1
|
Navigating the Multiverse of Antisense RNAs: The Transcription- and RNA-Dependent Dimension. Noncoding RNA 2022; 8:ncrna8060074. [PMID: 36412909 PMCID: PMC9680235 DOI: 10.3390/ncrna8060074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
Evidence accumulated over the past decades shows that the number of identified antisense transcripts is continuously increasing, promoting them from transcriptional noise to real genes with specific functions. Indeed, recent studies have begun to unravel the complexity of the antisense RNA (asRNA) world, starting from the multidimensional mechanisms that they can exert in physiological and pathological conditions. In this review, we discuss the multiverse of the molecular functions of asRNAs, describing their action through transcription-dependent and RNA-dependent mechanisms. Then, we report the workflow and methodologies to study and functionally characterize single asRNA candidates.
Collapse
|
2
|
Camakaris H, Yang J, Fujii T, Pittard J. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. J Bacteriol 2021; 203:e0025221. [PMID: 34309399 PMCID: PMC8425403 DOI: 10.1128/jb.00252-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
A novel selection was developed for mutants of the C-terminal domain of RpoA (α-CTD) altered in activation by the TyrR regulatory protein of Escherichia coli K-12. This allowed the identification of an aspartate to asparagine substitution at residue 250 (DN250) as an activation-defective (Act-) mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and the substitutions DR250, RE310, and RD310 were all shown to be defective in activation. None of these mutations caused defects in regulation of the upstream promoter (UP) element. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. The TyrR mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77, and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, and EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act-tyrR mutants were isolated in an rpoA+ strain, adding positions R77, D97, K101, D118, R119, R121, and E141 to known residues S95 and D103 and defining the activation patch on the amino-terminal domain (NTD) of TyrR. These results support a model for activation of TyrR-regulated genes where the activation patch on the TyrR NTD interacts with the TyrR-specific patch on the α-CTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants as activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene tyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore, TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence and important plant interactions.
Collapse
Affiliation(s)
- Helen Camakaris
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ji Yang
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James Pittard
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Wang HH, Qiu Y, Yu Q, Zhang Q, Li X, Wang J, Li X, Zhang Y, Yang Y. Close arrangement of CARK3 and PMEIL affects ABA-mediated pollen sterility in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:2699-2711. [PMID: 32816352 DOI: 10.1111/pce.13871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid (ABA) signaling is a vital plant signaling pathway for plant responses to stress conditions. ABA treatment can alter global gene expression patterns and cause significant phenotypic changes. We investigated the responses to ABA treatment during flowering in Arabidopsis thaliana. Dipping the flowers of CARK3 T-DNA mutants in ABA solution, led to less reduction of pollen fertility than in the wild type plants (Col-0). We demonstrated that PMEIL, a gene located downstream of CARK3, directly affects pollen fertility. Due to the close arrangement of CARK3 and PMEIL, CARK3 expression represses transcription of PMEIL in an ABA-dependent manner through transcriptional interference. Our study uncovers a molecular mechanism underlying ABA-mediated pollen sterility and provides an example of how transcriptional interference caused by close arrangement of genes may mediate stress responses during plant reproduction.
Collapse
Affiliation(s)
- Hsi-Hua Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yao Qiu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qin Yu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Qian Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoyi Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Jianmei Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xufeng Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yi Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Amante SM, Montibus B, Cowley M, Barkas N, Setiadi J, Saadeh H, Giemza J, Contreras-Castillo S, Fleischanderl K, Schulz R, Oakey RJ. Transcription of intragenic CpG islands influences spatiotemporal host gene pre-mRNA processing. Nucleic Acids Res 2020; 48:8349-8359. [PMID: 32621610 PMCID: PMC7470969 DOI: 10.1093/nar/gkaa556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) generate diverse transcripts in mammalian genomes during development and differentiation. Epigenetic marks such as trimethylation of histone H3 lysine 36 (H3K36me3) and DNA methylation play a role in generating transcriptome diversity. Intragenic CpG islands (iCGIs) and their corresponding host genes exhibit dynamic epigenetic and gene expression patterns during development and between different tissues. We hypothesise that iCGI-associated H3K36me3, DNA methylation and transcription can influence host gene AS and/or APA. We investigate H3K36me3 and find that this histone mark is not a major regulator of AS or APA in our model system. Genomewide, we identify over 4000 host genes that harbour an iCGI in the mammalian genome, including both previously annotated and novel iCGI/host gene pairs. The transcriptional activity of these iCGIs is tissue- and developmental stage-specific and, for the first time, we demonstrate that the premature termination of host gene transcripts upstream of iCGIs is closely correlated with the level of iCGI transcription in a DNA-methylation independent manner. These studies suggest that iCGI transcription, rather than H3K36me3 or DNA methylation, interfere with host gene transcription and pre-mRNA processing genomewide and contributes to the spatiotemporal diversification of both the transcriptome and proteome.
Collapse
Affiliation(s)
- Samuele M Amante
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Bertille Montibus
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Michael Cowley
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Nikolaos Barkas
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Jessica Setiadi
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Heba Saadeh
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Joanna Giemza
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | | | - Karin Fleischanderl
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
5
|
Rihtar E, Žgur Bertok D, Podlesek Z. The Uropathogenic Specific Protein Gene usp from Escherichia coli and Salmonella bongori is a Novel Member of the TyrR and H-NS Regulons. Microorganisms 2020; 8:E330. [PMID: 32111072 PMCID: PMC7142922 DOI: 10.3390/microorganisms8030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The Escherichia coli PAIusp is a small pathogenicity island encoding usp, for the uropathogenic specific protein (Usp), a genotoxin and three associated downstream imu1-3 genes that protect the producer against its own toxin. Bioinformatic analysis revealed the presence of the PAIusp also in publically available Salmonella bongori and Salmonella enterica subps. salamae genome sequences. PAIusp is in all examined sequences integrated within the aroP-pdhR chromosomal intergenic region. The focus of this work was identification of the usp promoter and regulatory elements controlling its activity. We show that, in both E. coli and S. bongori, the divergent TyrR regulated P3 promoter of the aroP gene, encoding an aromatic amino acid membrane transporter, drives usp transcription while H-NS acts antagonistically repressing expression. Our results show that the horizontally acquired PAIusp has integrated into the TyrR regulatory network and that environmental factors such as aromatic amino acids, temperature and urea induce usp expression.
Collapse
Affiliation(s)
- Erik Rihtar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
- National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Darja Žgur Bertok
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
| | - Zdravko Podlesek
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (E.R.); (Z.P.)
| |
Collapse
|
6
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
7
|
Doroshenko VG, Livshits VA, Airich LG, Shmagina IS, Savrasova EA, Ovsienko MV, Mashko SV. Metabolic engineering of Escherichia coli for the production of phenylalanine and related compounds. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815070017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ramachandran G, Singh PK, Luque-Ortega JR, Yuste L, Alfonso C, Rojo F, Wu LJ, Meijer WJJ. A complex genetic switch involving overlapping divergent promoters and DNA looping regulates expression of conjugation genes of a gram-positive plasmid. PLoS Genet 2014; 10:e1004733. [PMID: 25340403 PMCID: PMC4207663 DOI: 10.1371/journal.pgen.1004733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022] Open
Abstract
Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed. Plasmids are extrachromosomal, autonomously replicating units that are harbored by many bacteria. Many plasmids encode transfer function allowing them to be transferred into plasmid-free bacteria by a process named conjugation. Since many of them also carry antibiotic resistance genes, plasmid-mediated conjugation is a major mechanism in the dissemination of antibiotic resistance. In depth knowledge on the regulation of conjugation genes is a prerequisite to design measures interfering with the spread of antibiotic resistance. pLS20 is a conjugative plasmid of the soil bacterium Bacillus subtilis, which is also a gut commensal in animals and humans. Here we describe in detail the molecular mechanism by which the key transcriptional regulator tightly represses the conjugation genes during conditions unfavorable to conjugation without compromising the ability to switch on accurately the conjugation genes when appropriate. We found that conjugation is subject to the control of a unique genetic switch where at least three levels of regulation are integrated. The first level involves overlapping divergent promoters of different strengths. The second layer involves a triple function of the transcriptional regulator. And the third level of regulation concerns formation of a DNA loop mediated by the transcriptional regulator.
Collapse
Affiliation(s)
- Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Luis Yuste
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
9
|
Characterization and molecular mechanism of AroP as an aromatic amino acid and histidine transporter in Corynebacterium glutamicum. J Bacteriol 2013; 195:5334-42. [PMID: 24056108 DOI: 10.1128/jb.00971-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corynebacterium glutamicum is equipped with abundant membrane transporters to adapt to a changing environment. Many amino acid transporters have been identified in C. glutamicum, but histidine uptake has not been investigated in detail. Here, we identified the aromatic amino acid transporter encoded by aroP as a histidine transporter in C. glutamicum by a combination of the growth and histidine uptake features. Characterization of histidine uptake showed that AroP has a moderate affinity for histidine, with a Km value of 11.40 ± 2.03 μM, and histidine uptake by AroP is competitively inhibited by the aromatic amino acids. Among the four substrates, AroP exhibits a stronger preference for tryptophan than for tyrosine, phenylalanine, and histidine. Homology structure modeling and molecular docking were performed to predict the substrate binding modes and conformational changes during substrate transport. These results suggested that tryptophan is best accommodated in the binding pocket due to shape compatibility, strong hydrophobic interactions, and the lowest binding energy, which is consistent with the observed substrate preference of AroP. Furthermore, the missense mutations of the putative substrate binding sites verified that Ser24, Ala28, and Gly29 play crucial roles in substrate binding and are highly conserved in the Gram-positive bacteria. Finally, the expression of aroP is not significantly affected by extracellular histidine or aromatic amino acids, indicating that the physiological role of AroP may be correlated with the increased fitness of C. glutamicum to assimilate extracellular amino acid for avoiding the high energy cost of amino acid biosynthesis.
Collapse
|
10
|
Abstract
Genes that interact or function together are often clustered in bacterial genomes, and it has been proposed that this clustering may affect gene expression. In this study, we directly compared gene expression in nonclustered arrangements and in three common clustered arrangements (codirectional, divergent, and operon) using synthetic circuits in Escherichia coli. We found that gene clustering had minimal effects on gene expression. Specifically, gene clustering did not alter constitutive expression levels or stochastic fluctuations in expression ("expression noise"). Remarkably, the expression of two genes that share the same chromosome position with the same promoter (operon) or with separate promoters (codirectional and divergent arrangements) was not significantly more correlated than genes at different chromosome positions (nonclustered arrangements). The only observed effect of clustering was increased transcription factor binding in codirectional and divergent gene arrangements due to DNA looping, but this is not a specific feature of clustering. In summary, we demonstrate that gene clustering is not a general modulator of gene expression, and therefore any effects of clustering are likely to occur only with specific genes or under certain conditions.
Collapse
|
11
|
Bendtsen KM, Erdossy J, Csiszovszki Z, Svenningsen SL, Sneppen K, Krishna S, Semsey S. Direct and indirect effects in the regulation of overlapping promoters. Nucleic Acids Res 2011; 39:6879-85. [PMID: 21609952 PMCID: PMC3167631 DOI: 10.1093/nar/gkr390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Optimal response to environmental stimuli often requires activation of certain genes and repression of others. Dual function regulatory proteins play a key role in the differential regulation of gene expression. While repression can be achieved by any DNA binding protein through steric occlusion of RNA polymerase in the promoter region, activation often requires a surface on the regulatory protein to contact RNAP and thus facilitate transcription initiation. RNAP itself is also a DNA binding protein, therefore it can function as a transcriptional repressor. Searching the Escherichia coli promoter database we found that ∼14% of the identified ‘forward’ promoters overlap with a promoter oriented in the opposite direction. In this article we combine a mathematical model with experimental analysis of synthetic regulatory regions to investigate interference of overlapping promoters. We find that promoter interference depends on the characteristics of overlapping promoters. The model predicts that promoter strength and interference can be regulated separately, which provides unique opportunities for regulation. Our experimental data suggest that in principle any DNA binding protein can be used for both activation and repression of promoter transcription, depending on the context. These findings can be exploited in the construction of synthetic networks.
Collapse
Affiliation(s)
- Kristian Moss Bendtsen
- CMOL, Niels Bohr Institute, Copenhagen, DK-2100, Denmark, Department of Genetics, Eotvos Lorand University, H-1117, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Hoeksema F, Hamer K, Siep M, Verhees JA, Otte AP. Placing the RPL32 Promoter Upstream of a Second Promoter Results in a Strongly Increased Number of Stably Transfected Mammalian Cell Lines That Display High Protein Expression Levels. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2010; 2011:492875. [PMID: 21350661 PMCID: PMC3039411 DOI: 10.4061/2011/492875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/04/2010] [Indexed: 11/20/2022]
Abstract
The use of high stringency selection systems commonly results in a strongly diminished number of stably transfected mammalian cell lines. Here we placed twelve different promoters upstream of an adjacent primary promoter and tested whether this might result in an increased number of colonies; this is in the context of a stringent selection system. We found that only the promoter of the human ribosomal protein, RPL32, induced a high number of colonies in CHO-DG44 cells. This phenomenon was observed when the RPL32 promoter was combined with the CMV, SV40, EF1-α, and the β-actin promoters. In addition, these colonies displayed high protein expression levels. The RPL32 promoter had to be functionally intact, since the deletion of a small region upstream of the transcription start site demolished its positive action. We conclude that adding the RPL32 promoter to an expression cassette in cis may be a powerful tool to augment gene expression levels.
Collapse
Affiliation(s)
- F Hoeksema
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Zhang F, Yao Y, Zhou R, Su K, Citra F, Wang DA. Optimal Construction and Delivery of Dual-Functioning Lentiviral Vectors for Type I Collagen-Suppressed Chondrogenesis in Synovium-Derived Mesenchymal Stem Cells. Pharm Res 2010; 28:1338-48. [DOI: 10.1007/s11095-010-0305-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/13/2010] [Indexed: 11/30/2022]
|
14
|
Abstract
This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon.
Collapse
|
15
|
Dodd IB, Shearwin KE, Sneppen K. Modelling transcriptional interference and DNA looping in gene regulation. J Mol Biol 2007; 369:1200-13. [PMID: 17498740 DOI: 10.1016/j.jmb.2007.04.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/25/2022]
Abstract
We describe a hybrid statistical mechanical and dynamical approach for modelling the formation of closed, open and elongating complexes of RNA polymerase, the interactions of these polymerases to produce transcriptional interference, and the regulation of these processes by a DNA-binding and DNA-looping regulatory protein. As a model system, we have used bacteriophage 186, for which genetic, biochemical and structural studies have suggested that the CI repressor binds as a 14-mer to form alternative DNA-looped complexes, and activates lysogenic transcription indirectly by relieving transcriptional interference caused by the convergent lytic promoter. The modelling showed that the original mechanisms proposed to explain this relief of transcriptional interference are not consistent with the available in vivo reporter data. However, a good fit to the reporter data was given by a revised model that incorporates a novel predicted regulatory mechanism: that RNA polymerase bound at the lysogenic promoter protects itself from transcriptional interference by recruiting CI to the lytic promoter. This mechanism and various estimates of in vivo biochemical parameters for the 186 CI system should be testable. Our results demonstrate the power of mathematical modelling for the extraction of detailed biochemical information from in vivo data.
Collapse
Affiliation(s)
- Ian B Dodd
- Centre for Models of Life, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
16
|
Shearwin KE, Callen BP, Egan JB. Transcriptional interference--a crash course. Trends Genet 2005; 21:339-45. [PMID: 15922833 PMCID: PMC2941638 DOI: 10.1016/j.tig.2005.04.009] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 03/09/2005] [Accepted: 04/12/2005] [Indexed: 12/13/2022]
Abstract
The term "transcriptional interference" (TI) is widely used but poorly defined in the literature. There are a variety of methods by which one can interfere with the process or the product of transcription but the term TI usually refers to the direct negative impact of one transcriptional activity on a second transcriptional activity in cis. Two recent studies, one examining Saccharomyces cerevisiae and the other Escherichia coli, clearly show TI at one promoter caused by the arrival of a transcribing complex initiating at a distant promoter. TI is potentially widespread throughout biology; therefore, it is timely to assess exactly its nature, significance and operative mechanisms. In this article, we will address the following questions: what is TI, how important and widespread is it, how does it work and where should we focus our future research efforts?
Collapse
Affiliation(s)
- Keith E Shearwin
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia 5005.
| | | | | |
Collapse
|
17
|
Abstract
The TyrR protein of Escherichia coli can act both as a repressor and as an activator of transcription. It can interact with each of the three aromatic amino acids, with ATP and, under certain circumstances, with the C-terminal region of the alpha-subunit of RNA polymerase. TyrR protein is a dimer in solution but in the presence of tyrosine and ATP it self-associates to form a hexamer. Whereas TyrR dimers can, in the absence of any aromatic amino acids, bind to certain recognition sequences referred to as 'strong TyrR boxes', hexamers can bind to extended sequences including lower-affinity sites called 'weak TyrR boxes', some of which overlap the promoter. There is no single mechanism for repression, which in some cases involves exclusion of RNA polymerase from the promoter and in others, interference with the ability of bound RNA polymerase to form open complexes or to exit the promoter. When bound to a site upstream of certain promoters, TyrR protein in the presence of phenylalanine, tyrosine or tryptophan can interact with the alpha-subunit of RNA polymerase to activate transcription. In one unusual case, activation of a non-productive promoter is used to repress transcription from a promoter on the opposite strand. Regulation of individual transcription units within the regulon reflects their physiological function and is determined by the position and nature of the recognition sites (TyrR boxes) associated with each of the promoters. The intracellular levels of the various forms of the TyrR protein are also postulated to be of critical importance in determining regulatory outcomes. TyrR protein remains a paradigm for a regulator that is able to interact with multiple cofactors and exert a range of regulatory effects by forming different oligomers on DNA and making contact with other proteins. A recent analysis identifying putative TyrR boxes in the E. coli genome raises the possibility that the TyrR regulon may extend beyond the well-characterized transcription units described in this review.
Collapse
Affiliation(s)
- James Pittard
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
18
|
Sneppen K, Dodd IB, Shearwin KE, Palmer AC, Schubert RA, Callen BP, Egan JB. A Mathematical Model for Transcriptional Interference by RNA Polymerase Traffic in Escherichia coli. J Mol Biol 2005; 346:399-409. [PMID: 15670592 DOI: 10.1016/j.jmb.2004.11.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 11/25/2004] [Accepted: 11/29/2004] [Indexed: 11/17/2022]
Abstract
Interactions between RNA polymerases (RNAP) resulting from tandem or convergent arrangements of promoters can cause transcriptional interference, often with important consequences for gene expression. However, it is not known what factors determine the magnitude of interference and which mechanisms are likely to predominate in any situation. We therefore developed a mathematical model incorporating three mechanisms of transcriptional interference in bacteria: occlusion (in which passing RNAPs block access to the promoter), collisions between elongating RNAPs, and "sitting duck" interference (in which RNAP complexes waiting to fire at the promoter are removed by passing RNAP). The predictions of the model are in good agreement with a recent quantitative in vivo study of convergent promoters in E.coli. Our analysis predicts that strong occlusion requires the interfering promoter to be very strong. Collisions can also produce strong interference but only if the interfering promoter is very strong or if the convergent promoters are far apart (>200 bp). For moderate strength interfering promoters and short inter-promoter distances, strong interference is dependent on the sitting duck mechanism. Sitting duck interference is dependent on the relative strengths of the two promoters. However, it is also dependent on the "aspect ratio" (the relative rates of RNAP binding and firing) of the sensitive promoter, allowing promoters of equal strength to have very different sensitivities to transcriptional interference. The model provides a framework for using transcriptional interference to investigate various dynamic processes on DNA in vivo.
Collapse
Affiliation(s)
- Kim Sneppen
- NORDITA, Nordic Institute for Theoretical Physics, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
Koyanagi T, Katayama T, Suzuki H, Kumagai H. Identification of the LIV-I/LS system as the third phenylalanine transporter in Escherichia coli K-12. J Bacteriol 2004; 186:343-50. [PMID: 14702302 PMCID: PMC305776 DOI: 10.1128/jb.186.2.343-350.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the active transport of phenylalanine is considered to be performed by two different systems, AroP and PheP. However, a low level of accumulation of phenylalanine was observed in an aromatic amino acid transporter-deficient E. coli strain (DeltaaroP DeltapheP Deltamtr Deltatna DeltatyrP). The uptake of phenylalanine by this strain was significantly inhibited in the presence of branched-chain amino acids. Genetic analysis and transport studies revealed that the LIV-I/LS system, which is a branched-chain amino acid transporter consisting of two periplasmic binding proteins, the LIV-binding protein (LIV-I system) and LS-binding protein (LS system), and membrane components, LivHMGF, is involved in phenylalanine accumulation in E. coli cells. The K(m) values for phenylalanine in the LIV-I and LS systems were determined to be 19 and 30 micro M, respectively. Competitive inhibition of phenylalanine uptake by isoleucine, leucine, and valine was observed for the LIV-I system and, surprisingly, also for the LS system, which has been assumed to be leucine specific on the basis of the results of binding studies with the purified LS-binding protein. We found that the LS system is capable of transporting isoleucine and valine with affinity comparable to that for leucine and that the LIV-I system is able to transport tyrosine with affinity lower than that seen with other substrates. The physiological importance of the LIV-I/LS system for phenylalanine accumulation was revealed in the growth of phenylalanine-auxotrophic E. coli strains under various conditions.
Collapse
Affiliation(s)
- Takashi Koyanagi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
20
|
Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A. Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. Mol Microbiol 2002; 45:423-38. [PMID: 12123454 DOI: 10.1046/j.1365-2958.2002.03017.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PhoP is a response regulator of the PhoQ-PhoP two-component system controlling a set of the Mg(II)-response genes in Escherichia coli. Here we demonstrate the mode of transcription regulation by phosphorylated PhoP of divergently transcribed mgtA and treR genes, each encoding a putative Mg(II) transporter and a repressor for the trehalose utilization operon respectively. Under Mg(II)-limiting conditions in vivo, two promoters, the upstream constitutive P2 and the downstream inducible P1, were detected for the mgtA gene. Gel-shift analysis in vitro using purified PhoP indicates its binding to a single DNA target, centred between -43 and -24 of the mgtAP1 promoter. This region includes the PhoP box, which consists of a direct repeat of the heptanucleotide sequence (T)G(T)TT(AA). Site-directed mutagenesis studies indicate the critical roles for T (position 3), T (position 4) and A (position 6) for PhoP-dependent transcription from mgtAP1. DNase I footprinting assays reveal weak binding of PhoP to this PhoP box, but the binding becomes stronger in the simultaneous presence of RNA polymerase. Likewise the RNA polymerase binding to the P1 promoter becomes stronger in the presence of PhoP. For the PhoP-assisted formation of open complex at the mgtAP1 promoter, however, the carboxy-terminal domain of alpha subunit (alpha CTD) is not needed. For transcription in vivo of the treR gene, four promoters were identified. The most upstream promoter treRP4 divergently overlaps with the mgtAP1 promoter, sharing the same sequence as the respective -10 signal in the opposite direction. In vitro transcription using mutant promoters support this prediction. In the presence of PhoP, transcription from the promoter treRP3 was repressed with concomitant activation of mgtAP1 transcription. The PhoP box is located between -46 and -30 with respect to treRP3, and the alpha CTD is needed for this repression.
Collapse
MESH Headings
- Adenosine Triphosphatases/genetics
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Carrier Proteins/genetics
- DNA-Directed RNA Polymerases/physiology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Bacterial/physiology
- Magnesium/metabolism
- Magnesium/pharmacology
- Membrane Transport Proteins
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phosphorylation
- Promoter Regions, Genetic
- Protein Conformation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Protein Subunits
- Regulatory Sequences, Nucleic Acid
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Sequence Alignment
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Kaneyoshi Yamamoto
- National Institute of Genetics, Department of Molecular Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
21
|
Abstract
Transcriptional repressors are usually viewed as proteins that bind to promoters in a way that impedes subsequent binding of RNA polymerase. Although this repression mechanism is found at several promoters, there is a growing list of repressors that inhibit transcription initiation in other ways. For example, several repressors allow the simultaneous binding of RNA polymerase to the promoter, but interfere with subsequent events of the initiation process, eventually inhibiting transcription initiation. The recent increase in the number of repressors for which the repression mechanism has been characterized in detail has shown an amazing variety of strategies to repress transcription initiation. It is not surprising to find that the repression mechanism used is usually exquisitely adapted to the characteristics of the promoter and of the repressor involved.
Collapse
Affiliation(s)
- F Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049-, Madrid, Spain.
| |
Collapse
|
22
|
Zhao S, Zhu Q, Somerville RL. The sigma(70) transcription factor TyrR has zinc-stimulated phosphatase activity that is inhibited by ATP and tyrosine. J Bacteriol 2000; 182:1053-61. [PMID: 10648532 PMCID: PMC94382 DOI: 10.1128/jb.182.4.1053-1061.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TyrR protein of Escherichia coli (513 amino acid residues) is the chief transcriptional regulator of a group of genes that are essential for aromatic amino acid biosynthesis and transport. The TyrR protein can function either as a repressor or as an activator. The central region of the TyrR protein (residues 207 to 425) is similar to corresponding polypeptide segments of the NtrC protein superfamily. Like the NtrC protein, TyrR has intrinsic ATPase activity. Here, we report that TyrR possesses phosphatase activity. This activity is subject to inhibition by L-tyrosine and its analogues and by ATP and ATP analogues. Zinc ion (2 mM) stimulated the phosphatase activity of the TyrR protein by a factor of 57. The phosphatase-active site of TyrR was localized to a 31-kDa domain (residues 191 to 467) of the protein. However, mutational alteration of distant amino acid residues at both the N terminus and the C terminus of TyrR altered the phosphatase activity. Haemophilus influenzae TyrR (318 amino acid residues), a protein with a high degree of sequence similarity to the C terminus of the E. coli TyrR protein, exhibited a phosphatase activity similar to that of E. coli TyrR.
Collapse
Affiliation(s)
- S Zhao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
23
|
Yang J, Wang P, Pittard AJ. Mechanism of repression of the aroP P2 promoter by the TyrR protein of Escherichia coli. J Bacteriol 1999; 181:6411-8. [PMID: 10515932 PMCID: PMC103777 DOI: 10.1128/jb.181.20.6411-6418.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we have shown that expression of the Escherichia coli aroP P2 promoter is partially repressed by the TyrR protein alone and strongly repressed by the TyrR protein in the presence of the coeffector tyrosine or phenylalanine (P. Wang, J. Yang, and A. J. Pittard, J. Bacteriol. 179:4206-4212, 1997). Here we present in vitro results showing that the TyrR protein and RNA polymerase can bind simultaneously to the aroP P2 promoter. In the presence of tyrosine, the TyrR protein inhibits open complex formation at the P2 promoter, whereas in the absence of any coeffector or in the presence of phenylalanine, the TyrR protein inhibits a step(s) following the formation of open complexes. We also present mutational evidence which implicates the N-terminal domain of the TyrR protein in the repression of P2 expression. The TyrR binding site of aroP, which includes one weak and one strong TyrR box, is located 5 bp downstream of the transcription start site of P2. Results from a mutational analysis show that the strong box (which is located more closely to the P2 promoter), but not the weak box, plays a critical role in P2 repression.
Collapse
Affiliation(s)
- J Yang
- Department of Microbiology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|