1
|
Chen H, Wang Z, Cai H, Zhou C. Progress in the microbial production of S-adenosyl-L-methionine. World J Microbiol Biotechnol 2016; 32:153. [PMID: 27465853 DOI: 10.1007/s11274-016-2102-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
S-Adenosyl-L-methionine (SAM), which exists in all living organisms, serves as an activated group donor in a range of metabolic reactions, including trans-methylation, trans-sulfuration and trans-propylamine. Compared with its chemical synthesis and enzyme catalysis production, the microbial production of SAM is feasible for industrial applications. The current clinical demand for SAM is constantly increasing. Therefore, vast interest exists in engineering the SAM metabolism in cells for increasing product titers. Here, we provided an overview of updates on SAM microbial productivity improvements with an emphasis on various strategies that have been used to enhance SAM production based on increasing the precursor and co-factor availabilities in microbes. These strategies included the sections of SAM-producing microbes and their mutant screening, optimization of the fermentation process, and the metabolic engineering. The SAM-producing strains that were used extensively were Saccharomyces cerevisiae, Pichia pastoris, Candida utilis, Scheffersomyces stipitis, Kluyveromyces lactis, Kluyveromyces marxianus, Corynebacterium glutamicum, and Escherichia coli, in addition to others. The optimization of the fermentation process mainly focused on the enhancement of the methionine, ATP, and other co-factor levels through pulsed feeding as well as the optimization of nitrogen and carbon sources. Various metabolic engineering strategies using precise control of gene expression in engineered strains were also highlighted in the present review. In addition, some prospects on SAM microbial production were discussed.
Collapse
Affiliation(s)
- Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Zhilai Wang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
3
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
4
|
Pajares MA, Markham GD. Methionine adenosyltransferase (s-adenosylmethionine synthetase). ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:449-521. [PMID: 22220481 DOI: 10.1002/9781118105771.ch11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- María A Pajares
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid Spain
| | | |
Collapse
|
5
|
The leucine-responsive regulatory protein, Lrp, modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter. J Bacteriol 2008; 191:1343-8. [PMID: 19074390 DOI: 10.1128/jb.01074-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Escherichia coli K-12 strains display an intrinsic resistance to the peptide antibiotic microcin J25. In this study, we present results showing that the leucine-responsive regulatory protein, Lrp, is involved in this phenotype by acting as a positive regulator of YojI, a chromosomally encoded efflux pump which expels microcin out of cells. Exogenous leucine antagonizes the effect of Lrp, leading to a diminished expression of the pump and an increased susceptibility to microcin J25.
Collapse
|
6
|
Lintner RE, Mishra PK, Srivastava P, Martinez-Vaz BM, Khodursky AB, Blumenthal RM. Limited functional conservation of a global regulator among related bacterial genera: Lrp in Escherichia, Proteus and Vibrio. BMC Microbiol 2008; 8:60. [PMID: 18405378 PMCID: PMC2374795 DOI: 10.1186/1471-2180-8-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/11/2008] [Indexed: 02/03/2023] Open
Abstract
Background Bacterial genome sequences are being determined rapidly, but few species are physiologically well characterized. Predicting regulation from genome sequences usually involves extrapolation from better-studied bacteria, using the hypothesis that a conserved regulator, conserved target gene, and predicted regulator-binding site in the target promoter imply conserved regulation between the two species. However many compared organisms are ecologically and physiologically diverse, and the limits of extrapolation have not been well tested. In E. coli K-12 the leucine-responsive regulatory protein (Lrp) affects expression of ~400 genes. Proteus mirabilis and Vibrio cholerae have highly-conserved lrp orthologs (98% and 92% identity to E. coli lrp). The functional equivalence of Lrp from these related species was assessed. Results Heterologous Lrp regulated gltB, livK and lrp transcriptional fusions in an E. coli background in the same general way as the native Lrp, though with significant differences in extent. Microarray analysis of these strains revealed that the heterologous Lrp proteins significantly influence only about half of the genes affected by native Lrp. In P. mirabilis, heterologous Lrp restored swarming, though with some pattern differences. P. mirabilis produced substantially more Lrp than E. coli or V. cholerae under some conditions. Lrp regulation of target gene orthologs differed among the three native hosts. Strikingly, while Lrp negatively regulates its own gene in E. coli, and was shown to do so even more strongly in P. mirabilis, Lrp appears to activate its own gene in V. cholerae. Conclusion The overall similarity of regulatory effects of the Lrp orthologs supports the use of extrapolation between related strains for general purposes. However this study also revealed intrinsic differences even between orthologous regulators sharing >90% overall identity, and 100% identity for the DNA-binding helix-turn-helix motif, as well as differences in the amounts of those regulators. These results suggest that predicting regulation of specific target genes based on genome sequence comparisons alone should be done on a conservative basis.
Collapse
Affiliation(s)
- Robert E Lintner
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Center, Toledo, OH 43614-2598, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Berthiaume F, Crost C, Labrie V, Martin C, Newman EB, Harel J. Influence of L-leucine and L-alanine on Lrp regulation of foo, coding for F1651, a Pap homologue. J Bacteriol 2005; 186:8537-41. [PMID: 15576806 PMCID: PMC532401 DOI: 10.1128/jb.186.24.8537-8541.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The foo operon encodes F165 1 fimbriae that belong to the P-regulatory family and are synthesized by septicemic Escherichia coli. Using an Lrp-deficient host and the lrp gene cloned under the arabinose pBAD promoter, we demonstrated that foo was transcribed proportionally to the amount of Lrp synthesized. L-leucine and L-alanine decreased drastically the steady-state transcription of foo and modified phase variation, independently of the presence of FooI. Specific mutations in the C-terminal region of Lrp reduced or abolished the repressive effect of these amino acids, indicating that they modulate F165 1 by affecting Lrp.
Collapse
Affiliation(s)
- Frédéric Berthiaume
- Département de Pathologie et Microbiologie, Université de Montréal, C.P. 5000, St-Hyacinthe, QC, Canada J2S 7C6
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
We show here that the metK gene is essential to the growth of Escherichia coli K-12 and can be deleted only in the presence of a rescue plasmid carrying a functional metK gene. When metK expression was limited, genomic DNA methylation decreased and cell division was hampered. Through primer extension, the transcription start site of metK was located at 140 bp upstream of the translation start site. The frequently used metK84 mutant has been shown to carry an A(r)G transition in the -10 region of the metK promoter. This accounts for its low level of S-adenosylmethionine (SAM) synthetase and SAM deficiency.
Collapse
Affiliation(s)
- Yuhong Wei
- Biology Department, Concordia University, 1455 de Maisonneuve Avenue, Montreal, Quebec H3G 1M8, Canada
| | | |
Collapse
|
9
|
Abstract
Expression of the Escherichia coli serA gene is activated in vivo by the product of the lrp gene, leucine-responsive regulatory protein (Lrp), an effect partially reversed by L-leucine. We show here that serA is transcribed from two promoters, P1 45 bp upstream of the translation start site, and P2 92 bp further upstream. Lrp binds to a long AT-rich sequence from -158 to -82 from the start of the coding region, i.e. upstream of P1 and overlapping P2. It activates transcription from P1 and represses expression from P2. A second regulator, cAMP/CRP, activates P2, an effect that is largely inhibited by Lrp, such that catabolite repressor protein (Crp) and Lrp are rival activators of serA transcription.
Collapse
Affiliation(s)
- Li Yang
- Biology Department, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
10
|
Janes BK, Bender RA. Two roles for the leucine-responsive regulatory protein in expression of the alanine catabolic operon (dadAB) in Klebsiella aerogenes. J Bacteriol 1999; 181:1054-8. [PMID: 9922277 PMCID: PMC93480 DOI: 10.1128/jb.181.3.1054-1058.1999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/1998] [Accepted: 11/16/1998] [Indexed: 11/20/2022] Open
Abstract
The lrp gene, which codes for the leucine-responsive regulatory protein (Lrp), was cloned from Klebsiella aerogenes W70. The DNA sequence was determined, and the clone was used to create a disruption of the lrp gene. The lack of functional Lrp led to an increased expression of the alanine catabolic operon (dad) in the absence of the inducer L-alanine but also to a decreased expression of the operon in the presence of L-alanine. Thus, Lrp is both a repressor and activator of dad expression. Lrp is also necessary for glutamate synthase formation but not for the formation of two other enzymes controlled by the nitrogen regulatory (Ntr) system, glutamate dehydrogenase and histidase.
Collapse
Affiliation(s)
- B K Janes
- Department of Biology, The University of Michigan, Ann Arbor, Michigan 49109-1048, USA
| | | |
Collapse
|