metabolism, so the expression of the PHAs genes is under the influence of global or specific regulators. These regulators are thought to coordinate PHAs synthesis and mobilization with the rest of bacterial physiology. While the metabolic and biochemical knowledge related to the biosynthesis of these polymers has led to the development of processes in bioreactors for high-level production and also to the establishment of strategies for metabolic engineering for the synthesis of modified biopolymers, the use of knowledge related to the regulatory circuits controlling PHAs metabolism for strain improvement is scarce. A better understanding of the genetic control systems involved could serve as the foundation for new strategies for strain modification in order to increase PHAs production or to adjust the chemical structure of these biopolymers. In this review, the regulatory systems involved in the control of PHAs metabolism are examined, with emphasis on those acting at the level of expression of the enzymes involved and their potential modification for strain improvement, both for higher titers, or manipulation of polymer properties. The case of the PHAs producer Azotobacter vinelandii is taken as an example of the complexity and variety of systems controlling the accumulation of these interesting polymers in response to diverse situations, many of which could be engineered to improve PHAs production.
Collapse
Affiliation(s)
- Claudia Velázquez-Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Peña
- Departamento Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, Ertesvåg H. Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol 2020; 7:475. [PMID: 32010681 PMCID: PMC6979010 DOI: 10.3389/fbioe.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Azotobacter vinelandii produces the biopolymer alginate, which has a wide range of industrial and pharmaceutical applications. A random transposon insertion mutant library was constructed from A. vinelandii ATCC12518Tc in order to identify genes and pathways affecting alginate biosynthesis, and about 4,000 mutant strains were screened for altered alginate production. One mutant, containing a mucA disruption, displayed an elevated alginate production level, and several mutants with decreased or abolished alginate production were identified. The regulatory proteins AlgW and AmrZ seem to be required for alginate production in A. vinelandii, similarly to Pseudomonas aeruginosa. An algB mutation did however not affect alginate yield in A. vinelandii although its P. aeruginosa homolog is needed for full alginate production. Inactivation of the fructose phosphoenolpyruvate phosphotransferase system protein FruA resulted in a mutant that did not produce alginate when cultivated in media containing various carbon sources, indicating that this system could have a role in regulation of alginate biosynthesis. Furthermore, impaired or abolished alginate production was observed for strains with disruptions of genes involved in peptidoglycan biosynthesis/recycling and biosynthesis of purines, isoprenoids, TCA cycle intermediates, and various vitamins, suggesting that sufficient access to some of these compounds is important for alginate production. This hypothesis was verified by showing that addition of thiamine, succinate or a mixture of lysine, methionine and diaminopimelate increases alginate yield in the non-mutagenized strain. These results might be used in development of optimized alginate production media or in genetic engineering of A. vinelandii strains for alginate bioproduction.
Collapse
Affiliation(s)
- Mali Mærk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | - Svein Valla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
Bedoya-Pérez LP, Muriel-Millán LF, Moreno S, Quiroz-Rocha E, Rivera-Gómez N, Espín G. The pyrophosphohydrolase RppH is involved in the control of RsmA/CsrA expression in Azotobacter vinelandii and Escherichia coli. Microbiol Res 2018; 214:91-100. [DOI: 10.1016/j.micres.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
|
6
|
Noar JD, Bruno-Bárcena JM. Azotobacter vinelandii: the source of 100 years of discoveries and many more to come. MICROBIOLOGY-SGM 2018. [PMID: 29533747 DOI: 10.1099/mic.0.000643] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Azotobacter vinelandii has been studied for over 100 years since its discovery as an aerobic nitrogen-fixing organism. This species has proved useful for the study of many different biological systems, including enzyme kinetics and the genetic code. It has been especially useful in working out the structures and mechanisms of different nitrogenase enzymes, how they can function in oxic environments and the interactions of nitrogen fixation with other aspects of metabolism. Interest in studying A. vinelandii has waned in recent decades, but this bacterium still possesses great potential for new discoveries in many fields and commercial applications. The species is of interest for research because of its genetic pliability and natural competence. Its features of particular interest to industry are its ability to produce multiple valuable polymers - bioplastic and alginate in particular; its nitrogen-fixing prowess, which could reduce the need for synthetic fertilizer in agriculture and industrial fermentations, via coculture; its production of potentially useful enzymes and metabolic pathways; and even its biofuel production abilities. This review summarizes the history and potential for future research using this versatile microbe.
Collapse
Affiliation(s)
- Jesse D Noar
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jose M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G. Unphosphorylated EIIA Ntr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol 2017; 104:197-211. [PMID: 28097724 DOI: 10.1111/mmi.13621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 02/02/2023]
Abstract
The nitrogen-related phosphotransferase system (PTSNtr ) is composed of the EINtr , NPr and EIIANtr proteins that form a phosphorylation cascade from phosphoenolpyruvate. PTSNtr is a global regulatory system present in most Gram-negative bacteria that controls some pivotal processes such as potassium and phosphate homeostasis, virulence, nitrogen fixation and ABC transport activation. In the soil bacterium Azotobacter vinelandii, unphosphorylated EIIANtr negatively regulates the expression of genes related to the synthesis of the bioplastic polyester poly-β-hydroxybutyrate (PHB) and cyst-specific lipids alkylresorcinols (ARs). The mechanism by which EIIANtr controls gene expression in A. vinelandii is not known. Here, we show that, in presence of unphosphorylated EIIANtr , the stability of the stationary phase sigma factor RpoS, which is necessary for transcriptional activation of PHB and ARs synthesis related genes, is reduced, and that the inactivation of genes coding for ClpAP protease complex in strains that carry unphosphorylated EIIANtr , restored the levels and in vivo stability of RpoS, as well as the synthesis of PHB and ARs. Taken together, our results reveal a novel mechanism, by which EIIANtr globally controls gene expression in A. vinelandii, where the unphosphorylated EIIANtr induces the degradation of RpoS by the proteolytic complex ClpAP.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Ramsés Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
8
|
Li YZ, Wang D, Feng XY, Jiao J, Chen WX, Tian CF. Genetic Analysis Reveals the Essential Role of Nitrogen Phosphotransferase System Components in Sinorhizobium fredii CCBAU 45436 Symbioses with Soybean and Pigeonpea Plants. Appl Environ Microbiol 2016; 82:1305-15. [PMID: 26682851 PMCID: PMC4751829 DOI: 10.1128/aem.03454-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 11/20/2022] Open
Abstract
The nitrogen phosphotransferase system (PTS(Ntr)) consists of EI(Ntr), NPr, and EIIA(Ntr). The active phosphate moiety derived from phosphoenolpyruvate is transferred through EI(Ntr) and NPr to EIIA(Ntr). Sinorhizobium fredii can establish a nitrogen-fixing symbiosis with the legume crops soybean (as determinate nodules) and pigeonpea (as indeterminate nodules). In this study, S. fredii strains with mutations in ptsP and ptsO (encoding EI(Ntr) and NPr, respectively) formed ineffective nodules on soybeans, while a strain with a ptsN mutation (encoding EIIA(Ntr)) was not defective in symbiosis with soybeans. Notable reductions in the numbers of bacteroids within each symbiosome and of poly-β-hydroxybutyrate granules in bacteroids were observed in nodules infected by the ptsP or ptsO mutant strains but not in those infected with the ptsN mutant strain. However, these defects of the ptsP and ptsO mutant strains were recovered in ptsP ptsN and ptsO ptsN double-mutant strains, implying a negative role of unphosphorylated EIIA(Ntr) in symbiosis. Moreover, the symbiotic defect of the ptsP mutant was also recovered by expressing EI(Ntr) with or without the GAF domain, indicating that the putative glutamine-sensing domain GAF is dispensable in symbiotic interactions. The critical role of PTS(Ntr) in symbiosis was also observed when related PTS(Ntr) mutant strains of S. fredii were inoculated on pigeonpea plants. Furthermore, nodule occupancy and carbon utilization tests suggested that multiple outputs could be derived from components of PTS(Ntr) in addition to the negative role of unphosphorylated EIIA(Ntr).
Collapse
Affiliation(s)
- Yue Zhen Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Dan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Xue Ying Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, and Rhizobium Research Center, China Agricultural University, Beijing, ChinaUniversity of Wisconsin-Madison
| |
Collapse
|
9
|
Yoneyama F, Yamamoto M, Hashimoto W, Murata K. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions. Bioengineered 2015; 6:209-17. [PMID: 25880041 DOI: 10.1080/21655979.2015.1040209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.
Collapse
Affiliation(s)
- Fuminori Yoneyama
- a Division of Food Science and Biotechnology ; Graduate School of Agriclture Kyoto University ; Uji , Kyoto , Japan
| | | | | | | |
Collapse
|
10
|
Lee J, Park YH, Kim YR, Seok YJ, Lee CR. Dephosphorylated NPr is involved in an envelope stress response of Escherichia coli. MICROBIOLOGY-SGM 2015; 161:1113-1123. [PMID: 25701731 PMCID: PMC4635465 DOI: 10.1099/mic.0.000056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/10/2015] [Indexed: 01/20/2023]
Abstract
Besides the canonical phosphoenolpyruvate-dependent phosphotransferase system (PTS) for carbohydrate transport, most Proteobacteria possess the so-called nitrogen PTS (PTSNtr) that transfers a phosphate group from phosphoenolpyruvate (PEP) over enzyme INtr (EINtr) and NPr to enzyme IIANtr (EIIANtr). The PTSNtr lacks membrane-bound components and functions exclusively in a regulatory capacity. While EIIANtr has been implicated in a variety of cellular processes such as potassium homeostasis, phosphate starvation, nitrogen metabolism, carbon metabolism, regulation of ABC transporters and poly-β-hydroxybutyrate accumulation in many Proteobacteria, the only identified role of NPr is the regulation of biosynthesis of the lipopolysaccharide (LPS) layer by direct interaction with LpxD in Escherichia coli. In this study, we provide another phenotype related to NPr. Several lines of evidence demonstrate that E. coli strains with increased levels of dephosphorylated NPr are sensitive to envelope stresses, such as osmotic, ethanol and SDS stresses, and these phenotypes are independent of LpxD. The C-terminal region of NPr plays an important role in sensitivity to envelope stresses. Thus, our data suggest that the dephospho-form of NPr affects adaptation to envelope stresses through a C-terminus-dependent mechanism.
Collapse
Affiliation(s)
- Jaeseop Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 449-728, Republic of Korea
| | - Young-Ha Park
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-742, Republic of Korea.,Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 449-728, Republic of Korea
| |
Collapse
|
11
|
Peña C, Castillo T, García A, Millán M, Segura D. Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 2015; 7:278-93. [PMID: 24898500 PMCID: PMC4241722 DOI: 10.1111/1751-7915.12129] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/13/2014] [Indexed: 11/27/2022] Open
Abstract
Poly-(3-hydroxybutyrate) [P(3HB)] is a polyester synthesized as a carbon and energy reserve material by a wide number of bacteria. This polymer is characterized by its thermo-plastic properties similar to plastics derived from petrochemical industry, such as polyethylene and polypropylene. Furthermore, P(3HB) is an inert, biocompatible and biodegradable material which has been proposed for several uses in medical and biomedical areas. Currently, only few bacterial species such as Cupriavidus necator, Azohydromonas lata and recombinant Escherichia coli have been successfully used for P(3HB) production at industrial level. Nevertheless, in recent years, several fermentation strategies using other microbial models such as Azotobacter vinelandii, A. chroococcum, as well as some methane-utilizing species, have been developed in order to improve the P(3HB) production and also its mean molecular weight.
Collapse
Affiliation(s)
- C Peña
- Departamento de Ingeniería Celular y Biocatálisis
| | | | | | | | | |
Collapse
|
12
|
López NI, Pettinari MJ, Nikel PI, Méndez BS. Polyhydroxyalkanoates: Much More than Biodegradable Plastics. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:73-106. [PMID: 26505689 DOI: 10.1016/bs.aambs.2015.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in central metabolism, as they act as dynamic reservoirs of carbon and reducing equivalents. These polymers have a number of technical applications since they exhibit thermoplastic and elastomeric properties, making them attractive as a replacement of oil-derived materials. PHAs are accumulated under conditions of nutritional imbalance (usually an excess of carbon source with respect to a limiting nutrient, such as nitrogen or phosphorus). The cycle of PHA synthesis and degradation has been recognized as an important physiological feature when these biochemical pathways were originally described, yet its role in bacterial processes as diverse as global regulation and cell survival is just starting to be appreciated in full. In the present revision, the complex regulation of PHA synthesis and degradation at the transcriptional, translational, and metabolic levels are explored by analyzing examples in natural producer bacteria, such as Pseudomonas species, as well as in recombinant Escherichia coli strains. The ecological role of PHAs, together with the interrelations with other polymers and extracellular substances, is also discussed, along with their importance in cell survival, resistance to several types of environmental stress, and planktonic-versus-biofilm lifestyle. Finally, bioremediation and plant growth promotion are presented as examples of environmental applications in which PHA accumulation has successfully been exploited.
Collapse
|
13
|
Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EI(Ntr) integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol 2014; 196:1901-7. [PMID: 24633875 DOI: 10.1128/jb.01489-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Sinorhizobium meliloti, catabolite repression is influenced by a noncanonical nitrogen-type phosphotransferase system (PTS(Ntr)). In this PTS(Ntr), the protein HPr is phosphorylated on histidine-22 by the enzyme EI(Ntr) and the flux of phosphate through this residue onto downstream proteins leads to an increase in succinate-mediated catabolite repression (SMCR). In order to explore the molecular determinants of HPr phosphorylation by EI(Ntr), both proteins were purified and the activity of EI(Ntr) was measured. Experimentally determined kinetic parameters of EI(Ntr) activity were significantly slower than those determined for the carbohydrate-type EI in Escherichia coli. Enzymatic assays showed that glutamine, a signal of nitrogen availability in many Gram-negative bacteria, strongly inhibits EI(Ntr). Binding experiments using the isolated GAF domain of EI(Ntr) (EIGAF) showed that it is the domain responsible for detection of glutamine. EI(Ntr) activity was not affected by α-ketoglutarate, and no binding between the EIGAF and α-ketoglutarate could be detected. These data suggest that in S. melilloti, EI(Ntr) phosphorylation of HPr is regulated by signals from both carbon metabolism (phosphoenolpyruvate) and nitrogen metabolism (glutamine).
Collapse
|
14
|
Karstens K, Zschiedrich CP, Bowien B, Stülke J, Görke B. Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. MICROBIOLOGY-SGM 2014; 160:711-722. [PMID: 24515609 DOI: 10.1099/mic.0.075226-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the β-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB). PHB accumulation is controlled by the stringent response and induced under conditions of nitrogen deprivation. Knockout of EIIA(Ntr) increases the PHB content. In contrast, absence of enzyme I or HPr, which deliver phosphoryl groups to EIIA(Ntr), has the opposite effect. To clarify the role of EIIA(Ntr) in PHB formation, we screened for interacting proteins that co-purify with Strep-tagged EIIA(Ntr) from R. eutropha cells. This approach identified the bifunctional ppGpp synthase/hydrolase SpoT1, a key enzyme of the stringent response. Two-hybrid and far-Western analyses confirmed the interaction and indicated that only non-phosphorylated EIIA(Ntr) interacts with SpoT1. Interestingly, this interaction does not occur between the corresponding proteins of E. coli. Vice versa, interaction of EIIA(Ntr) with KdpD appears to be absent in R. eutropha, although R. eutropha EIIA(Ntr) can perfectly substitute its homologue in E. coli in regulation of KdpD activity. Thus, interaction with KdpD might be an evolutionary 'ancient' task of EIIA(Ntr) that was subsequently replaced by interaction with SpoT1 in R. eutropha. In conclusion, EIIA(Ntr) might integrate information about nutritional status, as reflected by its phosphorylation state, into the stringent response, thereby controlling cellular PHB content in R. eutropha.
Collapse
Affiliation(s)
- Katja Karstens
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Christopher P Zschiedrich
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Botho Bowien
- Department of Molecular Physiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| | - Boris Görke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Center of Molecular Biology, University of Vienna, 1030 Vienna, Austria.,Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
15
|
García A, Segura D, Espín G, Galindo E, Castillo T, Peña C. High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Muriel-Millán LF, Castellanos M, Hernandez-Eligio JA, Moreno S, Espín G. Posttranscriptional regulation of PhbR, the transcriptional activator of polyhydroxybutyrate synthesis, by iron and the sRNA ArrF in Azotobacter vinelandii. Appl Microbiol Biotechnol 2013; 98:2173-82. [DOI: 10.1007/s00253-013-5407-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 01/24/2023]
|
17
|
Peña C, López S, García A, Espín G, Romo-Uribe A, Segura D. Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN). ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0630-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
18
|
Lee CR, Park YH, Kim M, Kim YR, Park S, Peterkofsky A, Seok YJ. Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol 2013; 88:473-85. [PMID: 23517463 DOI: 10.1111/mmi.12196] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
In addition to the phosphoenolpyruvate:sugar phosphotransferase system (sugar PTS), most proteobacteria possess a paralogous system (nitrogen phosphotransferase system, PTS(Ntr)). The first proteins in both pathways are enzymes (enzyme I(sugar) and enzyme I(Ntr)) that can be autophosphorylated by phosphoenolpyruvate. The most striking difference between enzyme I(sugar) and enzyme I(Ntr) is the presence of a GAF domain at the N-terminus of enzyme I(Ntr). Since the PTS(Ntr) was identified in 1995, it has been implicated in a variety of cellular processes in many proteobacteria and many of these regulations have been shown to be dependent on the phosphorylation state of PTS(Ntr) components. However, there has been little evidence that any component of this so-called PTS(Ntr) is directly involved in nitrogen metabolism. Moreover, a signal regulating the phosphorylation state of the PTS(Ntr) had not been uncovered. Here, we demonstrate that glutamine and α-ketoglutarate, the canonical signals of nitrogen availability, reciprocally regulate the phosphorylation state of the PTS(Ntr) by direct effects on enzyme I(Ntr) autophosphorylation and the GAF signal transduction domain is necessary for the regulation of enzyme I(Ntr) activity by the two signal molecules. Taken together, our results suggest that the PTS(Ntr) senses nitrogen availability.
Collapse
Affiliation(s)
- Chang-Ro Lee
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Hernandez-Eligio A, Moreno S, Castellanos M, Castañeda M, Nuñez C, Muriel-Millan LF, Espín G. RsmA post-transcriptionally controls PhbR expression and polyhydroxybutyrate biosynthesis in Azotobacter vinelandii. Microbiology (Reading) 2012; 158:1953-1963. [DOI: 10.1099/mic.0.059329-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alberto Hernandez-Eligio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, México
| | - Mildred Castellanos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, México
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apartado Postal 1622, CP 72000 Puebla, México
| | - Cinthia Nuñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, México
| | - Luis Felipe Muriel-Millan
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, México
| |
Collapse
|
20
|
Kaddor C, Voigt B, Hecker M, Steinbüchel A. Impact of the Core Components of the Phosphoenolpyruvate-Carbohydrate Phosphotransferase System, HPr and EI, on Differential Protein Expression in Ralstonia eutropha H16. J Proteome Res 2012; 11:3624-36. [DOI: 10.1021/pr300042f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chlud Kaddor
- Institut für
Molekulare
Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse
3, D-48149 Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Straße
15, D-17489 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Straße
15, D-17489 Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für
Molekulare
Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse
3, D-48149 Münster, Germany
- King Abdul Aziz University, Jeddah 22254,
Saudi Arabia
| |
Collapse
|
21
|
Abstract
Although 'cheaters' potentially destabilize the legume-rhizobium mutualism, we lack a comprehensive review of host-symbiont fitness correlations. Studies measuring rhizobium relative or absolute fitness and host benefit are surveyed. Mutant studies are tallied for evidence of pleiotropy; studies of natural strains are analyzed with meta-analysis. Of 80 rhizobium mutations, 19 decrease both partners' fitness, four increase both, two increase host fitness but decrease symbiont fitness and none increase symbiont fitness at the host's expense. The pooled correlation between rhizobium nodulation competitiveness and plant aboveground biomass is 0.65 across five experiments that compete natural strains against a reference, whereas, across 14 experiments that compete rhizobia against soil populations or each other, the pooled correlation is 0.24. Pooled correlations between aboveground biomass and nodule number and nodule biomass are 0.76 and 0.83. Positive correlations between legume and rhizobium fitness imply that most ineffective rhizobia are 'defective' rather than 'defectors'; this extends to natural variants, with only one significant fitness conflict. Most studies involve non-coevolved associations, indicating that fitness alignment is the default state. Rhizobium mutations that increase both host and symbiont fitness suggest that some plants maladaptively restrict symbiosis with novel strains.
Collapse
Affiliation(s)
- Maren L Friesen
- Center for Population Biology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Present address: Section of Molecular and Computational Biology, Department of Biology, University of Southern California, 1050 Childs Way, RRI 201-B Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Hernandez-Eligio A, Castellanos M, Moreno S, Espín G. Transcriptional activation of the Azotobacter vinelandii polyhydroxybutyrate biosynthetic genes phbBAC by PhbR and RpoS. MICROBIOLOGY-SGM 2011; 157:3014-3023. [PMID: 21778206 DOI: 10.1099/mic.0.051649-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We previously showed that in Azotobacter vinelandii, accumulation of polyhydroxybutyrate (PHB) occurs mainly during the stationary phase, and that a mutation in phbR, encoding a transcriptional regulator of the AraC family, reduces PHB accumulation. In this study, we characterized the roles of PhbR and RpoS, a central regulator during stationary phase in bacteria, in the regulation of expression of the PHB biosynthetic operon phbBAC and phbR. We showed that inactivation of rpoS reduced PHB accumulation, similar to the phbR mutation, and inactivation of both rpoS and phbR resulted in an inability to produce PHB. We carried out expression studies with the wild-type, and the rpoS, phbR and double rpoS-phbR mutant strains, using quantitative RT-PCR, as well as phbB : : gusA and phbR : : gusA gene fusions. These studies showed that both PhbR and RpoS act as activators of phbB and phbR, and revealed a role for PhbR as an autoactivator. We also demonstrated that PhbR binds specifically to two almost identical 18 bp sites, TGTCACCAA-N(4)-CACTA and TGTCACCAA-N(4)-CAGTA, present in the phbB promoter region. The activation of phbB and phbR transcription by RpoS reported here is in agreement with the observation that accumulation of PHB in A. vinelandii occurs mainly during the stationary phase.
Collapse
Affiliation(s)
- Alberto Hernandez-Eligio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Mildred Castellanos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
23
|
Kaddor C, Steinbüchel A. Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl Environ Microbiol 2011; 77:3582-90. [PMID: 21478317 PMCID: PMC3127587 DOI: 10.1128/aem.00218-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022] Open
Abstract
Seven gene loci encoding putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified in the genome of Ralstonia eutropha H16 by in silico analysis. Except the N-acetylglucosamine-specific PEP-PTS, an additional complete PEP-PTS is lacking in strain H16. Based on these findings, we generated single and multiple deletion mutants defective mainly in the PEP-PTS genes to investigate their influence on carbon source utilization, growth behavior, and poly(3-hydroxybutyrate) (PHB) accumulation. As supposed, the H16 ΔfrcACB and H16 ΔnagFEC mutants exhibited no growth when cultivated on fructose and N-acetylglucosamine, respectively. Furthermore, a transposon mutant with a ptsM-ptsH insertion site did not grow on both carbon sources. The observed phenotype was not complemented, suggesting that it results from an interaction of genes or a polar effect caused by the Tn5::mob insertion. ptsM, ptsH, and ptsI single, double, and triple mutants stored much less PHB than the wild type (about 10 to 39% [wt/wt] of cell dry weight) and caused reduced PHB production in mutants lacking the H16_A2203, H16_A0384, frcACB, or nagFEC genes. In contrast, mutant H16 ΔH16_A0384 accumulated 11.5% (wt/wt) more PHB than the wild type when grown on gluconate and suppressed partially the negative effect of the ptsMHI deletion on PHB synthesis. Based on our experimental data, we discussed whether the PEP-PTS homologous proteins in R. eutropha H16 are exclusively involved in the complex sugar transport system or whether they are also involved in cellular regulatory functions of carbon and PHB metabolism.
Collapse
Affiliation(s)
- Chlud Kaddor
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| |
Collapse
|
24
|
Lee CR, Cho SH, Kim HJ, Kim M, Peterkofsky A, Seok YJ. Potassium mediates Escherichia coli enzyme IIANtr-dependent regulation of sigma factor selectivity. Mol Microbiol 2010; 78:1468-83. [DOI: 10.1111/j.1365-2958.2010.07419.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 2010; 18:205-14. [DOI: 10.1016/j.tim.2010.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 11/20/2022]
|
26
|
Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G. The Na+-translocating NADH : ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology (Reading) 2009; 155:249-256. [DOI: 10.1099/mic.0.022533-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azotobacter vinelandii is a nitrogen-fixing soil bacterium that produces the exopolysaccharide alginate. In this report we describe the isolation and characterization of A. vinelandii strain GG4, which carries an nqrE : : Tn5 mutation resulting in alginate overproduction. The nqrE gene encodes a subunit of the Na+-translocating NADH : ubiquinone oxidoreductase (Na+-NQR). As expected, Na+-NQR activity was abolished in mutant GG4. When this strain was complemented with the nqrEF genes this activity was restored and alginate production was reduced to wild-type levels. Na+-NQR may be the main sodium pump of A. vinelandii under the conditions tested (∼2 mM Na+) since no Na+/H+-antiporter activity was detected. Collectively our results indicate that in A. vinelandii the lack of Na+-NQR activity caused the absence of a transmembrane Na+ gradient and an increase in alginate production.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alexander V. Bogachev
- Department of Molecular Energetics of Microorganisms, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Gabriel Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Isaac Tello
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
27
|
Cases I, Velázquez F, de Lorenzo V. The ancestral role of the phosphoenolpyruvate–carbohydrate phosphotransferase system (PTS) as exposed by comparative genomics. Res Microbiol 2007; 158:666-70. [PMID: 17913467 DOI: 10.1016/j.resmic.2007.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 08/01/2007] [Accepted: 08/02/2007] [Indexed: 11/19/2022]
Abstract
The normal role of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) is phosphorylation and subsequent uptake of specific sugars. However, analysis of the distribution of PTS proteins in 206 genomes covering major bacterial groups indicates that the conventional function of PTS proteins as devices for carbohydrate phosphorylation and transport is an exception found in Enterobacteriacea, Vibrionales and Firmicutes, rather than a rule for all bacteria. Instead, available evidence suggests that a core set of C-responsive phosphotransferases have been evolutionarily drafted towards diversity of regulatory functions in response inter alia to the global economy of the C and N pools.
Collapse
Affiliation(s)
- Ildefonso Cases
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain.
| | | | | |
Collapse
|
28
|
Velázquez F, Pflüger K, Cases I, De Eugenio LI, de Lorenzo V. The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J Bacteriol 2007; 189:4529-33. [PMID: 17416664 PMCID: PMC1913348 DOI: 10.1128/jb.00033-07] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Pseudomonas putida KT2440 encodes five proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Two of these (FruA and FruB) form a dedicated system for fructose intake, while enzyme I(Ntr) (EI(Ntr); encoded by ptsP), NPr (ptsO), and EII(Ntr) (ptsN) act in concert to control the intracellular accumulation of polyhydroxyalkanoates, a typical product of carbon overflow.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología-CSIC, Campus UAM-Cantoblanco, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
29
|
Galindo E, Peña C, Núñez C, Segura D, Espín G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 2007; 6:7. [PMID: 17306024 PMCID: PMC1805506 DOI: 10.1186/1475-2859-6-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/16/2007] [Indexed: 12/01/2022] Open
Abstract
Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii.
Collapse
Affiliation(s)
- Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional, Autónoma de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional, Autónoma de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma, de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma, de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma, de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| |
Collapse
|
30
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1033] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
31
|
Affiliation(s)
- Alan Peterkofsky
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, Bethesda, MD 20892-8017, USA.
| | | | | |
Collapse
|
32
|
Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Environ Microbiol 2006; 72:7111-22. [PMID: 16936061 PMCID: PMC1636191 DOI: 10.1128/aem.01215-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens Q8r1-96 produces 2,4-diacetylphloroglucinol (2,4-DAPG), a polyketide antibiotic that suppresses a wide variety of soilborne fungal pathogens, including Gaeumannomyces graminis var. tritici, which causes take-all disease of wheat. Strain Q8r1-96 is representative of the D-genotype of 2,4-DAPG producers, which are exceptional because of their ability to aggressively colonize and maintain large populations on the roots of host plants, including wheat, pea, and sugar beet. In this study, three genes, an sss recombinase gene, ptsP, and orfT, which are important in the interaction of Pseudomonas spp. with various hosts, were investigated to determine their contributions to the unusual colonization properties of strain Q8r1-96. The sss recombinase and ptsP genes influence global processes, including phenotypic plasticity and organic nitrogen utilization, respectively. The orfT gene contributes to the pathogenicity of Pseudomonas aeruginosa in plants and animals and is conserved among saprophytic rhizosphere pseudomonads, but its function is unknown. Clones containing these genes were identified in a Q8r1-96 genomic library, sequenced, and used to construct gene replacement mutants of Q8r1-96. Mutants were characterized to determine their 2,4-DAPG production, motility, fluorescence, colony morphology, exoprotease and hydrogen cyanide (HCN) production, carbon and nitrogen utilization, and ability to colonize the rhizosphere of wheat grown in natural soil. The ptsP mutant was impaired in wheat root colonization, whereas mutants with mutations in the sss recombinase gene and orfT were not. However, all three mutants were less competitive than wild-type P. fluorescens Q8r1-96 in the wheat rhizosphere when they were introduced into the soil by paired inoculation with the parental strain.
Collapse
Affiliation(s)
- Olga V Mavrodi
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | | | | | | |
Collapse
|
33
|
Xu H, Lin W, Xia H, Xu S, Li Y, Yao H, Bai F, Zhang X, Bai Y, Saris P, Qiao M. Influence of ptsP gene on pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett 2006; 253:103-9. [PMID: 16239083 DOI: 10.1016/j.femsle.2005.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/01/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022] Open
Abstract
A pyocyanin overproducer with insertional inactivation of ptsP gene was isolated from a mini-Mu insertion library in Pseudomonas aeruginosa PA68. The mutation was complemented by a functional ptsP gene in trans. The pyocyanin-overproducing phenotype was also found in a ptsP mutant constructed by gene replacement in the P. aeruginosa PAO1 strain. Reporter plasmids with P(qscR)-lacZ, P(lasI)-lacZ and P(rhlI)-lacZ were constructed and the beta-galactosidase activity in the ptsP mutant/wild-type background was measured. The results showed that lack of Enzyme I(Ntr) (EI(Ntr), encoded by ptsP) decreased transcription from the P(qscR) promoter and increased the activity of the P(lasI) and P(rhlI) promoters. Normally, QscR represses the quorum-sensing LasR-LasI and RhlR-RhlI systems involved in pyocyanin regulation. Our results showed that the ptsP gene has an important role in the regulation of pyocyanin production and that two quorum-sensing systems and their repressor QscR are involved in this regulation.
Collapse
Affiliation(s)
- Haijin Xu
- Tianjin Key Laboratory of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Barabote RD, Saier MH. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005; 69:608-34. [PMID: 16339738 PMCID: PMC1306802 DOI: 10.1128/mmbr.69.4.608-634.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.
Collapse
Affiliation(s)
- Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
35
|
Zhang S, Chen Y, Potvin E, Sanschagrin F, Levesque RC, McCormack FX, Lau GW. Comparative signature-tagged mutagenesis identifies Pseudomonas factors conferring resistance to the pulmonary collectin SP-A. PLoS Pathog 2005; 1:259-68. [PMID: 16322768 PMCID: PMC1291351 DOI: 10.1371/journal.ppat.0010031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 10/13/2005] [Indexed: 12/31/2022] Open
Abstract
The pulmonary collectin, surfactant protein A (SP-A), is a broad spectrum opsonin with microbicidal membrane permeabilization properties that plays a role in the innate immune response of the lung. However, the factors that govern SP-A's microbial specificity and the mechanisms by which it mediates membrane permeabilization and opsonization are not fully understood. In an effort to identify bacterial factors that confer susceptibility or resistance to SP-A, we used comparative signature-tagged mutagenesis to screen a library of 1,680 Pseudomonas aeruginosa mutants for evidence of differential pulmonary clearance in SP-A-sufficient (SP-A+/+) and SP-A-deficient (SP-A−/−) mice. Two SP-A-sensitive P. aeruginosa mutants harboring transposon insertions in genes required for salicylate biosynthesis (pch) and phosphoenolpyruvate-protein-phosphotransferase (ptsP) were recovered. The mutants were indistinguishable from the parental wild-type PA01 with regard to opsonization by SP-A, but they exhibited increased susceptibility to SP-A-mediated membrane permeabilization. These results suggest that bacterial gene functions that are required to maintain membrane integrity play crucial roles in resistance of P. aeruginosa to the permeabilizing effects of SP-A. Everyday, normal breathing deposits numerous microorganisms on the surfactant membrane that lines the air-exchanging surfaces of the lung. Surfactant protein SP-A, a component of the surfactant membrane, helps to maintain the lung in a germ-free state by aggregating inhaled microorganisms and facilitating their ingestion by immune cells, and by increasing the permeability of their cell membranes. However, the bacterial pathogen Pseudomonas aeruginosa is resistant to SP-A-mediated membrane disruption. Using a genetic tool called comparative signature-tagged mutagenesis, the authors have identified two P. aeruginosa genes, pch and ptsP, that are required to resist SP-A-mediated membrane permeabilization. Molecular analyses indicate that the pch gene encodes an enzyme that synthesizes salicylate, a compound utilized by bacteria to acquire essential metal ions. The ptsP gene encodes an enzyme called phosphoenolpyruvate-protein-phosphotransferase. The loss of salicylate and phosphoenolpyruvate-protein-phosphotransferase weakens the P. aeruginosa cell membrane, which allows SP-A to poke holes on the membrane and kill the bacteria. This is the first known report of the roles played by salicylate and phosphoenolpyruvate-protein-phosphotransferase in maintenance of bacterial membrane, and consequently, protecting bacteria from killing by SP-A, through disruption of membrane integrity.
Collapse
Affiliation(s)
- Shiping Zhang
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Chen
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Eric Potvin
- Centre de Recherche sur la Fonction Structure et Ingenierie des Proteines, Universite Laval, Ste-Foy, Quebec, Canada
| | - Francois Sanschagrin
- Centre de Recherche sur la Fonction Structure et Ingenierie des Proteines, Universite Laval, Ste-Foy, Quebec, Canada
| | - Roger C Levesque
- Centre de Recherche sur la Fonction Structure et Ingenierie des Proteines, Universite Laval, Ste-Foy, Quebec, Canada
| | - Francis X McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gee W Lau
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Dos Santos VAPM, Heim S, Moore ERB, Strätz M, Timmis KN. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 2004; 6:1264-86. [PMID: 15560824 DOI: 10.1111/j.1462-2920.2004.00734.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A major challenge in microbiology is the elucidation of the genetic and ecophysiological basis of habitat specificity of microbes. Pseudomonas putida is a paradigm of a ubiquitous metabolically versatile soil bacterium. Strain KT2440, a safety strain that has become a laboratory workhorse worldwide, has been recently sequenced and its genome annotated. By drawing on both published information and on original in silico analysis of its genome, we address here the question of what genomic features of KT2440 could explain or are consistent with its ubiquity, metabolic versatility and adaptability. The genome of KT2440 exhibits combinations of features characteristic of terrestrial, rhizosphere and aquatic bacteria, which thrive in either copiotrophic or oligotrophic habitats, and suggests that P. putida has evolved and acquired functions that equip it to thrive in diverse, often inhospitable environments, either free-living, or in close association with plants. The high diversity of protein families encoded by its genome, the large number and variety of small aralogous families, insertion elements, repetitive extragenic palindromic sequences, as well as the mosaic structure of the genome (with many regions of 'atypical' composition) and the multiplicity of mobile elements, reflect a high functional diversity in P. putida and are indicative of its evolutionary trajectory and adaptation to the diverse habitats in which it thrives. The unusual wealth of determinants for high affinity nutrient acquisition systems, mono- and di-oxygenases, oxido-reductases, ferredoxins and cytochromes, dehydrogenases, sulfur metabolism proteins, for efflux pumps and glutathione-S-transfereases, and for the extensive array of extracytoplasmatic function sigma factors, regulators, and stress response systems, constitute the genomic basis for the exceptional nutritional versatility and opportunism of P. putida , its ubiquity in diverse soil, rhizosphere and aquatic systems, and its renowned tolerance of natural and anthropogenic stresses. This metabolic diversity is also the basis of the impressive evolutionary potential of KT2440, and its utility for the experimental design of novel pathways for the catabolism of organic, particularly aromatic, pollutants, and its potential for bioremediation of soils contaminated with such compounds as well as for its application in the production of high-added value compounds.
Collapse
Affiliation(s)
- V A P Martins Dos Santos
- Department of Environmental Microbiology, GBF - German Research Centre for Biotechnology, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
37
|
Segura D, Espín G. Inactivation of pycA, encoding pyruvate carboxylase activity, increases poly-beta-hydroxybutyrate accumulation in Azotobacter vinelandii on solid medium. Appl Microbiol Biotechnol 2004; 65:414-8. [PMID: 15127163 DOI: 10.1007/s00253-004-1611-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 03/03/2004] [Accepted: 03/21/2004] [Indexed: 11/24/2022]
Abstract
Strain AJ1678, an Azotobacter vinelandii mutant overproducing the storage polymer poly-beta-hydroxybutyrate (PHB) in solid but not liquid complex medium with sucrose, was isolated after mini-Tn5 mutagenesis of strain UW136. Cloning and nucleotide sequencing of the affected locus led to identification of pycA, encoding a protein with high identity to the biotin carboxylase subunit of pyruvate carboxylase enzyme (PYC). A gene ( pycB) whose product is similar to the biotin-carrying subunit of PYC is present immediately downstream from pycA. An assay of pyruvate carboxylase activity and an avidin-blot analysis confirmed that pycA and pycB encode the two subunits of this enzyme. In many organisms, PYC catalyzes ATP-dependent carboxylation of pyruvate to generate oxaloacetate and is responsible for replenishing oxaloacetate for continued operation of the tricarboxylic acid cycle. We propose that the pycA mutation causes a slow-down in the TCA cycle activity due to a low oxaloacetate concentration, resulting in a higher availability of acetyl-CoA for the synthesis of poly-beta-hydroxybutyrate.
Collapse
Affiliation(s)
- D Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
38
|
Abstract
Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a serine residue at the expense of ATP. The reaction is catalyzed by HPr kinase, which is activated by glycolytic intermediates. In this review, the distribution of CcpA-dependent CCR among bacteria is investigated by searching the public databases for homologues of HPr kinase and HPr-like proteins throughout the bacterial kingdom and by analyzing their properties. Homologues of HPr kinase are commonly observed in the phylum Firmicutes but are also found in the phyla Proteobacteria, Fusobacteria, Spirochaetes, and Chlorobi, suggesting that CcpA-dependent CCR is not restricted to gram-positive bacteria. In the alpha and beta subdivisions of the Proteobacteria, the presence of HPr kinase appears to be common, while in the gamma subdivision it is more of an exception. The genes coding for the HPr kinase homologues of the Proteobacteria are in a gene cluster together with an HPr-like protein, termed XPr, suggesting a functional relationship. Moreover, the XPr proteins contain the serine phosphorylation sequence motif. Remarkably, the analysis suggests a possible relation between CcpA-dependent gene regulation and the nitrogen regulation system (Ntr) found in the gamma subdivision of the Proteobacteria. The relation is suggested by the clustering of CCR and Ntr components on the genome of members of the Proteobacteria and by the close phylogenetic relationship between XPr and NPr, the HPr-like protein in the Ntr system. In bacteria in the phylum Proteobacteria that contain HPr kinase and XPr, the latter may be at the center of a complex regulatory network involving both CCR and the Ntr system.
Collapse
Affiliation(s)
- Jessica B Warner
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
39
|
Abstract
Nitrogen limitation in Escherichia coli controls the expression of about 100 genes of the nitrogen regulated (Ntr) response, including the ammonia-assimilating glutamine synthetase. Low intracellular glutamine controls the Ntr response through several regulators, whose activities are modulated by a variety of metabolites. Ntr proteins assimilate ammonia, scavenge nitrogen-containing compounds, and appear to integrate ammonia assimilation with other aspects of metabolism, such as polyamine metabolism and glutamate synthesis. The leucine-responsive regulatory protein (Lrp) controls the synthesis of glutamate synthase, which controls the Ntr response, presumably through its effect on intracellular glutamine. Some Ntr proteins inhibit the expression of some Lrp-activated genes. Guanosine tetraphosphate appears to control Lrp synthesis. In summary, a network of interacting global regulators that senses different aspects of metabolism integrates nitrogen assimilation with other metabolic processes.
Collapse
Affiliation(s)
- Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-0688, USA.
| |
Collapse
|
40
|
Peralta-Gil M, Segura D, Guzmán J, Servín-González L, Espín G. Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 2002; 184:5672-7. [PMID: 12270825 PMCID: PMC139623 DOI: 10.1128/jb.184.20.5672-5677.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Azotobacter vinelandii phbBAC genes encode the enzymes for poly-beta-hydroxybutyrate (PHB) synthesis. The phbR gene, which is located upstream of and in the opposite direction of phbBAC, encodes PhbR, a transcriptional activator which is a member of the AraC family of activators. Here we report that a mutation in phbR reduced PHB accumulation and transcription of a phbB-lacZ fusion. We also report that phbB is transcribed from two overlapping promoters, p(B)1 and p(B)2. The region corresponding to the -35 region of p(B)1 overlaps the p(B)2 -10 region. In the phbR mutant, expression of phbB from the p(B)1 promoter is significantly reduced, whereas expression from the p(B)2 promoter is slightly increased. Two phbR promoters, p(R)1 and p(R)2, were also identified. Transcription from p(R)2 was shown to be dependent on sigma(S). Six conserved 18-bp sites, designated R1 to R6, are present within the phbR-phbB intergenic region and are proposed to be putative binding targets for PhbR. R1 overlaps the -35 region of the p(B)1 promoter. A model for the regulation of phbB transcription by PhbR is proposed.
Collapse
Affiliation(s)
- Martín Peralta-Gil
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
41
|
Hu KY, Saier MH. Phylogeny of phosphoryl transfer proteins of the phosphoenolpyruvate-dependent sugar-transporting phosphotransferase system. Res Microbiol 2002; 153:405-15. [PMID: 12405346 DOI: 10.1016/s0923-2508(02)01339-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some bacteria lack sugar permeases of the bacterial phosphotransferase system (PTS) but encode within their genomes phosphoryl transfer proteins of the PTS that probably function in regulation. These proteins include homologues of HPr (PtsH), the ATP-dependent HPr(ser) kinase/phosphatase (PtsK) and the PEP-dependent HPr(his) kinase known as Enzyme I (PtsI). We identify all currently sequenced homologues of these proteins, multiply align their sequences and construct phylogenetic trees in order to derive functional, structural and evolutionary conclusions. We show that no bacterium possesses more than one HPr kinase and that these proteins are probably all orthologous. alpha-Proteobacteria possess truncated HPr kinases which probably serve a unified regulatory function together with other PTS proteins. The Enzymes I are orthologous in all Gram-positive bacteria and some Gram-negative bacteria, but other Gram-negative bacteria exhibit paralogues that fall into 5 functional types. No bacterium with a fully sequenced genome exhibits all of these types. With the exception of the classical Enzymes I, each of these functional types exhibits a distinctive set of accompanying domains, usually with a characteristic domain order. One functional type, the fructose-specific type, includes two phylogenetically different subgroups with different domain orders. The results establish that domain associations occurred early during evolutionary history of the PTS, and that subsequent domain rearrangements occurred rarely. Our findings define the evolutionary histories of these important bacterial proteins and provide guides for functional assignment of PTS-related proteins encoded by genes revealed by genome sequencing.
Collapse
Affiliation(s)
- Kuang-Yu Hu
- Division of Biology, University of California at San Diego, La Jolla 92093-0116, USA
| | | |
Collapse
|
42
|
Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G. The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 2001; 183:6787-93. [PMID: 11698366 PMCID: PMC95518 DOI: 10.1128/jb.183.23.6787-6793.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Azotobacter vinelandii algD gene, which encodes GDP-mannose dehydrogenase (the rate-limiting enzyme of alginate synthesis), starts from three sites: p1, p2, and p3. The sensor kinase GacS, a member of the two-component regulatory system, is required for transcription of algD from its three sites during the stationary phase. Here we show that algD is expressed constitutively throughout the growth cycle from the p2 and p3 sites and that transcription from p1 started at the transition between the exponential growth phase and stationary phase. We constructed A. vinelandii strains that carried mutations in gacA encoding the cognate response regulator of GacS and in rpoS coding for the stationary-phase sigma(S) factor. The gacA mutation impaired alginate production and transcription of algD from its three promoters. Transcription of rpoS was also abolished by the gacA mutation. The rpoS mutation impaired transcription of algD from the p1 promoter and increased it from the p2 sigma(E) promoter. The results of this study provide evidence for the predominant role of GacA in a regulatory cascade controlling alginate production and gene expression during the stationary phase in A. vinelandii.
Collapse
Affiliation(s)
- M Castañeda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
43
|
Abstract
We previously identified the Legionella pneumophila ptsP (phosphoenolpyruvate phosphotransferase) ortholog gene as a putative virulence factor in a study of signature-tagged mutagenesis using a guinea pig pneumonia model. In this study, we further defined the phenotypic properties of L. pneumophila ptsP and its complete sequence. The L. pneumophila ptsP was 2,295 bases in length. Its deduced amino acid sequence had high similarity with ptsP orthologs of Pseudomonas aeruginosa, Azotobacter vinelandii, and Escherichia coli, with nearly identical lengths. Here we show that while the mutant grew well in laboratory media, it was defective in both lung and spleen multiplication in guinea pigs. It grew slowly in guinea pig alveolar macrophages despite good uptake into the cells. Furthermore, there was minimal growth in a human alveolar epithelial cell line (A549). Transcomplementation of the L. pneumophila ptsP mutant almost completely rescued its growth in alveolar macrophages, in A549 cells, and in guinea pig lung and spleen. The L. pneumophila ptsP mutant was capable of evasion of phagosome-lysosome fusion and resided in ribosome-studded phagosomes. Pore formation activity of the mutant was normal. The L. pneumophila ptsP mutant expressed DotA and IcmX in apparently normal amounts, suggesting that the ptsP mutation did not affect dotA and icmX regulation. In addition, the mutant was resistant to serum and neutrophil killing. Taken together, these findings show that L. pneumophila ptsP is required for full in vivo virulence of L. pneumophila, most probably by affecting intracellular growth.
Collapse
Affiliation(s)
- F Higa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical School, Philadelphia, PA 19104-4283, USA
| | | |
Collapse
|
44
|
King ND, O'Brian MR. Evidence for direct interaction between enzyme I(Ntr) and aspartokinase to regulate bacterial oligopeptide transport. J Biol Chem 2001; 276:21311-6. [PMID: 11287431 DOI: 10.1074/jbc.m101982200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bradyrhizobium japonicum transports oligopeptides and the heme precursor delta-aminolevulinic acid (ALA) by a common mechanism. Two Tn5-induced mutants disrupted in the lysC and ptsP genes were identified based on the inability to use prolyl-glycyl-glycine as a proline source and were defective in [(14)C]ALA uptake activity. lysC and ptsP were shown to be proximal genes in the B. japonicum genome. However, RNase protection and in trans complementation analysis showed that lysC and ptsP are transcribed separately, and that both genes are involved in oligopeptide transport. Aspartokinase, encoded by lysC, catalyzes the phosphorylation of aspartate for synthesis of three amino acids, but the lysC strain is not an amino acid auxotroph. The ptsP gene encodes Enzyme I(Ntr) (EI(Ntr)), a paralogue of Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase (PTS) system. In vitro pull-down experiments indicated that purified recombinant aspartokinase and EI(Ntr) interact directly with each other. Expression of ptsP in trans from a multicopy plasmid complemented the lysC mutant, suggesting that aspartokinase normally affects Enzyme I(Ntr) in a manner that can be compensated for by increasing the copy number of the ptsP gene. ATP was not a phosphoryl donor to purified EI(Ntr), but it was phosphorylated by ATP in the presence of cell extracts. This phosphorylation was inhibited in the presence of aspartokinase. The findings demonstrate a role for a PTS protein in the transport of a non-sugar solute and suggest an unusual regulatory function for aspartokinase in regulating the phosphorylation state of EI(Ntr).
Collapse
Affiliation(s)
- N D King
- Department of Biochemistry and Center for Microbial Pathogenesis, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
45
|
Steinbüchel A, Hein S. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2001; 71:81-123. [PMID: 11217418 DOI: 10.1007/3-540-40021-4_3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Intensive research on the physiology, biochemistry, and molecular genetics of the metabolism of polyhydroxyalkanoates (PHA) during the last 15 years has revealed a dramatic increase of our knowledge on the biosynthesis of these polyesters in bacteria. This mainly very basic research has revealed several new, hitherto not described enzymes and pathways. In addition, many genes encoding the enzymes of these pathways and in particular the key enzyme of PHA biosynthesis, PHA synthase, were cloned and characterized at a molecular level. This knowledge was utilized to establish PHA biosynthesis in many prokaryotic and eukaryotic organisms, which were unable to synthesize PHAs, and to apply the methodology of metabolic engineering, thus opening new perspectives for the production of various PHAs by fermentation biotechnology or agriculture in economically feasible processes. This contribution summarizes the properties of PHA synthases and gives an overview on the genes for these enzymes and other enzymes of PHA biosynthesis that have been cloned and are available. It also summarizes our current knowledge on the regulation at the enzyme and gene level of PHA biosynthesis in bacteria.
Collapse
Affiliation(s)
- A Steinbüchel
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany.
| | | |
Collapse
|
46
|
Wu G, Moir AJ, Sawers G, Hill S, Poole RK. Biosynthesis of poly-beta-hydroxybutyrate (PHB) is controlled by CydR (Fnr) in the obligate aerobe Azotobacter vinelandii. FEMS Microbiol Lett 2001; 194:215-20. [PMID: 11164311 DOI: 10.1111/j.1574-6968.2001.tb09472.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
CydR is an Fnr-like protein in the obligatory aerobic nitrogen-fixing bacterium Azotobacter vinelandii. The cydR mutant overproduces the cytochrome bd terminal oxidase. Using two-dimensional polyacrylamide gel electrophoresis, we showed that beta-ketothiolase and acetoacetyl-CoA reductase were also overexpressed in the cydR mutant. Fumarase C and a coenzyme A transferase, possibly succinyl-SCoA transferase, were decreased in this mutant. Enzyme assays confirmed the elevated beta-ketothiolase and acetoacetyl-CoA reductase activities in this mutant. The cydR mutant accumulated poly-beta-hydroxybutyrate throughout the exponential growth phase, unlike the wild-type strain that only accumulated poly-beta-hydroxybutyrate during stationary phase. The results demonstrate that CydR controls poly-beta-hydroxybutyrate synthesis in A. vinelandii.
Collapse
Affiliation(s)
- G Wu
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | | | | | | | | |
Collapse
|
47
|
Oelze J. Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 2000; 24:321-33. [PMID: 10978541 DOI: 10.1111/j.1574-6976.2000.tb00545.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The hypothesis of respiratory protection, originally formulated on the basis of results obtained with Azotobacter species, postulates that consumption of O(2) at the surface of diazotrophic prokaryotes protects nitrogenase from inactivation by O(2). Accordingly, it is assumed that, at increased ambient O(2) concentrations, nitrogenase activity depends on increased activities of a largely uncoupled respiratory electron transport system. The present review compiles evidence indicating that cellular O(2) consumption as well as both the activity and the formation of the respiratory system of Azotobacter vinelandii are controlled by the C/N ratio, that is to say the ratio at which the organism consumes the substrate (i.e. the source of carbon, reducing equivalents and ATP) per source of compound nitrogen. The maximal respiratory capacity which can be attained at increased C/N ratios, however, is controlled, within limits, by the ambient O(2) concentration. When growth becomes N-limited at increased C/N ratios, cells synthesize nitrogenase and fix N(2). Under these diazotrophic conditions, cellular O(2) consumption remains constant at a level controlled by the O(2) concentration. Control by O(2) has been studied on the basis of both whole cell respiration and defined segments of the respiratory electron transport chain. The results demonstrate that the effect of O(2) on the respiratory system is restricted to the lower range of O(2) concentrations up to about 70 microM. Nevertheless, azotobacters are able to grow diazotrophically at dissolved O(2) concentrations of up to about 230 microM indicating that respiratory protection is not warranted at increased ambient O(2) concentrations. This conclusion is supported and extended by a number of results largely excluding an obvious relationship between nitrogenase activity and the actual rate of cellular O(2) consumption. On the basis of theoretical calculations, it is assumed that the rate of O(2) diffusion into the cells is not significantly affected by respiration. All of these results lead to the conclusion that, in the protection of nitrogenase from O(2) damage, O(2) consumption at the cell surface is less effective than generally assumed. It is proposed that alternative factors like the supply of ATP and reducing equivalents are more important.
Collapse
Affiliation(s)
- J Oelze
- Universität Freiburg, Institut für Biologie II (Mikrobiologie), Schänzlestr. 1, D-79104, Freiburg, Germany.
| |
Collapse
|
48
|
Castañeda M, Guzmán J, Moreno S, Espín G. The GacS sensor kinase regulates alginate and poly-beta-hydroxybutyrate production in Azotobacter vinelandii. J Bacteriol 2000; 182:2624-8. [PMID: 10762268 PMCID: PMC111330 DOI: 10.1128/jb.182.9.2624-2628.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azotobacter vinelandii produces two polymers: the extracellular polysaccharide alginate and the intracellular polyester poly-beta-hydroxybutyrate (PHB). A cosmid clone (pSMU588) from an A. vinelandii gene library diminished alginate production by A. vinelandii mucoid strain ATCC 9046. The nucleotide sequence and predicted amino acid sequence of the locus responsible for the mucoidy suppression revealed 65% identity to Pseudomonas GacS, a transmembrane sensor kinase of the two-component regulators, whose cognate response regulator, GacA, is a global activator regulating several products and virulence factors. Plasmid pMC15, harboring gacS, and a strain carrying a gacS nonpolar mutation were constructed. Either pMC15 or the gacS mutation significantly reduced alginate production and transcription of algD, the gene coding for the key enzyme GDP-mannose dehydrogenase of the alginate biosynthetic pathway. We found that the gacS mutation also reduced PHB accumulation and impaired encystment. Taken together, these data indicate that in A. vinelandii the gacSA global system regulates polymer synthesis.
Collapse
Affiliation(s)
- M Castañeda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, México
| | | | | | | |
Collapse
|
49
|
Rabus R, Reizer J, Paulsen I, Saier MH. Enzyme I(Ntr) from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J Biol Chem 1999; 274:26185-91. [PMID: 10473571 DOI: 10.1074/jbc.274.37.26185] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) phosphorylates sugars and regulates cellular metabolic processes using a phosphoryl transfer chain including the general energy coupling proteins, Enzyme I (EI) and HPr as well as the sugar-specific Enzyme II complexes. Analysis of the Escherichia coli genome has revealed the presence of 5 paralogues of EI and 5 paralogues of HPr, most of unknown function. The ptsP gene encodes an EI paralogue designated Enzyme I(nitrogen) (EI(Ntr)), and two genes located in the rpoN operon encode PTS protein paralogues, NPr and IIA(Ntr), both implicated in the regulation of sigma(54) activity. The ptsP gene was polymerase chain reaction amplified from the E. coli chromosome and cloned into an overexpression vector allowing the overproduction and purification of EI(Ntr). EI(Ntr) was shown to phosphorylate NPr in vitro using either a [(32)P]PEP-dependent protein phosphorylation assay or a quantitative sugar phosphorylation assay. EI(Ntr) phosphorylated NPr but not HPr, whereas Enzyme I exhibited a strong preference for HPr. These two pairs of proteins (EI(Ntr)/NPr and EI/HPr) thus exhibit little cross-reactivity. Phosphoryl transfer from PEP to NPr catalyzed by EI(Ntr) has a pH optimum of 8.0, is dependent on Mg(2+), is stimulated by high ionic strength, and exhibits two K(m) values for NPr (2 and 10 microM) possibly because of negative cooperativity. The results suggest that E. coli possesses at least two distinct PTS phosphoryl transfer chains, EI(Ntr) --> NPr --> IIA(Ntr) and EI --> HPr --> IIA(sugar). Sequence comparisons allow prediction of residues likely to be important for specificity. This is the first report demonstrating specificity at the level of the energy coupling proteins of the PTS.
Collapse
Affiliation(s)
- R Rabus
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | | | | | |
Collapse
|
50
|
Tan MW, Rahme LG, Sternberg JA, Tompkins RG, Ausubel FM. Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proc Natl Acad Sci U S A 1999; 96:2408-13. [PMID: 10051655 PMCID: PMC26797 DOI: 10.1073/pnas.96.5.2408] [Citation(s) in RCA: 457] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. elegans, at least five also exhibited reduced virulence in mice. Three of the TnphoA mutants corresponded to the known virulence-related genes lasR, gacA, and lemA. Three of the mutants corresponded to known genes (aefA from Escherichia coli, pstP from Azotobacter vinelandii, and mtrR from Neisseria gonorrhoeae) that had not been shown previously to play a role in pathogenesis, and two of the mutants contained TnphoA inserted into novel sequences. These data indicate that the killing of C. elegans by P. aeruginosa can be exploited to identify novel P. aeruginosa virulence factors important for mammalian pathogenesis.
Collapse
Affiliation(s)
- M W Tan
- Department of Genetics, Harvard Medical School and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|