1
|
Matavacas J, von Wachenfeldt C. Protein Homeostasis Impairment Alters Phenotypic Heterogeneity of Biofilm Communities. Mol Microbiol 2025. [PMID: 40243034 DOI: 10.1111/mmi.15366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025]
Abstract
Biofilms are highly organized, cooperating communities of microorganisms encased in a self-produced extracellular matrix, providing resilience against external stress such as antimicrobial agents and host defenses. A hallmark of biofilms is their phenotypic heterogeneity, which enhances the overall growth and survival of the community. In this study, we demonstrate that removing the dnaK and tig genes encoding the core molecular chaperones DnaK (Hsp70 homolog) and Trigger factor disrupted protein homeostasis in Bacillus subtilis and resulted in the formation of an extremely mucoid biofilm with aberrant architecture, compromised structural integrity, and altered phenotypic heterogeneity. These changes include a large reduction in the motile subpopulation and an overrepresentation of matrix producers and endospores. Overproduction of poly-γ-glutamic acid contributed crucially to the mucoid phenotype and aberrant biofilm architecture. Homeostasis impairment, triggered by elevated temperatures, in wild-type cells led to mucoid and aberrant biofilm phenotypes similar to those observed in strains lacking both dnaK and tig. Our findings show that disruption of protein homeostasis, whether due to the absence of molecular chaperones or because of environmental factors, severely changes biofilm features.
Collapse
Affiliation(s)
- Judith Matavacas
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Engelgeh T, Wamp S, Rothe P, Herrmann J, Fischer MA, Müller R, Halbedel S. ClpP2 proteasomes and SpxA1 determine Listeria monocytogenes tartrolon B hyper-resistance. PLoS Genet 2025; 21:e1011621. [PMID: 40184427 PMCID: PMC11970672 DOI: 10.1371/journal.pgen.1011621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/13/2025] [Indexed: 04/06/2025] Open
Abstract
The foodborne bacterium Listeria monocytogenes is transmitted to humans from various environmental sources through consumption of contaminated plant and animal-based food. L. monocytogenes uses ATP-binding cassette (ABC)-type drug transporters to resist antimicrobial compounds produced by competitors co-residing in its environmental reservoirs. We have shown previously that the TimAB transporter confers resistance of L. monocytogenes to tartrolon B, a boron containing macrodiolide produced by myxo- and proteobacterial species. Tartrolon B acts as a potassium ionophore and is sensed by TimR, the transcriptional repressor of timABR operon. We here have isolated tartrolon B resistant suppressor mutations outside the timABR locus. These mutations inactivated the clpP2 gene, which encodes the main proteolytic component of house-keeping Clp proteases. Deletion of clpP2 impaired growth and virulence but caused tartrolon B hyper-resistance. This phenotype was timAB-dependent, but neither production nor degradation of TimAB was affected upon clpP2 inactivation. Combinatorial deletions of the genes encoding the three Clp ATPases showed that ClpCP2 and ClpXP2 proteasomes jointly promote tartrolon B hyper-resistance. Genetic follow-up experiments identified the ClpP2 substrate and transcription factor SpxA1 and its protease adaptor YjbH as further tartrolon B resistance determinants. SpxA1 activates transcription of the cydABCD operon encoding cytochrome oxidase and in accordance with this transposon mutants with impaired cytochrome oxidase function were depleted from a transposon mutant library during tartrolon B exposure. Our work demonstrates novel roles of Clp proteasomes, SpxA1 and cytochrome oxidase CydAB in the resistance against compounds dissipating transmembrane ion gradients and helps to better understand the genetic and chemical basis of the manifold ecological interactions of an important human pathogen in its natural ecologic niches.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Martin A. Fischer
- FG13 Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Patil AV, Shirsath AM, Anand A. Dioxygen reductase heterogeneity is crucial for robust aerobic growth physiology of Escherichia coli. iScience 2024; 27:111498. [PMID: 39759019 PMCID: PMC11697609 DOI: 10.1016/j.isci.2024.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
The development of a system to leverage molecular oxygen for energy-efficient pathways required several molecular adaptations. The enzymatic reduction of dioxygen to water is one such prominent evolutionary molecular trait. Microbes evolved several enzymes capable of reducing dioxygen and, interestingly, retained multiples of them in their genomes. While their structure and biochemical functions are well-studied, understanding their degeneracy and co-operativity in the system remains elusive. We used genetic engineering and evolutionary repair approaches to examine the impact of the high oxygen affinity cytochrome bd oxidase deficiency in Escherichia coli aerobic growth. We found a crucial role of cytochrome bd oxidases in the robustness of aerobic physiology. Evolutionary repair experiments alleviated growth defects in bd oxidase-deficient strains by ArcAB system dysregulation at the cost of impaired stress response pathways. Energy generation pathways are potential antimicrobial targets, and understanding collateral phenotypes is crucial in designing therapeutic approaches that reduce antimicrobial resistance development.
Collapse
Affiliation(s)
- Anjali V. Patil
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Akshay M. Shirsath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
4
|
Uribe-Ramírez D, Romero-Aguilar L, Vázquez-Meza H, Cristiani-Urbina E, Pardo JP. Modifications of the respiratory chain of Bacillus licheniformis as an alkalophilic and cyanide-degrading microorganism. J Bioenerg Biomembr 2024; 56:591-605. [PMID: 39496989 PMCID: PMC11624218 DOI: 10.1007/s10863-024-10041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
Bacillus licheniformis can use cyanide as a nitrogen source for its growth. However, it can also carry out aerobic respiration in the presence of this compound, a classic inhibitor of mammalian cytochrome c oxidase, indicating that B. licheniformis has a branched respiratory chain with various terminal oxidases. Here, we studied the modifications in the respiratory chain of B. licheniformis when cells were cultured in Nutrient Broth, an alkaline medium with ammonium, or an alkaline medium with cyanide. Then, we measured oxygen consumption in intact cells and membranes, enzyme activities, carried out 1D and 2D-BN-PAGE, followed by mass spectrometry analysis of BN-PAGE bands associated with NADH, NADPH, and succinate dehydrogenase activities. We found that cell growth was favored in a nutrient medium than in an alkaline medium with cyanide. In parallel, respiratory activity progressively decreased in cells cultured in the rich medium, alkaline medium with ammonium, and the lowest activity was in the cells growing in the alkaline medium with cyanide. B. licheniformis membranes contain NADH, NADPH, and succinate dehydrogenases, and the proteomic analysis detected the nitrate reductase and the bc, caa3, aa3, and bd complexes. The succinate dehydrogenase migrated with a molecular mass of 375 kDa, indicating its association with the nitrate reductase (115 kDa + 241 kDa, respectively). The NADH dehydrogenase of B. licheniformis forms aggregates of different molecular mass.
Collapse
Affiliation(s)
- Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, Ciudad de México, 07738, México
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Gustavo A. Madero, Ciudad de México, 07738, México
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Interior S/N, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México.
| |
Collapse
|
5
|
Salbreiter M, Wagenhaus A, Rösch P, Popp J. Unveiling Microbial Diversity: Raman Spectroscopy's Discrimination of Clostridium and Related Genera. Anal Chem 2024; 96:15702-15710. [PMID: 39292759 PMCID: PMC11447666 DOI: 10.1021/acs.analchem.4c03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
In the clinical environment, the identification of phylogenetic closely related genera and species like Clostridium and Bacillus spp. is challenging. Both genera contain representatives of pathogenic and nonpathogenic species that need to be distinguished for a proper diagnostic read-out. Therefore, reliable and accurate detection methods must be employed for the correct identification of these genera and species. Despite their high pathogenicity, clostridial infections and food contaminations present significant challenges due to their unique cultivation conditions and developmental needs. Therefore, in many diagnostic protocols, the toxins are used for microbiological documentation. However, the applied laboratory methods suffer in accuracy, sometimes require large bacterial loads to provide reliable results, and cannot differentiate pathogenic from nonpathogenic strains. Here, Raman spectroscopy was employed to create an extensive Raman database consisting of pathogenic and nonpathogenic Bacillus and Clostridium species. These genera, as well as representatives of Paraclostridium and Clostridioides were specifically selected for their phylogenetic relation, cultivation conditions, and metabolic activity. A chemometric evaluation of the Raman spectra of single vegetative cells revealed a high discriminating power at the genus level. However, bacilli are considerably easier to classify at the species level than clostridia. The discrimination between the genera and species was based on their phylogeny and not their aerobic and anaerobic cultivation conditions. These encouraging results demonstrated that Raman spectroscopy coupled with chemometrics is a robust and helpful method for differentiating Clostridium species from Bacillus, Clostridioides, and Paraclostridium species. This approach has the potential to be a valuable tool in clinical diagnostics.
Collapse
Affiliation(s)
- Markus Salbreiter
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, Jena D-07743, Germany
- InfectoGnostics
Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Annette Wagenhaus
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, Jena D-07743, Germany
- InfectoGnostics
Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Petra Rösch
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, Jena D-07743, Germany
- InfectoGnostics
Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Jürgen Popp
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, Jena D-07743, Germany
- Leibniz
Institute of Photonic Technology Jena - Member of the Research Alliance, Leibniz Health Technologies, Albert-Einstein-Str. 9, Jena D-07745, Germany
- InfectoGnostics
Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| |
Collapse
|
6
|
Luna-Bulbarela A, Romero-Gutiérrez MT, Tinoco-Valencia R, Ortiz E, Martínez-Romero ME, Galindo E, Serrano-Carreón L. Response of Bacillus velezensis 83 to interaction with Colletotrichum gloeosporioides resembles a Greek phalanx-style formation: A stress resistant phenotype with antibiosis capacity. Microbiol Res 2024; 280:127592. [PMID: 38199003 DOI: 10.1016/j.micres.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Plant growth-promoting rhizobacteria, such as Bacillus spp., establish beneficial associations with plants and may inhibit the growth of phytopathogenic fungi. However, these bacteria are subject to multiple biotic stimuli from their competitors, causing stress and modifying their development. This work is a study of an in vitro interaction between two model microorganisms of socioeconomic relevance, using population dynamics and transcriptomic approaches. Co-cultures of Bacillus velezensis 83 with the phytopathogenic fungus Colletotrichum gloeosporioides 09 were performed to evaluate the metabolic response of the bacteria under conditions of non-nutritional limitation. The bacterial response was associated with the induction of a stress-resistant phenotype, characterized by a lower specific growth rate, but with antimicrobial production capacity. About 12% of co-cultured B. velezensis 83 coding sequences were differentially expressed, including the up-regulation of the general stress response (sigB regulon), and the down-regulation of alternative carbon sources catabolism (glucose preference). Defense strategies in B. velezensis are a determining factor in order to preserve the long-term viability of its population. Mostly, the presence of the fungus does not affect the expression of antibiosis genes, except for those corresponding to surfactin/bacillomycin D production. Indeed, the up-regulation of antibiosis genes expression is associated with bacterial growth, regardless of the presence of the fungus. This behavior in B. velezensis 83 resembles the strategy used by the classical Greek phalanx formation: by sacrificing growth rate and metabolic versatility, resources can be redistributed to defense (stress resistant phenotype) while maintaining the attack (antibiosis capacity). The presented results are the first characterization of the molecular phenotype at the transcriptome level of a biological control agent under biotic stress caused by a phytopathogen without nutrient limitation.
Collapse
Affiliation(s)
- Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - María Teresa Romero-Gutiérrez
- Technological Innovation Department, Tlajomulco University Center, University of Guadalajara, 45641 Tlajomulco de Zúñiga, Jalisco, Mexico; Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430 Guadalajara, Jalisco, Mexico
| | - Raunel Tinoco-Valencia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - María Esperanza Martínez-Romero
- Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Imaura Y, Okamoto S, Hino T, Ogami Y, Katayama YA, Tanimura A, Inoue M, Kamikawa R, Yoshida T, Sako Y. Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0018523. [PMID: 37219438 PMCID: PMC10304674 DOI: 10.1128/aem.00185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O2, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H2 production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O2 reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration. IMPORTANCE Microbial CO oxidation has received much attention because it contributes to global carbon cycling in addition to functioning as a remover of CO, which is toxic to many organisms. Some microbial CO oxidizers, including both bacteria and archaea, exhibit sister relationships with non-CO oxidizers even in genus-level monophyletic groups. In this study, we demonstrated that a new isolate, Parageobacillus sp. G301, is capable of both anaerobic (hydrogenogenic) and aerobic CO oxidation, which has not been previously reported. The discovery of this new isolate, which is versatile in CO metabolism, will accelerate research on CO oxidizers with diverse CO metabolisms, expanding our understanding of microbial diversity. Through comparative genomic analyses, we propose that CO oxidation genes are not essential genetic elements in the genus Parageobacillus, providing insights into the factors which shape the punctate distribution of CO oxidizers in the prokaryote tree, even in genus-level monophyletic groups.
Collapse
Affiliation(s)
| | | | - Taiki Hino
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Ogami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ayumi Tanimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Matavacas J, Hallgren J, von Wachenfeldt C. Bacillus subtilis forms twisted cells with cell wall integrity defects upon removal of the molecular chaperones DnaK and trigger factor. Front Microbiol 2023; 13:988768. [PMID: 36726573 PMCID: PMC9886141 DOI: 10.3389/fmicb.2022.988768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
The protein homeostasis network ensures a proper balance between synthesis, folding, and degradation of all cellular proteins. DnaK and trigger factor (TF) are ubiquitous bacterial molecular chaperones that assist in protein folding, as well as preventing protein misfolding and aggregation. In Escherichia coli, DnaK and TF possess partially overlapping functions. Their combined depletion results in proteostasis collapse and is synthetically lethal at temperatures above 30°C. To increase our understanding on how proteostasis is maintained in Gram-positive bacteria, we have investigated the physiological effects of deleting dnaK and tig (encoding for DnaK and TF) in Bacillus subtilis. We show that combined deletion of dnaK and tig in B. subtilis is non-lethal, but causes a severe pleiotropic phenotype, including an aberrant twisted and filamentous cell morphology, as well as decreased tolerance to heat and to cell wall active antibiotics and hydrolytic enzymes, indicative of defects in cell wall integrity. In addition, cells lacking DnaK and TF have a much smaller colony size due to defects in motility. Despite these physiological changes, we observed no major compromises in important cellular processes such as cell growth, FtsZ localization and division and only moderate defects in spore formation. Finally, through suppressor analyses, we found that the wild-type cell shape can be partially restored by mutations in genes involved in metabolism or in other diverse cellular processes.
Collapse
|
9
|
Separation and analysis of Bacillus subtilis respiratory chain complexes. J Bioenerg Biomembr 2022; 54:251-271. [DOI: 10.1007/s10863-022-09951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
10
|
Ch'ng JH, Muthu M, Chong KKL, Wong JJ, Tan CAZ, Koh ZJS, Lopez D, Matysik A, Nair ZJ, Barkham T, Wang Y, Kline KA. Heme cross-feeding can augment Staphylococcus aureus and Enterococcus faecalis dual species biofilms. THE ISME JOURNAL 2022; 16:2015-2026. [PMID: 35589966 PMCID: PMC9296619 DOI: 10.1038/s41396-022-01248-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 12/17/2022]
Abstract
The contribution of biofilms to virulence and as a barrier to treatment is well-established for Staphylococcus aureus and Enterococcus faecalis, both nosocomial pathogens frequently isolated from biofilm-associated infections. Despite frequent co-isolation, their interactions in biofilms have not been well-characterized. We report that in combination, these two species can give rise to augmented biofilms biomass that is dependent on the activation of E. faecalis aerobic respiration. In E. faecalis, respiration requires both exogenous heme to activate the cydAB-encoded heme-dependent cytochrome bd, and the availability of O2. We determined that the ABC transporter encoded by cydDC contributes to heme import. In dual species biofilms, S. aureus provides the heme to activate E. faecalis respiration. S. aureus mutants deficient in heme biosynthesis were unable to augment biofilms whereas heme alone is sufficient to augment E. faecalis mono-species biofilms. Our results demonstrate that S. aureus-derived heme, likely in the form of released hemoproteins, promotes E. faecalis biofilm formation, and that E. faecalis gelatinase activity facilitates heme extraction from hemoproteins. This interspecies interaction and metabolic cross-feeding may explain the frequent co-occurrence of these microbes in biofilm-associated infections.
Collapse
Affiliation(s)
- Jun-Hong Ch'ng
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore. .,Department of Surgery Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Infectious Disease Translational Research Program, National University Health System, Singapore, Singapore. .,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.
| | - Mugil Muthu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K L Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Jun Jie Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Casandra A Z Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore, Singapore
| | - Zachary J S Koh
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Daniel Lopez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zeus J Nair
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Timothy Barkham
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Nanyang, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
11
|
High-Throughput Time-Lapse Fluorescence Microscopy Screening for Heterogeneously Expressed Genes in Bacillus subtilis. Microbiol Spectr 2022; 10:e0204521. [PMID: 35171018 PMCID: PMC8849057 DOI: 10.1128/spectrum.02045-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Elucidating phenotypic heterogeneity in clonal bacterial populations is important for both the fundamental understanding of bacterial behavior and the synthetic engineering of bacteria in biotechnology. In this study, we present and validate a high-throughput and high-resolution time-lapse fluorescence microscopy-based strategy to easily and systematically screen for heterogeneously expressed genes in the Bacillus subtilis model bacterium. This screen allows detection of expression patterns at high spatial and temporal resolution, which often escape detection by other approaches, and can readily be extrapolated to other bacteria. A proof-of-concept screening in B. subtilis revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating the approach. IMPORTANCE Differential gene expression among isogenic siblings often leads to phenotypic heterogeneity and the emergence of complex social behavior and functional capacities within clonal bacterial populations. Despite the importance of such features for both the fundamental understanding and synthetic engineering of bacterial behavior, approaches to systematically map such population heterogeneity are scarce. In this context, we have elaborated a new time-lapse fluorescence microscopy-based strategy to easily and systematically screen for such heterogeneously expressed genes in bacteria with high resolution and throughput. A proof-of-concept screening in the Bacillus subtilis model bacterium revealed both recognized and yet unrecognized heterogeneously expressed genes, thereby validating our approach.
Collapse
|
12
|
Pathways of Iron and Sulfur Acquisition, Cofactor Assembly, Destination, and Storage in Diverse Archaeal Methanogens and Alkanotrophs. J Bacteriol 2021; 203:e0011721. [PMID: 34124941 PMCID: PMC8351635 DOI: 10.1128/jb.00117-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Archaeal methanogens, methanotrophs, and alkanotrophs have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, traffic, deploy, and store these elements. Here, we examined the distribution of homologs of proteins mediating key steps in Fe/S metabolism in model microorganisms, including iron(II) sensing/uptake (FeoAB), sulfide extraction from cysteine (SufS), and the biosynthesis of iron-sulfur [Fe-S] clusters (SufBCDE), siroheme (Pch2 dehydrogenase), protoheme (AhbABCD), cytochrome c (Cyt c) (CcmCF), and iron storage/detoxification (Bfr, FtrA, and IssA), among 326 publicly available, complete or metagenome-assembled genomes of archaeal methanogens/methanotrophs/alkanotrophs. The results indicate several prevalent but nonuniversal features, including FeoB, SufBC, and the biosynthetic apparatus for the basic tetrapyrrole scaffold, as well as its siroheme (and F430) derivatives. However, several early-diverging genomes lacked SufS and pathways to synthesize and deploy heme. Genomes encoding complete versus incomplete heme biosynthetic pathways exhibited equivalent prevalences of [Fe-S] cluster binding proteins, suggesting an expansion of catalytic capabilities rather than substitution of heme for [Fe-S] in the former group. Several strains with heme binding proteins lacked heme biosynthesis capabilities, while other strains with siroheme biosynthesis capability lacked homologs of known siroheme binding proteins, indicating heme auxotrophy and unknown siroheme biochemistry, respectively. While ferritin proteins involved in ferric oxide storage were widespread, those involved in storing Fe as thioferrate were unevenly distributed. Collectively, the results suggest that differences in the mechanisms of Fe and S acquisition, deployment, and storage have accompanied the diversification of methanogens/methanotrophs/alkanotrophs, possibly in response to differential availability of these elements as these organisms evolved. IMPORTANCE Archaeal methanogens, methanotrophs, and alkanotrophs, argued to be among the most ancient forms of life, have a high demand for iron (Fe) and sulfur (S) for cofactor biosynthesis, among other uses. Here, using comparative bioinformatic approaches applied to 326 genomes, we show that major differences in Fe/S acquisition, trafficking, deployment, and storage exist in this group. Variation in these characters was generally congruent with the phylogenetic placement of these genomes, indicating that variation in Fe/S usage and deployment has contributed to the diversification and ecology of these organisms. However, incongruency was observed among the distribution of cofactor biosynthesis pathways and known protein destinations for those cofactors, suggesting auxotrophy or yet-to-be-discovered pathways for cofactor biosynthesis.
Collapse
|
13
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
von Wachenfeldt C, Hallgren J, Hederstedt L. YtkA (CtaK) and YozB (CtaM) function in the biogenesis of cytochrome c oxidase in Bacillus subtilis. Mol Microbiol 2021; 116:184-199. [PMID: 33590545 DOI: 10.1111/mmi.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Cytochrome c oxidase in the respiratory chain of bacteria and mitochondria couples the reduction of molecular oxygen to form water with the generation of a transmembrane proton gradient. Bacillus subtilis has two heme A-containing heme-copper oxidases: the menaquinol oxidase cytochrome aa3 and the cytochrome c oxidase cytochrome caa3 . By screening three collections of mutants for defective cytochrome c oxidase, we found the genes for two, new membrane-bound assembly factors in B. subtilis: ytkA and yozB (renamed ctaK and ctaM, respectively). CtaK is a lipoprotein without sequence similarity to any protein of known function. We show that CtaK functions together with Sco1 (YpmQ) in a pathway, leading to the assembly of the CuA center in cytochrome caa3 and seems to be a functional analogue to proteins of the periplasmic CuA chaperone family (PCuA C). CtaM is required for the activity of both cytochrome caa3 and cytochrome aa3 and dispensable for the insertion of heme A into these oxidases. The orthologous Bacillus anthracis protein and the distantly related Staphylococcus aureus CtaM complemented CtaM deficiency in B. subtilis, establishing a common function of CtaM in these bacteria. As the overall result of our work, 12 different proteins are known to function in the biosynthesis of cytochrome c oxidase in B. subtilis.
Collapse
Affiliation(s)
| | - Joel Hallgren
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Hederstedt L. Molecular Biology of Bacillus subtilis Cytochromes anno 2020. BIOCHEMISTRY (MOSCOW) 2021; 86:8-21. [DOI: 10.1134/s0006297921010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? Front Cell Infect Microbiol 2020; 10:589318. [PMID: 33330134 PMCID: PMC7719681 DOI: 10.3389/fcimb.2020.589318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, ATP synthase inhibitor Bedaquiline was approved for the treatment of multi-drug resistant tuberculosis emphasizing the importance of oxidative phosphorylation for the survival of mycobacteria. ATP synthesis is primarily dependent on the generation of proton motive force through the electron transport chain in mycobacteria. The mycobacterial electron transport chain utilizes two terminal oxidases for the reduction of oxygen, namely the bc1-aa3 supercomplex and the cytochrome bd oxidase. The bc1-aa3 supercomplex is an energy-efficient terminal oxidase that pumps out four vectoral protons, besides consuming four scalar protons during the transfer of electrons from menaquinone to molecular oxygen. In the past few years, several inhibitors of bc1-aa3 supercomplex have been developed, out of which, Q203 belonging to the class of imidazopyridine, has moved to clinical trials. Recently, the crystal structure of the mycobacterial cytochrome bc1-aa3 supercomplex was solved, providing details of the route of transfer of electrons from menaquinone to molecular oxygen. Besides providing insights into the molecular functioning, crystal structure is aiding in the targeted drug development. On the other hand, the second respiratory terminal oxidase of the mycobacterial respiratory chain, cytochrome bd oxidase, does not pump out the vectoral protons and is energetically less efficient. However, it can detoxify the reactive oxygen species and facilitate mycobacterial survival during a multitude of stresses. Quinolone derivatives (CK-2-63) and quinone derivative (Aurachin D) inhibit cytochrome bd oxidase. Notably, ablation of both the two terminal oxidases simultaneously through genetic methods or pharmacological inhibition leads to the rapid death of the mycobacterial cells. Thus, terminal oxidases have emerged as important drug targets. In this review, we have described the current understanding of the functioning of these two oxidases, their physiological relevance to mycobacteria, and their inhibitors. Besides these, we also describe the alternative terminal complexes that are used by mycobacteria to maintain energized membrane during hypoxia and anaerobic conditions.
Collapse
Affiliation(s)
- Sapna Bajeli
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Navin Baid
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Manjot Kaur
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ganesh P Pawar
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Vinod D Chaudhari
- Division of Medicinal Chemistry, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| | - Ashwani Kumar
- Molecular Mycobacteriology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
17
|
Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front Bioeng Biotechnol 2020; 8:570828. [PMID: 33304888 PMCID: PMC7693651 DOI: 10.3389/fbioe.2020.570828] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Riboflavin is a crucial micronutrient that is a precursor to coenzymes flavin mononucleotide and flavin adenine dinucleotide, and it is required for biochemical reactions in all living cells. For decades, one of the most important applications of riboflavin has been its global use as an animal and human nutritional supplement. Being well-informed of the latest research on riboflavin production via the fermentation process is necessary for the development of new and improved microbial strains using biotechnology and metabolic engineering techniques to increase vitamin B2 yield. In this review, we describe well-known industrial microbial producers, namely, Ashbya gossypii, Bacillus subtilis, and Candida spp. and summarize their biosynthetic pathway optimizations through genetic and metabolic engineering, combined with random chemical mutagenesis and rational medium components to increase riboflavin production.
Collapse
Affiliation(s)
- Liudmila A. Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
| | - Larissa A. Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Oksana M. Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Anna B. Podvolotskaya
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Liudmila A. Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| |
Collapse
|
18
|
Lee BS, Sviriaeva E, Pethe K. Targeting the cytochrome oxidases for drug development in mycobacteria. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 152:45-54. [PMID: 32081616 DOI: 10.1016/j.pbiomolbio.2020.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 11/19/2022]
Abstract
Mycobacterium tuberculosis strictly depends on oxygen to multiply, and the terminal oxidases are a vital part of the oxidative phosphorylation pathway. The bacterium possesses two aerobic respiratory branches: a cytochrome bcc-aa3 and a bacteria-specific cytochrome bd oxidase. The identification of small-molecule inhibitors of the cytochrome bcc-aa3 under numerous experimental conditions reflects the essentiality of the pathway for the optimum growth of M. tuberculosis. Recent findings on the biology of the cytochrome bcc-aa3 as well as the report of the first high-resolution structure of a mycobacterial cytochrome bcc-aa3 complex will help in the characterization and further development of potent inhibitors. Although the aerobic cytochrome bd respiratory branch is not strictly essential for growth, the discovery of a strong synthetic lethal interaction with the cytochrome bcc-aa3 placed the cytochrome bd oxidase under the spotlight as an attractive drug target for its synergistic role in potentiating the efficacy of cytochrome bcc-aa3 inhibitors and other drugs targeting oxidative phosphorylation. In this review, we are discussing current knowledge about the two mycobacterial aerobic respiratory branches, their potential as drug targets, as well as potential drawbacks.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ekaterina Sviriaeva
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
| |
Collapse
|
19
|
Poole RK, Cozens AG, Shepherd M. The CydDC family of transporters. Res Microbiol 2019; 170:407-416. [PMID: 31279084 DOI: 10.1016/j.resmic.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
The CydDC family of ABC transporters export the low molecular weight thiols glutathione and cysteine to the periplasm of a variety of bacterial species. The CydDC complex has previously been shown to be important for disulfide folding, motility, respiration, and tolerance to nitric oxide and antibiotics. In addition, CydDC is thus far unique amongst ABC transporters in that it binds a haem cofactor that appears to modulate ATPase activity. CydDC has a diverse impact upon bacterial metabolism, growth, and virulence, and is of interest to those working on membrane transport mechanisms, redox biology, aerobic respiration, and stress sensing/tolerance during infection.
Collapse
Affiliation(s)
- Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Adam G Cozens
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom.
| |
Collapse
|
20
|
Structural Basis for YjbH Adaptor-Mediated Recognition of Transcription Factor Spx. Structure 2019; 27:923-936.e6. [DOI: 10.1016/j.str.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 11/18/2022]
|
21
|
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 2018; 115:2541-2553. [PMID: 29940069 DOI: 10.1002/bit.26774] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 11/07/2022]
Abstract
Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 μmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.
Collapse
Affiliation(s)
- Dongbo Cai
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Yaozhong Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Penghui He
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shiyi Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Fei Mo
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, School of food and biological engineering, Hubei University of Technology, Wuhan, China
| | - Qin Wang
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Christopher T Nomura
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry (SUNY ESF), Iowa State University, Syracuse, New York
| | - Zhiyou Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa
| | - Xin Ma
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
22
|
Corbett D, Goldrick M, Fernandes VE, Davidge K, Poole RK, Andrew PW, Cavet J, Roberts IS. Listeria monocytogenes Has Both Cytochrome bd-Type and Cytochrome aa 3-Type Terminal Oxidases, Which Allow Growth at Different Oxygen Levels, and Both Are Important in Infection. Infect Immun 2017; 85:e00354-17. [PMID: 28808161 PMCID: PMC5649020 DOI: 10.1128/iai.00354-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for a number of life-threatening infections of humans. During an infection, it invades epithelial cells before spreading from the intestine to the cells of the liver and spleen. This requires an ability to adapt to varying oxygen levels. Here, we demonstrate that L. monocytogenes has two terminal oxidases, a cytochrome bd-type (CydAB) and a cytochrome aa 3-type menaquinol (QoxAB) oxidase, and that both are used for respiration under different oxygen tensions. Furthermore, we show that possession of both terminal oxidases is important in infection. In air, the CydAB bd-type oxidase is essential for aerobic respiration and intracellular replication, and cydAB mutants are highly attenuated in mice. In contrast, the QoxAB aa 3-type oxidase is required neither for aerobic respiration in air nor for intracellular growth. However, the qoxAB mutants are attenuated in mice, with a delay in the onset of disease signs and with increased survival time, indicating a role for the QoxAB aa 3-type oxidase in the initial stages of infection. Growth of bacteria under defined oxygen conditions revealed that at 1% (vol/vol), both oxidases are functional, and the presence of either is sufficient for aerobic respiration and intracellular replication. However, at 0.2% (vol/vol), both oxidases are necessary for maximum growth. These findings are consistent with the ability of L. monocytogenes to switch between terminal oxidases under different oxygen conditions, providing exquisite adaptation to different conditions encountered within the infected host.
Collapse
Affiliation(s)
- David Corbett
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Vitor E Fernandes
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Kelly Davidge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Jennifer Cavet
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ian S Roberts
- School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
24
|
Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by In Vivo Footprinting. J Bacteriol 2017; 199:JB.00086-17. [PMID: 28439033 DOI: 10.1128/jb.00086-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Upon oxygen limitation, the Bacillus subtilis ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide in vivo DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using in situ DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind.IMPORTANCE Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using in situ DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.
Collapse
|
25
|
Prajapati RK, Sur R, Mukhopadhyay J. A Novel Function of δ Factor from Bacillus subtilis as a Transcriptional Repressor. J Biol Chem 2016; 291:24029-24035. [PMID: 27679485 DOI: 10.1074/jbc.m116.746065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/23/2016] [Indexed: 01/01/2023] Open
Abstract
δ, a small protein found in most Gram-positive bacteria was, for a long time, thought to be a subunit of RNA polymerase (RNAP) and was shown to be involved in recycling of RNAP at the end of each round of transcription. However, how δ participates in both up-regulation and down-regulation of genes in vivo remains unclear. We have recently shown, in addition to the recycling of RNAP, δ functions as a transcriptional activator by binding to an A-rich sequence located immediately upstream of the -35 element, consequently facilitating the open complex formation. The result had explained the mechanism of up-regulation of the genes by δ. Here, we show that Bacillus subtilis δ could also function as a transcriptional repressor. Our results demonstrate that δ binds to an A-rich sequence located near the -35 element of the spo0B promoter, the gene involved in the regulatory cascade of bacterial sporulation and inhibits the open complex formation due to steric clash with σ region 4.2. We observed a significant increase in the mRNA level of the spo0B gene in a δ-knock-out strain of B. subtilis compared with the wild-type. Thus, the results report a novel function of δ, and suggest the mechanism of down-regulation of genes in vivo by the protein.
Collapse
Affiliation(s)
| | - Runa Sur
- the Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata 700009, India
| | | |
Collapse
|
26
|
Truong QL, Cho Y, Park S, Park BK, Hahn TW. Brucella abortus mutants lacking ATP-binding cassette transporter proteins are highly attenuated in virulence and confer protective immunity against virulent B. abortus challenge in BALB/c mice. Microb Pathog 2016; 95:175-185. [PMID: 27057678 DOI: 10.1016/j.micpath.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/23/2015] [Accepted: 04/01/2016] [Indexed: 11/30/2022]
Abstract
Brucella abortus RB51 is an attenuated vaccine strain that has been most frequently used for bovine brucellosis. Although it is known to provide good protection in cattle, it still has some drawbacks including resistance to rifampicin, residual virulence and pathogenicity in humans. Thus, there has been a continuous interest on new safe and effective bovine vaccine candidates. In the present study, we have constructed unmarked mutants by deleting singly cydD and cydC genes, which encode ATP-binding cassette transporter proteins, from the chromosome of the virulent Brucella abortus isolate from Korean cow (referred to as IVK15). Both IVK15ΔcydD and ΔcydC mutants showed increased sensitivity to metal ions, hydrogen peroxide and acidic pH, which are mimic to intracellular environment during host infection. Additionally, the mutants exhibited a significant growth defect in RAW264.7 cells and greatly attenuated in mice. Vaccination of mice with either IVK15ΔcydC or IVK15ΔcydD mutant could elicit an anti-Brucella specific immunoglobulin G (IgG) and IgG subclass responses as well as enhance the secretion of interferon-gamma, and provided better protection against challenge with B. abortus strain 2308 than with the commercial B. abortus strain RB51 vaccine. Collectively, these results suggest that both IVK15ΔcydC and IVK15ΔcydD mutants could be an attenuated vaccine candidate against B. abortus.
Collapse
Affiliation(s)
- Quang Lam Truong
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Youngjae Cho
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Soyeon Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Bo-Kyoung Park
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea
| | - Tae-Wook Hahn
- College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Gangwon-do, South Korea.
| |
Collapse
|
27
|
Toyoda K, Inui M. The extracytoplasmic function σ factor σ(C) regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum. Mol Microbiol 2016; 100:486-509. [PMID: 26789738 DOI: 10.1111/mmi.13330] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Abstract
Bacteria modify their expression of different terminal oxidases in response to oxygen availability. Corynebacterium glutamicum, a facultative anaerobic bacterium of the phylum Actinobacteria, possesses aa3 -type cytochrome c oxidase and cytochrome bd-type quinol oxidase, the latter of which is induced by oxygen limitation. We report that an extracytoplasmic function σ factor, σ(C) , is responsible for the regulation of this process. Chromatin immunoprecipitation with microarray analysis detected eight σ(C) -binding regions in the genome, facilitating the identification of a consensus promoter sequence for σ(C) recognition. The promoter sequences were found upstream of genes for cytochrome bd, heme a synthesis enzymes and uncharacterized membrane proteins, all of which were upregulated by sigC overexpression. However, one consensus promoter sequence found on the antisense strand upstream of an operon encoding the cytochrome bc1 complex conferred a σ(C) -dependent negative effect on expression of the operon. The σ(C) regulon was induced by cytochrome aa3 deficiency without modifying sigC expression, but not by bc1 complex deficiency. These findings suggest that σ(C) is activated in response to impaired electron transfer via cytochrome aa3 and not directly to a shift in oxygen levels. Our results reveal a new paradigm for transcriptional regulation of the aerobic respiratory system in bacteria.
Collapse
Affiliation(s)
- Koichi Toyoda
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research institute of Innovative Technology for the Earth (RITE), 9-2 Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| |
Collapse
|
28
|
Degli Esposti M, Rosas-Pérez T, Servín-Garcidueñas LE, Bolaños LM, Rosenblueth M, Martínez-Romero E. Molecular evolution of cytochrome bd oxidases across proteobacterial genomes. Genome Biol Evol 2015; 7:801-20. [PMID: 25688108 PMCID: PMC5322542 DOI: 10.1093/gbe/evv032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This work is aimed to resolve the complex molecular evolution of cytochrome bd ubiquinol oxidase, a nearly ubiquitous bacterial enzyme that is involved in redox balance and bioenergetics. Previous studies have created an unclear picture of bd oxidases phylogenesis without considering the existence of diverse types of bd oxidases. Integrated approaches of genomic and protein analysis focused on proteobacteria have generated a molecular classification of diverse types of bd oxidases, which produces a new scenario for interpreting their evolution. A duplication of the original gene cluster of bd oxidase might have occurred in the ancestors of extant α-proteobacteria of the Rhodospirillales order, such as Acidocella, from which the bd-I type of the oxidase might have diffused to other proteobacterial lineages. In contrast, the Cyanide-Insensitive Oxidase type may have differentiated into recognizable subtypes after another gene cluster duplication. These subtypes are widespread in the genomes of α-, β-, and γ-proteobacteria, with occasional instances of lateral gene transfer. In resolving the evolutionary pattern of proteobacterial bd oxidases, this work sheds new light on the basal taxa of α-proteobacteria from which the γ-proteobacterial lineage probably emerged.
Collapse
|
29
|
Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol 2014; 17:346-63. [PMID: 25367190 DOI: 10.1111/1462-2920.12676] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 11/27/2022]
Abstract
Nutrient scarcity is a common condition in nature, but the resulting extremely low growth rates (below 0.025 h(-1) ) are an unexplored research area in Bacillus subtilis. To understand microbial life in natural environments, studying the adaptation of B. subtilis to near-zero growth conditions is relevant. To this end, a chemostat modified for culturing an asporogenous B. subtilis sigF mutant strain at extremely low growth rates (also named a retentostat) was set up, and biomass accumulation, culture viability, metabolite production and cell morphology were analysed. During retentostat culturing, the specific growth rate decreased to a minimum of 0.00006 h(-1) , corresponding to a doubling time of 470 days. The energy distribution between growth and maintenance-related processes showed that a state of near-zero growth was reached. Remarkably, a filamentous cell morphology emerged, suggesting that cell separation is impaired under near-zero growth conditions. To evaluate the corresponding molecular adaptations to extremely low specific growth, transcriptome changes were analysed. These revealed that cellular responses to near-zero growth conditions share several similarities with those of cells during the stationary phase of batch growth. However, fundamental differences between these two non-growing states are apparent by their high viability and absence of stationary phase mutagenesis under near-zero growth conditions.
Collapse
Affiliation(s)
- Wout Overkamp
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
The Staphylococcus aureus NuoL-like protein MpsA contributes to the generation of membrane potential. J Bacteriol 2014; 197:794-806. [PMID: 25448817 DOI: 10.1128/jb.02127-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In aerobic microorganisms, the entry point of respiratory electron transfer is represented by the NADH:quinone oxidoreductase. The enzyme couples the oxidation of NADH with the reduction of quinone. In the type 1 NADH:quinone oxidoreductase (Ndh1), this reaction is accompanied by the translocation of cations, such as H(+) or Na(+). In Escherichia coli, cation translocation is accomplished by the subunit NuoL, thus generating membrane potential (Δψ). Some microorganisms achieve NADH oxidation by the alternative, nonelectrogenic type 2 NADH:quinone oxidoreductase (Ndh2), which is not cation translocating. Since these enzymes had not been described in Staphylococcus aureus, the goal of this study was to identify proteins operating in the NADH:quinone segment of its respiratory chain. We demonstrated that Ndh2 represents a NADH:quinone oxidoreductase in S. aureus. Additionally, we identified a hypothetical protein in S. aureus showing sequence similarity to the proton-translocating subunit NuoL of complex I in E. coli: the NuoL-like protein MpsA. Mutants with deletion of the nuoL-like gene mpsA and its corresponding operon, mpsABC (mps for membrane potential-generating system), exhibited a small-colony-variant-like phenotype and were severely affected in Δψ and oxygen consumption rates. The MpsABC proteins did not confer NADH oxidation activity. Using an Na(+)/H(+) antiporter-deficient E. coli strain, we could show that MpsABC constitute a cation-translocating system capable of Na(+) transport. Our study demonstrates that MpsABC represent an important functional system of the respiratory chain of S. aureus that acts as an electrogenic unit responsible for the generation of Δψ.
Collapse
|
31
|
Engman J, von Wachenfeldt C. Regulated protein aggregation: a mechanism to control the activity of the ClpXP adaptor protein YjbH. Mol Microbiol 2014; 95:51-63. [PMID: 25353645 DOI: 10.1111/mmi.12842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Bacteria use stress response pathways to activate diverse target genes to react to a variety of stresses. The Bacillus subtilis Spx protein is a global transcriptional regulator that controls expression of more than 140 genes and operons in response to thiol-specific oxidative stress. Under nonstress conditions the concentration of Spx is kept low by proteolysis catalyzed by the ClpXP complex. Spx protein levels increase in response to disulfide stress and decrease when the cells cope with the stress. The cytosolic adaptor protein YjbH is required to target Spx for efficient proteolysis by ClpXP. We demonstrate that YjbH aggregates in response to disulfide stress, that is, the YjbH protein is soluble under nonstressed conditions and destabilized during stress leading to aggregation. Stress conditions (heat and ethanol) that cause severe perturbations in protein stability/folding also induced aggregation of YjbH and led to induction of Spx. By heterologous expression of a less aggregation prone YjbH homolog Spx induction was abolished. Thus we show that moderation of YjbH solubility is an important mechanism of signal transduction and represents a new mechanism of controlling the activity of adaptor proteins.
Collapse
Affiliation(s)
- Jakob Engman
- Department of Biology, Lund University, Sölvegatan 35, Lund, SE-223 62, Sweden
| | | |
Collapse
|
32
|
Characterization and protective property of Brucella abortus cydC and looP mutants. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1573-80. [PMID: 25253663 DOI: 10.1128/cvi.00164-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella abortus readily multiplies in professional or nonprofessional phagocytes in vitro and is highly virulent in mice. Isogenic mutants of B. abortus biovar 1 strain IVKB9007 lacking the ATP/GDP-binding protein motif A (P-loop) (named looP; designated here the IVKB9007 looP::Tn5 mutant) and the ATP-binding/permease protein (cydC; designated here the IVKB9007 cydC::Tn5 mutant) were identified and characterized by transposon mutagenesis using the mini-Tn5Km2 transposon. Both mutants were found to be virtually incapable of intracellular replication in both murine macrophages (RAW264.7) and the HeLa cell line, and their virulence was significantly impaired in BALB/c mice. Respective complementation of the IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants restored their ability to survive in vitro and in vivo to a level comparable with that of the wild type. These findings indicate that the cydC and looP genes play important roles in the virulence of B. abortus. In addition, intraperitoneal immunization of mice with a dose of the live IVKB9007 looP::Tn5 and IVKB9007 cydC::Tn5 mutants provided a high degree of protection against challenge with pathogenic B. abortus strain 544. Both mutants should be evaluated further as a live attenuated vaccine against bovine brucellosis for their ability to stimulate a protective immune response.
Collapse
|
33
|
Hypoxia-activated cytochrome bd expression in Mycobacterium smegmatis is cyclic AMP receptor protein dependent. J Bacteriol 2014; 196:3091-7. [PMID: 24936051 DOI: 10.1128/jb.01771-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mycobacteria are obligate aerobes and respire using two terminal respiratory oxidases, an aa3-type cytochrome c oxidase and a cytochrome bd-type menaquinol oxidase. Cytochrome bd is encoded by cydAB from the cydABDC gene cluster that is conserved throughout the mycobacterial genus. Here we report that cydAB and cydDC in Mycobacterium smegmatis constitute two separate operons under hypoxic growth conditions. The transcriptional start sites of both operons were mapped, and a series of cydA-lacZ and cydD-lacZ transcriptional reporter fusions were made to identify regulatory promoter elements. A 51-bp region was identified in the cydAB promoter that was required for maximal cydA-lacZ expression in response to hypoxia. A cyclic AMP receptor protein (CRP)-binding site (viz. GTGAN6CCACC) was identified in this region, and mutation of this site to CCCAN6CTTTC abolished cydA-lacZ expression in response to hypoxia. Binding of purified CRP (MSMEG_0539) to the cydAB promoter DNA was analyzed using electrophoretic mobility shift assays. CRP binding was dependent on GTGAN6CCACC and showed cyclic AMP (cAMP) dependency. No CRP site was present in the cydDC promoter, and a 10-bp inverted repeat (CGGTGGTACCGGTACCACCG) was required for maximal cydD-lacZ expression. Taken together, the data indicate that CRP is a direct regulator of cydAB expression in response to hypoxia and that the regulation of cydDC expression is CRP independent and under the control of an unknown regulator.
Collapse
|
34
|
Le Laz S, Kpebe A, Bauzan M, Lignon S, Rousset M, Brugna M. A biochemical approach to study the role of the terminal oxidases in aerobic respiration in Shewanella oneidensis MR-1. PLoS One 2014; 9:e86343. [PMID: 24466040 PMCID: PMC3899249 DOI: 10.1371/journal.pone.0086343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022] Open
Abstract
The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb3-type and bd-type oxidases are involved in respiration at low-O2 tensions. On the contrary, the low O2-affinity A-type cytochrome c oxidase was not detected in our experimental conditions even under aerobic conditions and would therefore not be required for aerobic respiration in S. oneidensis MR-1. In addition, the deduced amino acid sequence suggests that the A-type cytochrome c oxidase is a ccaa3-type oxidase since an uncommon extra-C terminal domain contains two c-type heme binding motifs. The particularity of the aerobic respiratory pathway and the physiological implication of the presence of a ccaa3-type oxidase in S. oneidensis MR-1 are discussed.
Collapse
Affiliation(s)
- Sébastien Le Laz
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Arlette Kpebe
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Marielle Bauzan
- CNRS, Aix-Marseille Université, Unité de fermentation, FR3479, IMM, Marseille, France
| | - Sabrina Lignon
- CNRS, Aix-Marseille Université, Plate-forme Protéomique, FR3479, IMM, MaP IBiSA, Marseille, France
| | - Marc Rousset
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
| | - Myriam Brugna
- CNRS, Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, IMM, Marseille, France
- * E-mail:
| |
Collapse
|
35
|
The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: A megacomplex organization? Arch Biochem Biophys 2013; 537:153-60. [DOI: 10.1016/j.abb.2013.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022]
|
36
|
Comparative RNA-sequencing of the acarbose producer Actinoplanes sp. SE50/110 cultivated in different growth media. J Biotechnol 2013; 167:166-77. [DOI: 10.1016/j.jbiotec.2012.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/18/2012] [Accepted: 10/28/2012] [Indexed: 12/14/2022]
|
37
|
Bioenergetics of the moderately halophilic bacterium Halobacillus halophilus: composition and regulation of the respiratory chain. Appl Environ Microbiol 2013; 79:3839-46. [PMID: 23584768 DOI: 10.1128/aem.00855-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In their natural environments, moderately halophilic bacteria are confronted not only with high salinities but also with low oxygen tensions due to the high salinities. The growth of H. halophilus is strictly aerobic. To analyze the dependence of respiration on the NaCl concentration and oxygen availability of the medium, resting cell experiments were performed. The respiration rates were dependent on the NaCl concentration of the growth medium, as well as on the NaCl concentration of the assay buffer, indicating regulation on the transcriptional and the activity level. Respiration was accompanied by the generation of an electrochemical proton potential (Δμ(H+)) across the cytoplasmic membrane whose magnitude was dependent on the external pH. Genes encoding proteins involved in respiration and Δμ(H+) generation, such as a noncoupled NADH dehydrogenase (NDH-2), complex II, and complex III, were identified in the genome. In addition, genes encoding five different terminal oxidases are present. Inhibitor profiling revealed the presence of NDH-2 and complex III, but the nature of the oxidases could not be resolved using this approach. Expression analysis demonstrated that all the different terminal oxidases were indeed expressed, but by far the most prominent was cta, encoding cytochrome caa3 oxidase. The expression of all of the different oxidase genes increased at high NaCl concentrations, and the transcript levels of cta and qox (encoding cytochrome aa3 oxidase) also increased at low oxygen concentrations. These data culminate in a model of the composition and variation of the respiratory chain of H. halophilus.
Collapse
|
38
|
Belda E, Sekowska A, Le Fèvre F, Morgat A, Mornico D, Ouzounis C, Vallenet D, Médigue C, Danchin A. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (Reading) 2013; 159:757-770. [DOI: 10.1099/mic.0.064691-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Eugeni Belda
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - François Le Fèvre
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Anne Morgat
- Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Damien Mornico
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christos Ouzounis
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - David Vallenet
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claudine Médigue
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Danchin
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| |
Collapse
|
39
|
Lobasso S, Palese LL, Angelini R, Corcelli A. Relationship between cardiolipin metabolism and oxygen availability in Bacillus subtilis. FEBS Open Bio 2013; 3:151-5. [PMID: 23772387 PMCID: PMC3668533 DOI: 10.1016/j.fob.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 11/23/2022] Open
Abstract
We report changes of the content of anionic phospholipids in Bacillus subtilis in response to hypoxic conditions and inhibition of terminal respiration. Cardiolipin accumulates rapidly when bacteria are suspended in non-growth medium under reduced aeration or exposed to the inhibitor cyanide; the increase of cardiolipin occurs at the expense of its precursor phosphatidylglycerol and is temperature-dependent. Depending on the extent of hypoxic stress, membranes containing different levels of cardiolipin can be isolated from B. subtilis cells. The NADH oxidase activity in cardiolipin-enriched membranes is cyanide-resistant; furthermore O2 consumption measurements indicated that cardiolipin-enriched cells are resistant to cyanide. Results point out a possible interdependence between the effect of cyanide on cardiolipin metabolism and the effect of cardiolipin on the effectiveness of cyanide inhibition.
Collapse
Affiliation(s)
- Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari "Aldo Moro", Italy
| | | | | | | |
Collapse
|
40
|
Hao T, Han B, Ma H, Fu J, Wang H, Wang Z, Tang B, Chen T, Zhao X. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. MOLECULAR BIOSYSTEMS 2013; 9:2034-44. [DOI: 10.1039/c3mb25568a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
41
|
Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 2012; 7:e44229. [PMID: 23028506 PMCID: PMC3447821 DOI: 10.1371/journal.pone.0044229] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration.
Collapse
|
42
|
Genes important for catalase activity in Enterococcus faecalis. PLoS One 2012; 7:e36725. [PMID: 22590595 PMCID: PMC3349705 DOI: 10.1371/journal.pone.0036725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/11/2012] [Indexed: 12/29/2022] Open
Abstract
Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly.
Collapse
|
43
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
44
|
The YjbH adaptor protein enhances proteolysis of the transcriptional regulator Spx in Staphylococcus aureus. J Bacteriol 2011; 194:1186-94. [PMID: 22194450 DOI: 10.1128/jb.06414-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spx is a global regulator that is widespread among the low-G+C-content gram-positive bacteria. Spx has been extensively studied in Bacillus subtilis, where it acts as an activator and a repressor of transcription in response to disulfide stress. Under nonstress conditions, Spx is rapidly degraded by the ClpXP protease. This degradation is enhanced by the YjbH adaptor protein. Upon disulfide stress, the amount of Spx rapidly increases due to a decrease in degradation. In the opportunistic pathogen Staphylococcus aureus, Spx is a global regulator influencing growth, biofilm formation, and general stress protection, and cells lacking the spx gene exhibit poor growth also under nonstress conditions. To investigate the mechanism by which the activity of Spx is regulated, we identified a homolog in S. aureus of the B. subtilis yjbH gene. The gene encodes a protein that shows approximately 30% sequence identity to YjbH of B. subtilis. Heterologous expression of S. aureus yjbH in a B. subtilis yjbH mutant restored Spx to wild-type levels both under nonstress conditions and under conditions of disulfide stress. From these studies, we conclude that the two YjbH homologues have a conserved physiological function. Accordingly, inactivation of yjbH in S. aureus increased the level of Spx protein and transcription of the Spx-regulated gene trxB. Notably, the yjbH mutant exhibited reduced growth and increased pigmentation, and both phenotypes were reversed by complementation of the yjbH gene.
Collapse
|
45
|
Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J Bacteriol 2011; 193:3525-36. [PMID: 21602348 DOI: 10.1128/jb.00264-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
N-Acetylglucosamine (GlcNAc) is the most abundant carbon-nitrogen biocompound on earth and has been shown to be an important source of nutrients for both catabolic and anabolic purposes in Bacillus species. In this work we show that the GntR family regulator YvoA of Bacillus subtilis serves as a negative transcriptional regulator of GlcNAc catabolism gene expression. YvoA represses transcription by binding a 16-bp sequence upstream of nagP encoding the GlcNAc-specific EIIBC component of the sugar phosphotransferase system involved in GlcNAc transport and phosphorylation, as well as another very similar 16-bp sequence upstream of the nagAB-yvoA locus, wherein nagA codes for N-acetylglucosamine-6-phosphate deacetylase and nagB codes for the glucosamine-6-phosphate (GlcN-6-P) deaminase. In vitro experiments demonstrated that GlcN-6-P acts as an inhibitor of YvoA DNA-binding activity, as occurs for its Streptomyces ortholog, DasR. Interestingly, we observed that the expression of nag genes was still activated upon addition of GlcNAc in a ΔyvoA mutant background, suggesting the existence of an auxiliary transcriptional control instance. Initial computational prediction of the YvoA regulon showed a distribution of YvoA binding sites limited to nag genes and therefore suggests renaming YvoA to NagR, for N-acetylglucosamine utilization regulator. Whole-transcriptome studies showed significant repercussions of nagR deletion for several major B. subtilis regulators, probably indirectly due to an excess of the crucial molecules acetate, ammonia, and fructose-6-phosphate, resulting from complete hydrolysis of GlcNAc. We discuss a model deduced from NagR-mediated gene expression, which highlights clear connections with pathways for GlcNAc-containing polymer biosynthesis and adaptation to growth under oxygen limitation.
Collapse
|
46
|
Wang E, Ikonen TP, Knaapila M, Svergun D, Logan DT, von Wachenfeldt C. Small-angle X-ray scattering study of a Rex family repressor: conformational response to NADH and NAD+ binding in solution. J Mol Biol 2011; 408:670-83. [PMID: 21402078 DOI: 10.1016/j.jmb.2011.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/27/2011] [Accepted: 02/21/2011] [Indexed: 11/30/2022]
Abstract
The transcriptional repressor Rex is a sensor of the intracellular NADH/NAD(+) redox state through direct binding of NADH or NAD(+). Homodimeric Rex protein from Thermus aquaticus (T-Rex) and Bacillus subtilis (B-Rex) exists in several different conformations. In both organisms, Rex in complex with NADH has the DNA binding domains packed together at the dimer interface, whereas in the apo form of B-Rex the linkers connecting these domains to the core are flexible. The crystal structures of the apo forms of B-Rex and a mutated variant of T-Rex are radically different. We describe the solution structures of B-Rex in complex with NAD(+) or NADH and in its apo form, on the basis of small-angle X-ray scattering (SAXS) measurements. This study addresses to what extent the unusual orientation of the DNA recognition domains of the crystal structure of apo B-Rex is due to stabilization by crystal packing. Low-resolution ab initio solution structures were obtained for apo B-Rex, B-Rex:NADH and B-Rex:NAD(+). Models giving a more detailed picture of these three solution structures were obtained also by rigid body fitting of the crystallographic domains. The SAXS data confirm the elongated and flexible nature of apo-B-Rex and the existence of two distinct and more rigid conformations for the complexes with NADH and NAD(+). The models emerging from this study indicate a reaction mechanism for B-Rex in which the recognition domains are rotated upon binding to NADH.
Collapse
Affiliation(s)
- Ellen Wang
- Department of Biochemistry and Structural Biology, Lund University, SE-22100 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Csotonyi JT, Stackebrandt E, Swiderski J, Schumann P, Yurkov V. An alphaproteobacterium capable of both aerobic and anaerobic anoxygenic photosynthesis but incapable of photoautotrophy: Charonomicrobium ambiphototrophicum, gen. nov., sp. nov. PHOTOSYNTHESIS RESEARCH 2011; 107:257-268. [PMID: 21308412 DOI: 10.1007/s11120-011-9629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/20/2011] [Indexed: 05/30/2023]
Abstract
A facultatively aerobic deep brown coccoid to ovoid bacterium, strain EG17(T), was isolated from a saline effluent stream in the NaCl-dominated brine spring system known as East German Creek in the province of Manitoba, Canada. The strain produced BChl a incorporated into a functional reaction center and two light-harvesting complexes with absorption peaks at 802, 850, and 879 nm. EG17(T) is the first reported anoxygenic phototroph capable of photoheterotrophic growth under both oxic and anoxic conditions. It yielded proportionally the greatest aerobic photosynthetic biomass under oligotrophic conditions. The results of 16S rRNA gene sequence comparisons revealed that EG17(T) was related most closely to the aerobic anoxygenic phototrophs Roseibacterium elongatum (98.3%) and quite distantly to both Dinoroseobacter shibae (95.2%) and Roseicyclus mahoneyensis (94.7%). The DNA G + C content was 65.6 mol%. On the basis of the unique dual aerobic/anaerobic photosynthetic capability, the distinctive spectrophotometric absorption of the photosynthetic apparatus, diagnostic physiological and biochemical traits, and the moderate phylogenetic separation between EG17(T) and its nearest relatives, it is concluded that this microorganism should be classified as a novel genus and species, Charonomicrobium ambiphototrophicum gen. nov., sp. nov., with EG17(T) as the type strain.
Collapse
Affiliation(s)
- J T Csotonyi
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
48
|
Nakamura K, Ikeda S, Matsuo T, Hirata A, Takehara M, Hiyama T, Kawamura F, Kusaka I, Tsuchiya T, Kuroda T, Yabe I. Patch clamp analysis of the respiratory chain in Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1103-7. [PMID: 21255555 DOI: 10.1016/j.bbamem.2011.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/08/2011] [Accepted: 01/12/2011] [Indexed: 11/19/2022]
Abstract
Bacillus subtilis is a representative Gram-positive bacterium. In aerobic conditions, this bacterium can generate an electrochemical potential across the membrane with aerobic respiration. Here, we developed the patch clamp method to analyze the respiratory chain in B. subtilis. First, we prepared giant protoplasts (GPs) from B. subtilis cells. Electron micrographs and fluorescent micrographs revealed that GPs of B. subtilis had a vacuole-like structure and that the intravacuolar area was completely separated from the cytoplasmic area. Acidification of the interior of the isolated and purified vacuole-like structure, due to H(+) translocation after the addition of NADH, revealed that they consisted of everted cytoplasmic membranes. We called these giant provacuoles (GVs) and again applied the patch clamp technique. When NADH was added as an electron donor for the respiratory system, a significant NADH-induced current was observed. Inhibition of KCN and 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) demonstrated that this current is certainly due to aerobic respiration in B. subtilis. This is the first step for more detailed analyses of respiratory chain in B. subtilis, especially H(+) translocation mechanism.
Collapse
Affiliation(s)
- Koji Nakamura
- Department of Genome Applied Microbiology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meuric V, Rouillon A, Chandad F, Bonnaure-Mallet M. Putative respiratory chain of Porphyromonas gingivalis. Future Microbiol 2010; 5:717-34. [PMID: 20441545 DOI: 10.2217/fmb.10.32] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electron transfer chain in Porphyromonas gingivalis, or periodontopathogens, has not yet been characterized. P. gingivalis, a strict anaerobic bacteria and the second colonizer of the oral cavity, is considered to be a major causal agent involved in periodontal diseases. Primary colonizers create a favorable environment for P. gingivalis growth by decreasing oxygen pressure. Oxygen does not appear to be the final electron acceptor of the respiratory chain. Fumarate and cytochrome b have been implicated as major components of the respiratory activity. However, the P. gingivalis genome shows many other enzymes that could be implicated in aerobic or nitrite respiration. Using bioinformatic tools and literature studies of respiratory pathways, the ATP synthesis mechanism from the sodium cycle and nutrients metabolism, the putative respirasome of P. gingivalis has been proposed.
Collapse
Affiliation(s)
- Vincent Meuric
- Equipe de Microbiologie, UPRES-EA 1254, Université Européenne de Bretagne, Université de Rennes I, UFR Odontologie, Bâtiment 15, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | |
Collapse
|
50
|
Azarkina NV, Konstantinov AA. Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase. BIOCHEMISTRY (MOSCOW) 2010; 75:50-62. [DOI: 10.1134/s0006297910010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|