1
|
Wilson SA, Tank RKJ, Hobbs JK, Foster SJ, Garner EC. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. mBio 2023; 14:e0176023. [PMID: 37768080 PMCID: PMC10653849 DOI: 10.1128/mbio.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall- cell wall hydrolases-has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify three "helper" hydrolases that act in certain stress conditions.
Collapse
Affiliation(s)
- Sean A. Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raveen K. J. Tank
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Flores MJ, Duricy K, Choudhary S, Laue M, Popham DL. A Family of Spore Lipoproteins Stabilizes the Germination Apparatus by Altering Inner Spore Membrane Fluidity in Bacillus subtilis Spores. J Bacteriol 2023; 205:e0014223. [PMID: 37338384 PMCID: PMC10601750 DOI: 10.1128/jb.00142-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Dormant bacterial spores undergo the process of germination to return to a vegetative state. In most species, germination involves the sensing of nutrient germinants, the release of various cations and a calcium-dipicolinic acid (DPA) complex, spore cortex degradation, and full rehydration of the spore core. These steps are mediated by membrane-associated proteins, and all these proteins have exposure on the outer surface of the membrane, a hydrated environment where they are potentially subject to damage during dormancy. A family of lipoproteins, including YlaJ, which is expressed from the sleB operon in some species, are present in all sequenced Bacillus and Clostridium genomes that contain sleB. B. subtilis possesses four proteins in this family, and prior studies have demonstrated two of these are required for efficient spore germination and these proteins contain a multimerization domain. Genetic studies of strains lacking all combinations of these four genes now reveal all four play roles in ensuring efficient germination, and affect multiple steps in this process. Electron microscopy does not reveal significant changes in spore morphology in strains lacking lipoproteins. Generalized polarization measurements of a membrane dye probe indicate the lipoproteins decrease spore membrane fluidity. These data suggest a model in which the lipoproteins form a macromolecular structure on the outer surface of the inner spore membrane, where they act to stabilize the membrane and potentially interact with other germination proteins, and thus stabilize the function of multiple components of the germination machinery. IMPORTANCE Bacterial spores exhibit extreme longevity and resistance to many killing agents, and are thus problematic agents of several diseases and of food spoilage. However, to cause disease or spoilage, germination of the spore and return to the vegetative state is necessary. The proteins responsible for initiation and progression of germination are thus potential targets for spore-killing processes. A family of membrane-bound lipoproteins that are conserved across most spore-forming species was studied in the model organism Bacillus subtilis. The results indicate that these proteins reduce the membrane fluidity and increase the stability of other membrane associated proteins that are required for germination. Further understanding of such protein interactions on the spore membrane surface will enhance our understanding of the germination process and its potential as a decontamination method target.
Collapse
Affiliation(s)
- Matthew J. Flores
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Kate Duricy
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Shreya Choudhary
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, Berlin, Germany
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
3
|
Research Progress on the Effect of Autolysis to Bacillus subtilis Fermentation Bioprocess. FERMENTATION 2022. [DOI: 10.3390/fermentation8120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a gram-positive bacterium, a promising microorganism due to its strong extracellular protein secretion ability, non-toxic, and relatively mature industrial fermentation technology. However, cell autolysis during fermentation restricts the industrial application of B. subtilis. With the fast advancement of molecular biology and genetic engineering technology, various advanced procedures and gene editing tools have been used to successfully construct autolysis-resistant B. subtilis chassis cells to manufacture various biological products. This paper first analyses the causes of autolysis in B. subtilis from a mechanistic perspective and outlines various strategies to address autolysis in B. subtilis. Finally, potential strategies for solving the autolysis problem of B. subtilis are foreseen.
Collapse
|
4
|
Changes in Envelope Structure and Cell–Cell Communication during Akinete Differentiation and Germination in Filamentous Cyanobacterium Trichormus variabilis ATCC 29413. Life (Basel) 2022; 12:life12030429. [PMID: 35330180 PMCID: PMC8953462 DOI: 10.3390/life12030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Planktonic freshwater filamentous cyanobacterium Trichormus variabilis ATCC 29413 (previously known as Anabaena variabilis) can differentiate heterocysts and akinetes to survive under different stress conditions. Whilst heterocysts enable diazotrophic growth, akinetes are spore-like resting cells that make the survival of the species possible under adverse growth conditions. Under suitable environmental conditions, they germinate to produce new vegetative filaments. Several morphological and physiological changes occur during akinete formation and germination. Here, using scanning electron microscopy (SEM), we found that the mature akinetes had a wrinkled envelope, and the surface of the envelope smoothened as the cell size increased during germination. Thereupon, the akinete envelope ruptured to release the short emerging filament. Focused ion beam–scanning electron microscopy (FIB/SEM) tomography of immature akinetes revealed the presence of cytoplasmic granules, presumably consisting of cyanophycin or glycogen. In addition, the akinete envelope architecture of different layers, the exopolysaccharide and glycolipid layers, could be visualized. We found that this multilayered envelope helped to withstand osmotic stress and to maintain the structural integrity. Furthermore, by fluorescence recovery after photobleaching (FRAP) measurements, using the fluorescent tracer calcein, we found that intercellular communication decreased during akinete formation as compared with the vegetative cells. In contrast, freshly germinating filaments restored cell communication.
Collapse
|
5
|
Liu B, Chan H, Bauda E, Contreras-Martel C, Bellard L, Villard AM, Mas C, Neumann E, Fenel D, Favier A, Serrano M, Henriques AO, Rodrigues CDA, Morlot C. Structural insights into ring-building motif domains involved in bacterial sporulation. J Struct Biol 2021; 214:107813. [PMID: 34808342 DOI: 10.1016/j.jsb.2021.107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore. Among them, SpoIIIAG forms homo-oligomeric rings in vitro but the oligomerization of other RBM-containing SpoIIIA proteins, including SpoIIIAH, remains to be demonstrated. In this work, we identified RBM domains in the YhcN/YlaJ family of proteins that are not related to the SpoIIIA-SpoIIQ complex. We solved the crystal structure of YhcN from Bacillus subtilis, which confirmed the presence of a RBM fold, flanked by additional secondary structures. As the protein did not show any oligomerization ability in vitro, we investigated the structural determinants of ring formation in SpoIIIAG, SpoIIIAH and YhcN. We showed that in vitro, the conserved core of RBM domains alone is not sufficient for oligomerization while the β-barrel forming region in SpoIIIAG forms rings on its own. This work suggests that some RBMs might indeed participate in the assembly of homomeric rings but others might have evolved toward other functions.
Collapse
Affiliation(s)
- Bowen Liu
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Helena Chan
- The ithree institute, University of Technology Sydney, 2007 Ultimo, NSW, Australia
| | - Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Laure Bellard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Monica Serrano
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
6
|
Fu Y, Liang L, Deng S, Wu Y, Yuan Y, Gao M. Novel spore lytic enzyme from a Bacillus phage leading to spore killing. Enzyme Microb Technol 2020; 142:109698. [PMID: 33220860 DOI: 10.1016/j.enzmictec.2020.109698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/03/2023]
Abstract
Bacterial spores maintain metabolic dormancy and have high resistance to external pressure. Germination requires degradation of the spore cortex and the participation of germination-specific cortex-lytic enzymes (GSLEs). Previously reported GSLEs have been identified in bacteria and facilitate germination. In this study, we have characterized a novel spore lytic enzyme, Ply67, from Bacillus pumilus phage vB_BpuM_BpSp. Ply67 had a similar cortex-lytic activity to GSLEs but disrupted the inner membranes (IMs) of spores, leading to spore killing rather than germination. The amino acid sequence of the complete protein, Ply67FL, exhibited 40% homology to the GSLE SleB. Domain prediction showed that Ply67FL was composed of three domains: a signal peptide, N-terminal domain protein and C-terminal domain protein. Ply67FL rapidly caused E. coli cells lysis when it was expressed in E. coli. The protein containing the C-terminal domain protein, Ply67C, could kill B. pumilus spores. The protein containing the N-terminal domain protein, Ply67N, could combine with the decoated B. pumilus spores, indicating that N-terminal was the binding domain and C-terminal was the hydrolase domain. The protein lacking the signal peptide but containing the N-terminal and C-terminal domain proteins, Ply67, had activity against spores of various Bacillus species. The surface of spores treated with Ply67 shrank and the permeability barrier was disrupted, and the inner contents leaked out. Immunoelectron microscopic observation showed that Ply67 was mainly acted on the spore cortex. Overall, Ply67 is a novel spore lytic enzyme that differs from other GSLEs not only in amino acid sequence but also in activity against spores, and Ply67 might have the potential to kill spores of pathogenic Bacillus species, e.g., B. cereus and B. anthracis.
Collapse
Affiliation(s)
- Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Leiqin Liang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Sangsang Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Yihui Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
7
|
Aspholm ME, Kollerud KK, Høgberg Hansen HC, Granum PE, Christie G, Lindbäck T. Biochemical and mutational analysis of spore cortex-lytic enzymes in the food spoiler Bacillus licheniformis. Food Microbiol 2019; 84:103259. [PMID: 31421778 DOI: 10.1016/j.fm.2019.103259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Bacillus licheniformis is frequently associated with food spoilage due to its ability to form highly resistant endospores. The present study reveals that B. licheniformis spore peptidoglycan shares a similar structure to spores of other species of Bacillus. Two enzymatic activities associated with depolymerisation of the cortical peptidoglycan, which represents a crucial step in spore germination, were detected by muropeptide analysis. These include lytic transglycosylase and N-acetylglucosaminidase activity, with non-lytic epimerase activity also being detected. The role of various putative cortex-lytic enzymes that account for the aforementioned activity was investigated by mutational analysis. These analyses indicate that SleB is the major lysin involved in cortex depolymerisation in B. licheniformis spores, with CwlJ and SleL having lesser roles. Collectively, the results of this work indicate that B. licheniformis spores employ a similar approach for cortical depolymerisation during germination as spores of other Bacillus species.
Collapse
Affiliation(s)
- Marina E Aspholm
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Kristian K Kollerud
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Helge C Høgberg Hansen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Per Einar Granum
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Toril Lindbäck
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Pb 369 Sentrum, 0102, Oslo, Norway.
| |
Collapse
|
8
|
Riyami BA, Ghosh A, Rees EJ, Christie G. Novel cortex lytic enzymes in Bacillus megaterium QM B1551 spores. FEMS Microbiol Lett 2019; 366:5527933. [DOI: 10.1093/femsle/fnz146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/02/2019] [Indexed: 11/15/2022] Open
Abstract
ABSTRACTPresent models for spore germination in Bacillus species include a requirement for either the SleB or CwlJ cortex lytic enzymes to efficiently depolymerise the spore cortex. Previous work has demonstrated that B. megaterium spores may differ to other species in this regard, since sleB cwlJ null mutant spores complemented with the gene in trans for the non-peptidoglycan lysin YpeB can efficiently degrade the cortex. Here, we identify two novel cortex lytic enzymes, encoded at the BMQ_2391 and BMQ_3234 loci, which are essential for cortex hydrolysis in the absence of SleB and CwlJ. Ellipsoid localisation microscopy places the BMQ_3234 protein within the inner-spore coat, a region of the spore that is populated by other cortex lytic enzymes. The findings reinforce the idea that there is a degree of variation in mechanisms of cortex hydrolysis across the Bacillales, raising potential implications for environmental decontamination strategies based upon targeted inactivation of components of the spore germination apparatus.
Collapse
Affiliation(s)
- Bahja Al Riyami
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Abhinaba Ghosh
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Eric J Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| |
Collapse
|
9
|
Abstract
Bacterial endospores possess multiple integument layers, one of which is the cortex peptidoglycan wall. The cortex is essential for the maintenance of spore core dehydration and dormancy and contains structural modifications that differentiate it from vegetative cell peptidoglycan and determine its fate during spore germination. Following the engulfment stage of sporulation, the cortex is synthesized within the intermembrane space surrounding the forespore. Proteins responsible for cortex synthesis are produced in both the forespore and mother cell compartments. While some of these proteins also contribute to vegetative cell wall synthesis, others are sporulation specific. In order for the bacterial endospore to germinate and resume metabolism, the cortex peptidoglycan must first be degraded through the action of germination-specific lytic enzymes. These enzymes are present, yet inactive, in the dormant spore and recognize the muramic-δ-lactam modification present in the cortex. Germination-specific lytic enzymes across Bacillaceae and Clostridiaceae share this specificity determinant, which ensures that the spore cortex is hydrolyzed while the vegetative cell wall remains unharmed. Bacillus species tend to possess two redundant enzymes, SleB and CwlJ, capable of sufficient cortex degradation, while the clostridia have only one, SleC. Additional enzymes are often present that cannot initiate the cortex degradation process, but which can increase the rate of release of small fragments into the medium. Between the two families, the enzymes also differ in the enzymatic activities they possess and the mechanisms acting to restrict their activation until germination has been initiated.
Collapse
|
10
|
Magill DJ, Krylov VN, Shaburova OV, McGrath JW, Allen CCR, Quinn JP, Kulakov LA. Pf16 and phiPMW: Expanding the realm of Pseudomonas putida bacteriophages. PLoS One 2017; 12:e0184307. [PMID: 28877269 PMCID: PMC5587285 DOI: 10.1371/journal.pone.0184307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
We present the analysis of two novel Pseudomonas putida phages, pf16 and phiPMW. Pf16 represents a peripherally related T4-like phage, and is the first of its kind infecting a Pseudomonad, with evidence suggesting cyanophage origins. Extensive divergence has resulted in pf16 occupying a newly defined clade designated as the pf16-related phages, lying at the interface of the Schizo T-Evens and Exo T-Evens. Recombination with an ancestor of the P. putida phage AF is likely responsible for the tropism of this phage. phiPMW represents a completely novel Pseudomonas phage with a genome containing substantial genetic novelty through its many hypothetical proteins. Evidence suggests that this phage has been extensively shaped through gene transfer events and vertical evolution. Phylogenetics shows that this phage has an evolutionary history involving FelixO1-related viruses but is in itself highly distinct from this group.
Collapse
Affiliation(s)
- Damian J. Magill
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Victor N. Krylov
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Olga V. Shaburova
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - John W. McGrath
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Christopher C. R. Allen
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - John P. Quinn
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
| | - Leonid A. Kulakov
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast, Northern Ireland
- * E-mail:
| |
Collapse
|
11
|
Abstract
Spores of Clostridiales and Bacillales are encased in a complex series of concentric shells that provide protection, facilitate germination, and mediate interactions with the environment. Analysis of diverse spore-forming species by thin-section transmission electron microscopy reveals that the number and morphology of these encasing shells vary greatly. In some species, they appear to be composed of a small number of discrete layers. In other species, they can comprise multiple, morphologically complex layers. In addition, spore surfaces can possess elaborate appendages. For all their variability, there is a consistent architecture to the layers encasing the spore. A hallmark of all Clostridiales and Bacillales spores is the cortex, a layer made of peptidoglycan. In close association with the cortex, all species examined possess, at a minimum, a series of proteinaceous layers, called the coat. In some species, including Bacillus subtilis, only the coat is present. In other species, including Bacillus anthracis, an additional layer, called the exosporium, surrounds the coat. Our goals here are to review the present understanding of the structure, composition, assembly, and functions of the coat, primarily in the model organism B. subtilis, but also in the small but growing number of other spore-forming species where new data are showing that there is much to be learned beyond the relatively well-developed basis of knowledge in B. subtilis. To help summarize this large field and define future directions for research, we will focus on key findings in recent years.
Collapse
|
12
|
Ramírez-Guadiana FH, Meeske AJ, Wang X, Rodrigues CDA, Rudner DZ. The Bacillus subtilis germinant receptor GerA triggers premature germination in response to morphological defects during sporulation. Mol Microbiol 2017; 105:689-704. [PMID: 28605069 DOI: 10.1111/mmi.13728] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
During sporulation in Bacillus subtilis, germinant receptors assemble in the inner membrane of the developing spore. In response to specific nutrients, these receptors trigger germination and outgrowth. In a transposon-sequencing screen, we serendipitously discovered that loss of function mutations in the gerA receptor partially suppress the phenotypes of > 25 sporulation mutants. Most of these mutants have modest defects in the assembly of the spore protective layers that are exacerbated in the presence of a functional GerA receptor. Several lines of evidence indicate that these mutants inappropriately trigger the activation of GerA during sporulation resulting in premature germination. These findings led us to discover that up to 8% of wild-type sporulating cells trigger premature germination during differentiation in a GerA-dependent manner. This phenomenon was observed in domesticated and undomesticated wild-type strains sporulating in liquid and on solid media. Our data indicate that the GerA receptor is poised on a knife's edge during spore development. We propose that this sensitized state ensures a rapid response to nutrient availability and also elicits premature germination of spores with improperly assembled protective layers resulting in the elimination of even mildly defective individuals from the population.
Collapse
Affiliation(s)
- Fernando H Ramírez-Guadiana
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Alexander J Meeske
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xindan Wang
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Christopher D A Rodrigues
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - David Z Rudner
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
13
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
14
|
Brunt J, van Vliet AHM, van den Bos F, Carter AT, Peck MW. Diversity of the Germination Apparatus in Clostridium botulinum Groups I, II, III, and IV. Front Microbiol 2016; 7:1702. [PMID: 27840626 PMCID: PMC5083711 DOI: 10.3389/fmicb.2016.01702] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Clostridium botulinum is a highly dangerous pathogen that forms very resistant endospores that are ubiquitous in the environment, and which, under favorable conditions germinate to produce vegetative cells that multiply and form the exceptionally potent botulinum neurotoxin. To improve the control of botulinum neurotoxin-forming clostridia, it is important to understand the mechanisms involved in spore germination. Here we present models for spore germination in C. botulinum based on comparative genomics analyses, with C. botulinum Groups I and III sharing similar pathways, which differ from those proposed for C. botulinum Groups II and IV. All spores germinate in response to amino acids interacting with a germinant receptor, with four types of germinant receptor identified [encoded by various combinations of gerA, gerB, and gerC genes (gerX)]. There are three gene clusters with an ABC-like configuration; ABC [gerX1], ABABCB [gerX2] and ACxBBB [gerX4], and a single CA-B [gerX3] gene cluster. Subtypes have been identified for most germinant receptor types, and the individual GerX subunits of each cluster show similar grouping in phylogenetic trees. C. botulinum Group I contained the largest variety of gerX subtypes, with three gerX1, three gerX2, and one gerX3 subtypes, while C. botulinum Group III contained two gerX1 types and one gerX4. C. botulinum Groups II and IV contained a single germinant receptor, gerX3 and gerX1, respectively. It is likely that all four C. botulinum Groups include a SpoVA channel involved in dipicolinic acid release. The cortex-lytic enzymes present in C. botulinum Groups I and III appear to be CwlJ and SleB, while in C. botulinum Groups II and IV, SleC appears to be important.
Collapse
Affiliation(s)
- Jason Brunt
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| | - Arnoud H. M. van Vliet
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
| | | | - Andrew T. Carter
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| | - Michael W. Peck
- Gut Health and Food Safety, Institute of Food ResearchNorwich, UK
| |
Collapse
|
15
|
Al-Riyami B, Üstok FI, Stott K, Chirgadze DY, Christie G. The crystal structure of Clostridium perfringens SleM, a muramidase involved in cortical hydrolysis during spore germination. Proteins 2016; 84:1681-1689. [PMID: 27488615 DOI: 10.1002/prot.25112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 01/10/2023]
Abstract
Clostridium perfringens spores employ two peptidoglycan lysins to degrade the spore cortex during germination. SleC initiates cortex hydrolysis to generate cortical fragments that are degraded further by the muramidase SleM. Here, we present the crystal structure of the C. perfringens S40 SleM protein at 1.8 Å. SleM comprises an N-terminal catalytic domain that adopts an irregular α/β-barrel fold that is common to GH25 family lysozymes, plus a C-terminal fibronectin type III domain. The latter is involved in forming the SleM dimer that is evident in both the crystal structure and in solution. A truncated form of SleM that lacks the FnIII domain shows reduced activity against spore sacculi indicating that this domain may have a role in facilitating the position of substrate with respect to the enzyme's active site. Proteins 2016; 84:1681-1689. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bahja Al-Riyami
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Fatma Işık Üstok
- Department of Haematology, Division of Structural Medicine and Thrombosis Research Unit, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
16
|
Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase. J Bacteriol 2016; 198:1694-1707. [PMID: 27044622 PMCID: PMC4959285 DOI: 10.1128/jb.00986-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/17/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The spore-forming obligate anaerobe Clostridium difficile is a leading cause of antibiotic-associated diarrhea around the world. In order for C. difficile to cause infection, its metabolically dormant spores must germinate in the gastrointestinal tract. During germination, spores degrade their protective cortex peptidoglycan layers, release dipicolinic acid (DPA), and hydrate their cores. In C. difficile, cortex hydrolysis is necessary for DPA release, whereas in Bacillus subtilis, DPA release is necessary for cortex hydrolysis. Given this difference, we tested whether DPA synthesis and/or release was required for C. difficile spore germination by constructing mutations in either spoVAC or dpaAB, which encode an ion channel predicted to transport DPA into the forespore and the enzyme complex predicted to synthesize DPA, respectively. C. difficile spoVAC and dpaAB mutant spores lacked DPA but could be stably purified and were more hydrated than wild-type spores; in contrast, B. subtilis spoVAC and dpaAB mutant spores were unstable. Although C. difficile spoVAC and dpaAB mutant spores exhibited wild-type germination responses, they were more readily killed by wet heat. Cortex hydrolysis was not affected by this treatment, indicating that wet heat inhibits a stage downstream of this event. Interestingly, C. difficile spoVAC mutant spores were significantly more sensitive to heat treatment than dpaAB mutant spores, indicating that SpoVAC plays additional roles in conferring heat resistance. Taken together, our results demonstrate that SpoVAC and DPA synthetase control C. difficile spore resistance and reveal differential requirements for these proteins among the Firmicutes IMPORTANCE Clostridium difficile is a spore-forming obligate anaerobe that causes ∼500,000 infections per year in the United States. Although spore germination is essential for C. difficile to cause disease, the factors required for this process have been only partially characterized. This study describes the roles of two factors, DpaAB and SpoVAC, which control the synthesis and release of dipicolinic acid (DPA), respectively, from bacterial spores. Previous studies of these proteins in other spore-forming organisms indicated that they are differentially required for spore formation, germination, and resistance. We now show that the proteins are dispensable for C. difficile spore formation and germination but are necessary for heat resistance. Thus, our study further highlights the diverse functions of DpaAB and SpoVAC in spore-forming organisms.
Collapse
|
17
|
Leggett M, Setlow P, Sattar S, Maillard JY. Assessing the activity of microbicides against bacterial spores: knowledge and pitfalls. J Appl Microbiol 2016; 120:1174-80. [DOI: 10.1111/jam.13061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/25/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Affiliation(s)
- M.J. Leggett
- Cardiff School of Pharmacy and Pharmaceutical Sciences; Cardiff University; Cardiff UK
| | | | - S.A. Sattar
- Faculty of Medicine; University of Ottawa; Ottawa ON Canada
| | - J.-Y. Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences; Cardiff University; Cardiff UK
| |
Collapse
|
18
|
Fukushima T, Sekiguchi J. Zymographic Techniques for the Analysis of Bacterial Cell Wall in Bacillus. Methods Mol Biol 2016; 1440:87-98. [PMID: 27311666 DOI: 10.1007/978-1-4939-3676-2_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zymography of cell wall hydrolases is a simple technique to specifically detect cell wall or peptidoglycan hydrolytic activity. The zymographic method can be used for assessing the hydrolytic activities of purified target proteins, cell surface proteins, and proteins secreted to culture. Here, methods of cell wall and peptidoglycan purification, extraction of cell surface proteins containing cell wall hydrolases, and zymographic analysis are described. The purified or extracted proteins are separated by electrophoresis using an SDS gel containing cell wall or peptidoglycan material and then the proteins are renatured in the gel. The renatured cell wall hydrolases in the gel hydrolyze the material around the proteins. The cell wall or peptidoglycan in the gel is stained by methylene blue and the hydrolyzed material cannot be stained, resulting in the detection of cell wall hydrolytic activities of the enzymes on the gel.
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Division of Gene Research, Department of Life Sciences, Research Center for Human and Environmental Sciences, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| | - Junichi Sekiguchi
- Department of Applied Biology, Graduate School of Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano, 386-8567, Japan.
| |
Collapse
|
19
|
Üstok FI, Chirgadze DY, Christie G. Structural and functional analysis of SleL, a peptidoglycan lysin involved in germination of B
acillus
spores. Proteins 2015; 83:1787-99. [DOI: 10.1002/prot.24861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Fatma Işık Üstok
- Department of Chemical Engineering and Biotechnology; Institute of Biotechnology, University of Cambridge; Cambridge United Kingdom
- Department of Haematology, Division of Structural Medicine and Thrombosis Research Unit, Cambridge Institute for Medical Research, University of Cambridge; Cambridge United Kingdom
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, Crystallography and Biocomputing Unit; University of Cambridge; Cambridge United Kingdom
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology; Institute of Biotechnology, University of Cambridge; Cambridge United Kingdom
| |
Collapse
|
20
|
Blankenship BG, Heffron JD, Popham DL. Lytic enzyme-assisted germination of Bacillus anthracis and Bacillus subtilis spores. J Appl Microbiol 2015; 119:521-8. [PMID: 25963559 DOI: 10.1111/jam.12839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/30/2015] [Accepted: 05/03/2015] [Indexed: 11/30/2022]
Abstract
AIMS The goal of this work was to determine conditions under which external application of a spore germination-specific lytic enzyme (GSLE) can increase the germination efficiency of spore populations. METHODS AND RESULTS The Bacillus anthracis GSLE SleB was applied to native and coat-disrupted B. anthracis and Bacillus subtilis spores. SleB was inactive on native spores but was able to trigger rapid germination of coat-disrupted spores. Using spores lacking their GSLEs or their germinant receptors to model poorly germinating spores, SleB application was able to increase colony-forming efficiency 100-fold for native spores and >1000-fold for coat-disrupted spores. SleB effects on GSLE-deficient spores were greater than on germinant receptor-deficient spores. CONCLUSIONS SleB treatment can increase spore germination efficiency. The greater effect of SleB on coat-disrupted spores is presumably due to the greater access afforded to the cortex. However, SleB apparently gained access to the cortex of native spores after they responded to nutrients and completed stage I of germination, which may result in the disruption of coat structure. SIGNIFICANCE AND IMPACT OF THE STUDY Treatment of spore populations with a GSLE can increase germination efficiency. Such a treatment might be utilized to increase the rapid activation of industrial spore-based products.
Collapse
Affiliation(s)
- B G Blankenship
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - D L Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
21
|
Meaney CA, Cartman ST, McClure PJ, Minton NP. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ. Anaerobe 2015; 34:86-93. [PMID: 25937262 DOI: 10.1016/j.anaerobe.2015.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Germination, the process by which dormant endospores return to vegetative growth, is a critical process in the life cycle of the notorious pathogen Clostridium botulinum. Crucial is the degradation by hydrolytic enzymes of an inner peptidoglycan spore layer termed the cortex. Two mechanistically different systems of cortex lysis exist in spores of Clostridium species. C. botulinum ATCC 3502 harbours the Bacillus-like system of SleB, CwlJ and YpeB cortex lytic enzymes (CLEs). Through the construction of insertional gene knockout mutants in the sleB, cwlJ and ypeB genes of C. botulinum ATCC 3502 and the production of spores of each mutant strain, the effect on germination was assessed. This study demonstrates a reduced germination efficiency in spores carrying mutations in either sleB or ypeB with an approximate 2-fold reduction in heat resistant colony forming units (CFU/OD600) when plated on rich media. This reduction could be restored to wild-type levels by removing the spore coat and plating on media supplemented with lysozyme. It was observed that cwlJ spores displayed a similar germination efficiency as wild-type spores (P > 0.05). An optimal germinant commixture was identified to include a combination of l-alanine with sodium bicarbonate as it resulted in a 32% drop in OD600, while the additional incorporation of l-lactate resulted in a 57% decrease. Studies of the germination efficiency of spores prepared from all three CLE mutants was performed by monitoring the associated decrease in optical density but a germination defect was not observed in any of the CLE mutant strains. This was likely due to the lack of specificity of this particular assay. Taken together, these data indicate that functional copies of SleB and YpeB, but not CwlJ are required for the optimal germination of the spores of C. botulinum ATCC 3502.
Collapse
Affiliation(s)
- Carolyn A Meaney
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Stephen T Cartman
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Nigel P Minton
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
22
|
Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Food Microbiol 2015; 50:83-7. [PMID: 25998819 DOI: 10.1016/j.fm.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/22/2022]
Abstract
The protease CspB and the cortex-lytic enzyme SleC are essential for peptoglycan cortex hydrolysis during germination of spores of the Clostridium perfringens food poisoning isolate SM101. In this study, Western blot analyses were used to demonstrate that CspB and SleC are present exclusively in the C. perfringens SM101 spore coat layer fraction and absent in the lysate from decoated spores and from the purified inner spore membrane. These results indicate why decoating treatments greatly reduce both germination and apparent viability of C. perfringens spores in the absence of an exogenous lytic enzyme. In addition, quantitative Western blot analyses showed that there are approximately 2000 and 130,000 molecules of CspB and pro-SleC, respectively, per C. perfringens SM101 spore, consistent with CspB's role in acting catalytically on pro-SleC to convert this zymogen to the active enzyme.
Collapse
|
23
|
Nagler K, Moeller R. Systematic investigation of germination responses of Bacillus subtilis spores in different high-salinity environments. FEMS Microbiol Ecol 2015; 91:fiv023. [PMID: 25764471 DOI: 10.1093/femsec/fiv023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2015] [Indexed: 11/14/2022] Open
Abstract
High-salinity environments play an increasingly important role in ecology regarding soil salinization due to human-induced processes, but also need to be considered in terms of natural soil desiccation and extreme habitats. It has been shown previously that spore germination of the ubiquitous soil bacterium Bacillus subtilis is detrimentally affected by the presence of high NaCl concentrations, but the underlying mechanisms and effects of other salts remained obscure. To address these two points, we performed a systematic analysis with 32 different salts using spectrophotometric and microscopic methods. It could be shown that inhibitory strength varies considerably among different salts. Although osmotic effects seem to play an important role, ionic composition and concentration (especially of the anion) as well as chemical properties seem to be decisive for the extent of germination inhibition. At the current state of knowledge, fluxes of ions, Ca(2+)-DPA and water are likely affected by all salts, whereas the exact inhibition mechanism of each salt might further depend on the respective properties of the involved ions. Hence, the observed inhibition likely is a result of several phenomena interacting with each other. Altogether this study highlights the complex impact of ionic environments on the life cycle of spore formers.
Collapse
Affiliation(s)
- Katja Nagler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, D-51147 Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, D-51147 Cologne (Köln), Germany
| |
Collapse
|
24
|
Wu X, Grover N, Paskaleva EE, Mundra RV, Page MA, Kane RS, Dordick JS. Characterization of the activity of the spore cortex lytic enzyme CwlJ1. Biotechnol Bioeng 2015; 112:1365-75. [DOI: 10.1002/bit.25565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Xia Wu
- Howard P. Isermann Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; 110 8th Street, Troy New York 12180
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180
| | - Navdeep Grover
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180
| | - Elena E. Paskaleva
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180
| | - Ruchir V. Mundra
- Howard P. Isermann Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; 110 8th Street, Troy New York 12180
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180
| | - Martin A. Page
- U.S. Army Engineer Research and Development Center; Construction Engineering Research Laboratory; Champaign Illinois
| | - Ravi S. Kane
- Howard P. Isermann Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; 110 8th Street, Troy New York 12180
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180
| | - Jonathan S. Dordick
- Howard P. Isermann Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; 110 8th Street, Troy New York 12180
- Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Materials Science and Engineering; Department of Biology; Department of Biomedical Engineering; Rensselaer Polytechnic Institute; Troy New York 12180
| |
Collapse
|
25
|
HtrC is involved in proteolysis of YpeB during germination of Bacillus anthracis and Bacillus subtilis spores. J Bacteriol 2014; 197:326-36. [PMID: 25384476 DOI: 10.1128/jb.02344-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn(2+) or Ca(2+) ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation.
Collapse
|
26
|
Tan IS, Ramamurthi KS. Spore formation in Bacillus subtilis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:212-25. [PMID: 24983526 PMCID: PMC4078662 DOI: 10.1111/1758-2229.12130] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/05/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications.
Collapse
Affiliation(s)
- Irene S Tan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA; NIH-Johns Hopkins University Graduate Partnerships Program, Baltimore, MD, 21218, USA
| | | |
Collapse
|
27
|
A Novel Small Protein ofBacillus subtilisInvolved in Spore Germination and Spore Coat Assembly. Biosci Biotechnol Biochem 2014; 75:1119-28. [DOI: 10.1271/bbb.110029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Chen Y, Ray WK, Helm RF, Melville SB, Popham DL. Levels of germination proteins in Bacillus subtilis dormant, superdormant, and germinating spores. PLoS One 2014; 9:e95781. [PMID: 24752279 PMCID: PMC3994143 DOI: 10.1371/journal.pone.0095781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/31/2014] [Indexed: 12/24/2022] Open
Abstract
Bacterial endospores exhibit extreme resistance to most conditions that rapidly kill other life forms, remaining viable in this dormant state for centuries or longer. While the majority of Bacillus subtilis dormant spores germinate rapidly in response to nutrient germinants, a small subpopulation termed superdormant spores are resistant to germination, potentially evading antibiotic and/or decontamination strategies. In an effort to better understand the underlying mechanisms of superdormancy, membrane-associated proteins were isolated from populations of B. subtilis dormant, superdormant, and germinated spores, and the relative abundance of 11 germination-related proteins was determined using multiple-reaction-monitoring liquid chromatography-mass spectrometry assays. GerAC, GerKC, and GerD were significantly less abundant in the membrane fractions obtained from superdormant spores than those derived from dormant spores. The amounts of YpeB, GerD, PrkC, GerAC, and GerKC recovered in membrane fractions decreased significantly during germination. Lipoproteins, as a protein class, decreased during spore germination, while YpeB appeared to be specifically degraded. Some protein abundance differences between membrane fractions of dormant and superdormant spores resemble protein changes that take place during germination, suggesting that the superdormant spore isolation procedure may have resulted in early, non-committal germination-associated changes. In addition to low levels of germinant receptor proteins, a deficiency in the GerD lipoprotein may contribute to heterogeneity of spore germination rates. Understanding the reasons for superdormancy may allow for better spore decontamination procedures.
Collapse
Affiliation(s)
- Yan Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephen B. Melville
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Alvarez Z, Abel-Santos E. Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax andClostridium difficile-associated disease. Expert Rev Anti Infect Ther 2014; 5:783-92. [PMID: 17914913 DOI: 10.1586/14787210.5.5.783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spore germination is the first step in establishing Bacillus and Clostridium infections. Germination is triggered by the binding of small molecules by the resting spore. Subsequently, the activated spore secretes dipicolinic acid and calcium, the spore core is rehydrated and spore structures are degraded. Inhibition of any of the germination-related events will prevent development to the vegetative stage. Inhibition of spore germination has been studied intensively in the prevention of food spoilage. In this perspective, we propose that similar approaches could be used in the prophylactic control of Bacillus anthracis and Clostridium difficile infections. Inhibition of B. anthracis spore germination could protect military and first-line emergency personnel at high risk for anthrax exposure. Inhibition of C. difficile could prevent human C. difficile-associated disease during antibiotic treatment of immunocompromised patients.
Collapse
Affiliation(s)
- Zadkiel Alvarez
- Department of Chemistry, University of Nevada, 4505 Maryland Parkway, Campus Box 4003, Las Vegas, NV 89154, USA.
| | | |
Collapse
|
30
|
Abstract
Previous work demonstrated that Bacillus megaterium QM B1551 spores that are null for the sleB and cwlJ genes, which encode cortex-lytic enzymes (CLEs), either of which is required for efficient cortex hydrolysis in Bacillus spores, could germinate efficiently when complemented with a plasmid-borne copy of ypeB plus the nonlytic portion of sleB encoding the N-terminal domain of SleB (sleB(N)). The current study demonstrates that the defective germination phenotype of B. megaterium sleB cwlJ spores can partially be restored when they are complemented with plasmid-borne ypeB alone. However, efficient germination in this genetic background requires the presence of sleL, which in this species was suggested previously to encode a nonlytic epimerase. Recombinant B. megaterium SleL showed little, or no, activity against purified spore sacculi, cortical fragments, or decoated spore substrates. However, analysis of muropeptides generated by the combined activities of recombinant SleB and SleL against spore sacculi revealed that B. megaterium SleL is actually an N-acetylglucosaminidase, albeit with apparent reduced activity compared to that of the homologous Bacillus cereus protein. Additionally, decoated spores were induced to release a significant proportion of dipicolinic acid (DPA) from the spore core when incubated with recombinant SleL plus YpeB, although optimal DPA release required the presence of endogenous CLEs. The physiological basis that underpins this newly identified dependency between SleL and YpeB is not clear, since pulldown assays indicated that the proteins do not interact physically in vitro.
Collapse
|
31
|
Gutelius D, Hokeness K, Logan SM, Reid CW. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. MICROBIOLOGY-SGM 2013; 160:209-216. [PMID: 24140647 DOI: 10.1099/mic.0.072454-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clostridium difficile is the most common cause of enteric disease and presents a major burden on healthcare systems globally due in part to the observed rapid rise in antibiotic resistance. The ability of C. difficile to form endospores is a key feature in the organism's pathogenesis and transmission, and contributes greatly to its resilient nature. Endospores are highly resistant to disinfection, allowing them to persist on hospital surfaces. In order for the organism to cause disease, the spores must germinate and revert to a vegetative form. While spore germination in Bacillus spp. is well understood, very little is known about this process in Clostridia. Here we report the characterization of SleC (CD0551) from C. difficile 630. Bioinformatic analysis of SleC indicated a multi-domained protein possessing a peptidoglycan-binding (PGB) domain, a SpoIID/LytB domain and an undefined N-terminal region. We have confirmed that SleC is an exo-acting lytic transglycosylase with the catalytic activity localized to the N-terminal region. Additionally, we have shown that both the N-terminal catalytic domain and the C-terminal PGB domain require muramyl-δ-lactam for substrate binding. As with carbohydrate-binding modules from cellulases and xylanases, the PGB domain may be responsible for increasing the processivity of SleC by concentrating the enzyme at the surface of the substrate.
Collapse
Affiliation(s)
- Danielle Gutelius
- Department of Science and Technology, Bryant University, Smithfield, RI 02917, USA
| | - Kirsten Hokeness
- Department of Science and Technology, Bryant University, Smithfield, RI 02917, USA
| | - Susan M Logan
- National Research Council - Human Health Therapeutics Portfolio, Ottawa, ON K1A 0R6, Canada
| | - Christopher W Reid
- Department of Science and Technology, Bryant University, Smithfield, RI 02917, USA
| |
Collapse
|
32
|
Reineke K, Mathys A, Heinz V, Knorr D. Mechanisms of endospore inactivation under high pressure. Trends Microbiol 2013; 21:296-304. [DOI: 10.1016/j.tim.2013.03.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/27/2023]
|
33
|
Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis. J Bacteriol 2013; 195:2887-97. [PMID: 23603740 DOI: 10.1128/jb.00112-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bacillus thuringiensis, a novel N-acetylmuramoyl-L-alanine amidase gene (named cwlB) was detected, and the CwlB protein was purified and characterized. Reverse transcription-PCR (RT-PCR) results indicated that cwlB and an upstream gene (named cwlA) formed one transcriptional unit. 5' rapid amplification of cDNA ends (5'-RACE)-PCR and transcriptional fusions with the lacZ gene indicated that transcription of the operon was directed by a promoter, P(cwlA), which is located upstream from the cwlA gene and that the transcription start site is a single 5'-end nucleotide residue T located 25 nucleotides (bp) upstream from the cwlA translational start codon. Moreover, the activity of P(cwlA) was controlled by σ(K). Morphological analysis suggested that the mutation of cwlB could delay spore release compared to the timing of spore release in the wild-type strain. Western blot assay demonstrated that purified CwlB bound to the B. thuringiensis cell wall. Observations with laser confocal microscopy and a green fluorescent protein-based reporter system demonstrated that the CwlB protein localizes to the cell envelope. All results suggest that the CwlB protein is involved in mother cell lysis in B. thuringiensis.
Collapse
|
34
|
Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination. J Bacteriol 2013; 195:2530-40. [PMID: 23543708 DOI: 10.1128/jb.00259-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Germination of Bacillus spores requires degradation of a modified layer of peptidoglycan (PG) termed the spore cortex by two redundant cortex-lytic enzymes (CLEs), CwlJ and SleB, plus SleB's partner protein, YpeB. In this study, in vitro and in vivo analyses have been used to clarify the roles of individual SleB and YpeB domains in PG degradation. Purified mature Bacillus cereus SleB without its signal sequence (SleB(M)) and the SleB C-terminal catalytic domain (SleB(C)) efficiently triggered germination of decoated Bacillus megaterium and Bacillus subtilis spores lacking endogenous CLEs; previously, SleB's N-terminal domain (SleB(N)) was shown to bind PG but have no enzymatic activity. YpeB lacking its putative membrane anchoring sequence (YpeB(M)) or its N- and C-terminal domains (YpeB(N) and YpeB(C)) alone did not exhibit degradative activity, but YpeB(N) inhibited SleB(M) and SleB(C) activity in vitro. The severe germination defect of B. subtilis cwlJ sleB or cwlJ sleB ypeB spores was complemented by ectopic expression of full-length sleB [sleB(FL)] and ypeB [ypeB(FL)], but normal levels of SleB(FL) in spores required normal spore levels of YpeB(FL) and vice versa. sleB(FL) or ypeB(FL) alone, sleB(FL) plus ypeB(C) or ypeB(N), and sleB(C) or sleB(N) plus ypeB(FL) did not complement the cortex degradation defect in cwlJ sleB ypeB spores. In addition, ectopic expression of sleB(FL) or cwlJ(FL) with a Glu-to-Gln mutation in a predicted active-site residue failed to restore the germination of cwlJ sleB spores, supporting the role of this invariant glutamate as the key catalytic residue in SleB and CwlJ.
Collapse
|
35
|
Jing X, Robinson HR, Heffron JD, Popham DL, Schubot FD. The catalytic domain of the germination-specific lytic transglycosylase SleB from Bacillus anthracis displays a unique active site topology. Proteins 2012; 80:2469-75. [PMID: 22777830 DOI: 10.1002/prot.24140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 06/27/2012] [Accepted: 06/29/2012] [Indexed: 11/08/2022]
Abstract
Bacillus anthracis produces metabolically inactive spores. Germination of these spores requires germination-specific lytic enzymes (GSLEs) that degrade the unique cortex peptidoglycan to permit resumption of metabolic activity and outgrowth. We report the first crystal structure of the catalytic domain of a GSLE, SleB. The structure revealed a transglycosylase fold with unique active site topology and permitted identification of the catalytic glutamate residue. Moreover, the structure provided insights into the molecular basis for the specificity of the enzyme for muramic-δ-lactam-containing cortex peptidoglycan. The protein also contains a metal-binding site that is positioned directly at the entrance of the substrate-binding cleft.
Collapse
Affiliation(s)
- Xing Jing
- Virginia Tech, Department of Biological Sciences, Life Sciences, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
36
|
Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J Bacteriol 2012; 194:4941-50. [PMID: 22773792 DOI: 10.1128/jb.00914-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endospore formation by Bacillus subtilis is a complex and dynamic process. One of the major challenges of sporulation is the assembly of a protective, multilayered, proteinaceous spore coat, composed of at least 70 different proteins. Spore coat formation can be divided into two distinct stages. The first is the recruitment of proteins to the spore surface, dependent on the morphogenetic protein SpoIVA. The second step, known as encasement, involves the migration of the coat proteins around the circumference of the spore in successive waves, a process dependent on the morphogenetic protein SpoVID and the transcriptional regulation of individual coat genes. We provide genetic and biochemical evidence supporting the hypothesis that SpoVID promotes encasement of the spore by establishing direct protein-protein interactions with other coat morphogenetic proteins. It was previously demonstrated that SpoVID directly interacts with SpoIVA and the inner coat morphogenetic protein, SafA. Here, we show by yeast two-hybrid and pulldown assays that SpoVID also interacts directly with the outer coat morphogenetic protein, CotE. Furthermore, by mutational analysis, we identified a specific residue in the N-terminal domain of SpoVID that is essential for the interaction with CotE but dispensable for the interaction with SafA. We propose an updated model of coat assembly and spore encasement that incorporates several physical interactions between the principal coat morphogenetic proteins.
Collapse
|
37
|
Crystal structure of the catalytic domain of the Bacillus cereus SleB protein, important in cortex peptidoglycan degradation during spore germination. J Bacteriol 2012; 194:4537-45. [PMID: 22730118 DOI: 10.1128/jb.00877-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The SleB protein is one of two redundant cortex-lytic enzymes (CLEs) that initiate the degradation of cortex peptidoglycan (PG), a process essential for germination of spores of Bacillus species, including Bacillus anthracis. SleB has been characterized as a soluble lytic transglycosylase that specifically recognizes spore cortex PG and catalyzes the cleavage of glycosidic bonds between N-acetylmuramic acid (NAM) and N-acetylglucosamine residues with concomitant formation of a 1,6-anhydro bond in the NAM residue. We found that like the full-length Bacillus cereus SleB, the catalytic C-terminal domain (SleB(C)) exhibited high degradative activity on cortex PG in vitro, although SleB's N-terminal domain, thought to bind PG, was inactive. The 1.85-Å crystal structure of SleB(C) reveals an ellipsoid molecule with two distinct domains dominated by either α helices or β strands. The overall fold of SleB closely resembles that of the catalytic domain of the family 1 lytic transglycosylases but with a completely different topological arrangement. Structural analysis shows that an invariant Glu157 of SleB is in a position equivalent to that of the catalytic glutamate in other lytic transglycosylases. Indeed, SleB bearing a Glu157-to-Gln mutation lost its cortex degradative activity completely. In addition, the other redundant CLE (called CwlJ) in Bacillus species likely has a three-dimensional structure similar to that of SleB, including the invariant putative catalytic Glu residue. SleB and CwlJ may offer novel targets for the development of anti-spore agents.
Collapse
|
38
|
Lambert EA, Sherry N, Popham DL. In vitro and in vivo analyses of the Bacillus anthracis spore cortex lytic protein SleL. MICROBIOLOGY-SGM 2012; 158:1359-1368. [PMID: 22343356 DOI: 10.1099/mic.0.056630-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The bacterial endospore is the most resilient biological structure known. Multiple protective integument layers shield the spore core and promote spore dehydration and dormancy. Dormancy is broken when a spore germinates and becomes a metabolically active vegetative cell. Germination requires the breakdown of a modified layer of peptidoglycan (PG) known as the spore cortex. This study reports in vitro and in vivo analyses of the Bacillus anthracis SleL protein. SleL is a spore cortex lytic enzyme composed of three conserved domains: two N-terminal LysM domains and a C-terminal glycosyl hydrolase family 18 domain. Derivatives of SleL containing both, one or no LysM domains were purified and characterized. SleL is incapable of digesting intact cortical PG of either decoated spores or purified spore sacculi. However, SleL derivatives can hydrolyse fragmented PG substrates containing muramic-δ-lactam recognition determinants. The muropeptides that result from SleL hydrolysis are the products of N-acetylglucosaminidase activity. These muropeptide products are small and readily released from the cortex matrix. Loss of the LysM domain(s) decreases both PG binding and hydrolysis activity but these domains do not appear to determine specificity for muramic-δ-lactam. When the SleL derivatives are expressed in vivo, those proteins lacking one or both LysM domains do not associate with the spore. Instead, these proteins remain in the mother cell and are apparently degraded. SleL with both LysM domains localizes to the coat or cortex of the endospore. The information revealed by elucidating the role of SleL and its domains in B. anthracis sporulation and germination is important in designing new spore decontamination methods. By exploiting germination-specific lytic enzymes, eradication techniques may be greatly simplified.
Collapse
Affiliation(s)
- Emily A Lambert
- Department of Biological Sciences, Virginia Tech., Life Sciences I-MC0910, Blacksburg, VA 24061, USA
| | - Nora Sherry
- Department of Biological Sciences, Virginia Tech., Life Sciences I-MC0910, Blacksburg, VA 24061, USA
| | - David L Popham
- Department of Biological Sciences, Virginia Tech., Life Sciences I-MC0910, Blacksburg, VA 24061, USA
| |
Collapse
|
39
|
Terry C, Shepherd A, Radford DS, Moir A, Bullough PA. YwdL in Bacillus cereus: its role in germination and exosporium structure. PLoS One 2011; 6:e23801. [PMID: 21887322 PMCID: PMC3161080 DOI: 10.1371/journal.pone.0023801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/25/2011] [Indexed: 11/18/2022] Open
Abstract
In members of the Bacillus cereus group the outermost layer of the spore is the exosporium, which interacts with hosts and the environment. Efforts have been made to identify proteins of the exosporium but only a few have so far been characterised and their role in determining spore architecture and spore function is still poorly understood. We have characterised the exosporium protein, YwdL. ΔywdL spores have a more fragile exosporium, subject to damage on repeated freeze-thawing, although there is no evidence of altered resistance properties, and coats appear intact. Immunogold labelling and Western blotting with anti-YwdL antibodies identified YwdL to be located exclusively on the inner surface of the exosporium of B. cereus and B. thuringiensis. We conclude that YwdL is important for formation of a robust exosporium but is not required to maintain the crystalline assembly within the basal layer or for attachment of the hairy nap structure. ΔywdL spores are unable to germinate in response to CaDPA, and have altered germination properties, a phenotype that confirms the expected defect in localization of the cortex lytic enzyme CwlJ in the coat.
Collapse
Affiliation(s)
- Cassandra Terry
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Removability of bacterial spores made adherent to solid surfaces from suspension with and without drying. Food Control 2010. [DOI: 10.1016/j.foodcont.2010.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Burns DA, Heap JT, Minton NP. Clostridium difficile spore germination: an update. Res Microbiol 2010; 161:730-4. [PMID: 20863888 DOI: 10.1016/j.resmic.2010.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/11/2010] [Indexed: 01/06/2023]
Abstract
Endospore production is vital for the spread of Clostridium difficile infection. However, in order to cause disease, these spores must germinate and return to vegetative cell growth. Knowledge of germination is therefore important, with potential practical implications for routine cleaning, outbreak management and potentially in the design of new therapeutics. Germination has been well studied in Bacillus, but until recently there had been few studies reported in C. difficile. The role of bile salts as germinants for C. difficile spores has now been described in some detail, which improves our understanding of how C. difficile spores interact with their environment following ingestion by susceptible individuals. Furthermore, with the aid of novel genetic tools, it has now become possible to study the germination of C. difficile spores using both a forward and reverse genetics approach. Significant progress is beginning to be made in the study of this important aspect of C. difficile disease.
Collapse
Affiliation(s)
- David A Burns
- Nottingham Digestive Diseases Centre NIHR Biomedical Research Unit (NDDC BRU), School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
42
|
Abstract
Molecular-genetic and muropeptide analysis techniques have been applied to examine the function in vivo of the Bacillus megaterium QM B1551 SleB and SleL proteins. In common with Bacillus subtilis and Bacillus anthracis, the presence of anhydromuropeptides in B. megaterium germination exudates, which is indicative of lytic transglycosylase activity, is associated with an intact sleB structural gene. B. megaterium sleB cwlJ double mutant strains complemented with engineered SleB variants in which the predicted N- or C-terminal domain has been deleted (SleB-ΔN or SleB-ΔC) efficiently initiate and hydrolyze the cortex, generating anhydromuropeptides in the process. Additionally, sleB cwlJ strains complemented with SleB-ΔN or SleB-ΔC, in which glutamate and aspartate residues have individually been changed to alanine, all retain the ability to hydrolyze the cortex to various degrees during germination, with concomitant release of anhydromuropeptides to the surrounding medium. These data indicate that while the presence of either the N- or C-terminal domain of B. megaterium SleB is sufficient for initiation of cortex hydrolysis and the generation of anhydromuropeptides, the perceived lytic transglycosylase activity may be derived from an enzyme(s), perhaps exclusively or in addition to SleB, which has yet to be identified. B. megaterium SleL appears to be associated with the epimerase-type activity observed previously in B. subtilis, differing from the glucosaminidase function that is apparent in B. cereus/B. anthracis.
Collapse
|
43
|
Contributions of four cortex lytic enzymes to germination of Bacillus anthracis spores. J Bacteriol 2009; 192:763-70. [PMID: 19966006 DOI: 10.1128/jb.01380-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacterial spores remain dormant and highly resistant to environmental stress until they germinate. Completion of germination requires the degradation of spore cortex peptidoglycan by germination-specific lytic enzymes (GSLEs). Bacillus anthracis has four GSLEs: CwlJ1, CwlJ2, SleB, and SleL. In this study, the cooperative action of all four GSLEs in vivo was investigated by combining in-frame deletion mutations to generate all possible double, triple, and quadruple GSLE mutant strains. Analyses of mutant strains during spore germination and outgrowth combined observations of optical density loss, colony-producing ability, and quantitative identification of spore cortex fragments. The lytic transglycosylase SleB alone can facilitate enough digestion to allow full spore viability and generates a variety of small and large cortex fragments. CwlJ1 is also sufficient to allow completion of nutrient-triggered germination independently and is a major factor in Ca(2+)-dipicolinic acid (DPA)-triggered germination, but its enzymatic activity remains unidentified because its products are large and not readily released from the spore's integuments. CwlJ2 contributes the least to overall cortex digestion but plays a subsidiary role in Ca(2+)-DPA-induced germination. SleL is an N-acetylglucosaminidase that plays the major role in hydrolyzing the large products of other GSLEs into small, rapidly released muropeptides. As the roles of these enzymes in cortex degradation become clearer, they will be targets for methods to stimulate premature germination of B. anthracis spores, greatly simplifying decontamination measures.
Collapse
|
44
|
SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J Bacteriol 2009; 192:657-64. [PMID: 19933358 DOI: 10.1128/jb.01209-09] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is the major cause of infectious diarrhea and a major burden to health care services. The ability of this organism to form endospores plays a pivotal role in infection and disease transmission. Spores are highly resistant to many forms of disinfection and thus are able to persist on hospital surfaces and disseminate infection. In order to cause disease, the spores must germinate and the organism must grow vegetatively. Spore germination in Bacillus is well understood, and genes important for this process have recently been identified in Clostridium perfringens; however, little is known about C. difficile. Apparent homologues of the spore cortex lytic enzyme genes cwlJ and sleB (Bacillus subtilis) and sleC (C. perfringens) are present in the C. difficile genome, and we describe inactivation of these homologues in C. difficile 630Delta erm and a B1/NAP1/027 clinical isolate. Spores of a sleC mutant were unable to form colonies when germination was induced with taurocholate, although decoated sleC spores formed the same number of heat-resistant colonies as the parental control, even in the absence of germinants. This suggests that sleC is absolutely required for conversion of spores to vegetative cells, in contrast to CD3563 (a cwlJ/sleB homologue), inactivation of which had no effect on germination and outgrowth of C. difficile spores under the same conditions. The B1/NAP1/027 strain R20291 was found to sporulate more slowly and produce fewer spores than 630Delta erm. Furthermore, fewer R20291 spores germinated, indicating that there are differences in both sporulation and germination between these epidemic and nonepidemic C. difficile isolates.
Collapse
|
45
|
Abstract
Clostridium sordellii is a spore-forming, obligately anaerobic, Gram-positive bacterium that can cause toxic shock syndrome after gynecological procedures. Although the incidence of C. sordellii infection is low, it is fatal in most cases. Since spore germination is believed to be the first step in the establishment of Bacilli and Clostridia infections, we analyzed the requirements for C. sordellii spore germination in vitro. Our data showed that C. sordellii spores require three structurally different amino acids and bicarbonate for maximum germination. Unlike the case for Bacilli species, d-alanine had no effect on C. sordellii spore germination. C. sordellii spores germinated only in a narrow pH range between 5.7 and 6.5. In contrast, C. sordellii spore germination was significantly less sensitive to temperature changes than that of the Bacilli. The analysis of the kinetics of C. sordellii spore germination showed strong allosteric behavior in the binding of l-phenylalanine and l-alanine but not in that of bicarbonate or l-arginine. By comparing germinant apparent binding affinities to their known in vivo concentrations, we postulated a mechanism for differential C. sordellii spore activation in the female reproductive tract.
Collapse
|
46
|
Giebel JD, Carr KA, Anderson EC, Hanna PC. The germination-specific lytic enzymes SleB, CwlJ1, and CwlJ2 each contribute to Bacillus anthracis spore germination and virulence. J Bacteriol 2009; 191:5569-76. [PMID: 19581364 PMCID: PMC2737968 DOI: 10.1128/jb.00408-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 06/22/2009] [Indexed: 12/22/2022] Open
Abstract
The bacterial spore cortex is critical for spore stability and dormancy and must be hydrolyzed by germination-specific lytic enzymes (GSLEs), which allows complete germination and vegetative cell outgrowth. We created in-frame deletions of three genes that encode GSLEs that have been shown to be active in Bacillus anthracis germination: sleB, cwlJ1, and cwlJ2. Phenotypic analysis of individual null mutations showed that the removal of any one of these genes was not sufficient to disrupt spore germination in nutrient-rich media. This finding indicates that these genes have partially redundant functions. Double and triple deletions of these genes resulted in more significant defects. Although a small subset of DeltasleB DeltacwlJ1 spores germinate with wild-type kinetics, for the overall population there is a 3-order-of-magnitude decrease in the colony-forming efficiency compared with wild-type spores. DeltasleB DeltacwlJ1 DeltacwlJ2 spores are unable to complete germination in nutrient-rich conditions in vitro. Both DeltasleB DeltacwlJ1 and DeltasleB DeltacwlJ1 DeltacwlJ2 spores are significantly attenuated, but are not completely devoid of virulence, in a mouse model of inhalation anthrax. Although unable to germinate in standard nutrient-rich media, spores lacking SleB, CwlJ1, and CwlJ2 are able to germinate in whole blood and serum in vitro, which may explain the persistent low levels of virulence observed in mouse infections. This work contributes to our understanding of GSLE activation and function during germination. This information may result in identification of useful therapeutic targets for the disease anthrax, as well as provide insights into ways to induce the breakdown of the protective cortex layer, facilitating easier decontamination of resistant spores.
Collapse
Affiliation(s)
- Jonathan D Giebel
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science Building II, Box 0620, Ann Arbor, MI 48109-062, USA
| | | | | | | |
Collapse
|
47
|
Peng L, Chen D, Setlow P, Li YQ. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics. Anal Chem 2009; 81:4035-42. [PMID: 19374431 DOI: 10.1021/ac900250x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual Bacillus subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores' peptidoglycan cortexes. Conclusions from these measurements include (1) CaDPA release from individual wild-type germinating spores was biphasic; in a first heterogeneous slow phase, T(lag), CaDPA levels decreased approximately 15%, and in the second phase ending at T(release), remaining CaDPA was released rapidly; (2) in L-alanine germination of wild-type spores and spores lacking SleB (a) the ESLI rose approximately 2-fold shortly before T(lag) at T(1), (b) following T(lag), the ESLI again rose approximately 2-fold at T(2) when CaDPA levels had decreased approximately 50%, and (c) the ESLI reached its maximum value at approximately T(release) and then decreased; (3) in CaDPA germination of wild-type spores, (a) T(lag) increased and the first increase in ESLI occurred well before T(lag), consistent with different pathways for CaDPA and L-alanine germination, (b) at T(release), the ESLI again reached its maximum value; (4) in L-alanine germination of spores lacking both CLEs and unable to degrade their cortex, the time DeltaT(release) (T(release) - T(lag)) for excretion of > or = 75% of CaDPA was approximately 15-fold higher than that for wild-type or sleB spores; and (5) spores lacking only CwlJ exhibited a similar but not identical ESLI pattern during L-alanine germination to that seen with cwlJ sleB spores and the high value for DeltaT(release).
Collapse
Affiliation(s)
- Lixin Peng
- Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353, USA
| | | | | | | |
Collapse
|
48
|
Setlow B, Peng L, Loshon CA, Li YQ, Christie G, Setlow P. Characterization of the germination of Bacillus megaterium spores lacking enzymes that degrade the spore cortex. J Appl Microbiol 2009; 107:318-28. [PMID: 19302310 DOI: 10.1111/j.1365-2672.2009.04210.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination. METHODS AND RESULTS Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination. CONCLUSIONS CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores. SIGNIFICANCE AND IMPACT OF THE STUDY These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.
Collapse
Affiliation(s)
- B Setlow
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA.
| | | | | | | | | | | |
Collapse
|
49
|
SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens. J Bacteriol 2009; 191:2711-20. [PMID: 19218389 DOI: 10.1128/jb.01832-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Clostridial spore germination requires degradation of the spore's peptidoglycan (PG) cortex by cortex-lytic enzymes (CLEs), and two Clostridium perfringens CLEs, SleC and SleM, degrade cortex PG in vitro. We now find that only SleC is essential for cortex hydrolysis and viability of C. perfringens spores. C. perfringens sleC spores did not germinate completely with nutrients, KCl, or a 1:1 chelate of Ca(2+) and dipicolinic acid (Ca-DPA), and the colony-forming efficiency of sleC spores was 10(3)-fold lower than that of wild-type spores. However, sleC spores incubated with various germinants released most of their DPA, although slower than wild-type or sleM spores, and DPA release from sleC sleM spores was very slow. In contrast, germination and viability of sleM spores were similar to that of wild-type spores, although sleC sleM spores had 10(5)-fold-lower viability. These results allow the following conclusions about C. perfringens spore germination: (i) SleC is essential for cortex hydrolysis; (ii) although SleM can degrade cortex PG in vitro, this enzyme is not essential; (iii) action of SleC alone or with SleM can accelerate DPA release; and (iv) Ca-DPA does not trigger spore germination by activation of CLEs.
Collapse
|
50
|
Development of natto with germination-defective mutants of Bacillus subtilis (natto). Appl Microbiol Biotechnol 2009; 82:741-8. [PMID: 19205688 DOI: 10.1007/s00253-009-1894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
Abstract
The effects of cortex-lysis related genes with the pdaA, sleB, and cwlD mutations of Bacillus subtilis (natto) NAFM5 on sporulation and germination were investigated. Single or double mutations did not prevent normal sporulation, but did affect germination. Germination was severely inhibited by the double mutation of sleB and cwlD. The quality of natto made with the sleB cwlD double mutant was tested, and the amounts of glutamic acid and ammonia were very similar to those in the wild type. The possibility of industrial development of natto containing a reduced number of viable spores is presented.
Collapse
|