1
|
Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev 2017; 41:900-922. [PMID: 29077840 PMCID: PMC5812497 DOI: 10.1093/femsre/fux045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea.
Collapse
Affiliation(s)
- Annegret Wilde
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BIOSS Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
2
|
Vorontsov EA, Rensen E, Prangishvili D, Krupovic M, Chamot-Rooke J. Abundant Lysine Methylation and N-Terminal Acetylation in Sulfolobus islandicus Revealed by Bottom-Up and Top-Down Proteomics. Mol Cell Proteomics 2016; 15:3388-3404. [PMID: 27555370 PMCID: PMC5098037 DOI: 10.1074/mcp.m116.058073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Protein post-translational methylation has been reported to occur in archaea, including members of the genus Sulfolobus, but has never been characterized on a proteome-wide scale. Among important Sulfolobus proteins carrying such modification are the chromatin proteins that have been described to be methylated on lysine side chains, resembling eukaryotic histones in that aspect. To get more insight into the extent of this modification and its dynamics during the different growth steps of the thermoacidophylic archaeon S. islandicus LAL14/1, we performed a global and deep proteomic analysis using a combination of high-throughput bottom-up and top-down approaches on a single high-resolution mass spectrometer. 1,931 methylation sites on 751 proteins were found by the bottom-up analysis, with methylation sites on 526 proteins monitored throughout three cell culture growth stages: early-exponential, mid-exponential, and stationary. The top-down analysis revealed 3,978 proteoforms arising from 681 proteins, including 292 methylated proteoforms, 85 of which were comprehensively characterized. Methylated proteoforms of the five chromatin proteins (Alba1, Alba2, Cren7, Sul7d1, Sul7d2) were fully characterized by a combination of bottom-up and top-down data. The top-down analysis also revealed an increase of methylation during cell growth for two chromatin proteins, which had not been evidenced by bottom-up. These results shed new light on the ubiquitous lysine methylation throughout the S. islandicus proteome. Furthermore, we found that S. islandicus proteins are frequently acetylated at the N terminus, following the removal of the N-terminal methionine. This study highlights the great value of combining bottom-up and top-down proteomics for obtaining an unprecedented level of accuracy in detecting differentially modified intact proteoforms. The data have been deposited to the ProteomeXchange with identifiers PXD003074 and PXD004179.
Collapse
Affiliation(s)
- Egor A Vorontsov
- From the ‡Structural Mass Spectrometry and Proteomics Unit, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France
| | - Elena Rensen
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - David Prangishvili
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Mart Krupovic
- §Unit of the Molecular Biology of Gene in Extremophiles, Department of Microbiology, Institut Pasteur, 75015 Paris, France; julia.chamot-rooke@pasteur
| | - Julia Chamot-Rooke
- From the ‡Structural Mass Spectrometry and Proteomics Unit, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France; julia.chamot-rooke@pasteur
- ¶UMR3528 CNRS, Paris, France
| |
Collapse
|
3
|
Orekhov PS, Klose D, Mulkidjanian AY, Shaitan KV, Engelhard M, Klare JP, Steinhoff HJ. Signaling and Adaptation Modulate the Dynamics of the Photosensoric Complex of Natronomonas pharaonis. PLoS Comput Biol 2015; 11:e1004561. [PMID: 26496122 PMCID: PMC4651059 DOI: 10.1371/journal.pcbi.1004561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022] Open
Abstract
Motile bacteria and archaea respond to chemical and physical stimuli seeking optimal conditions for survival. To this end transmembrane chemo- and photoreceptors organized in large arrays initiate signaling cascades and ultimately regulate the rotation of flagellar motors. To unravel the molecular mechanism of signaling in an archaeal phototaxis complex we performed coarse-grained molecular dynamics simulations of a trimer of receptor/transducer dimers, namely NpSRII/NpHtrII from Natronomonas pharaonis. Signaling is regulated by a reversible methylation mechanism called adaptation, which also influences the level of basal receptor activation. Mimicking two extreme methylation states in our simulations we found conformational changes for the transmembrane region of NpSRII/NpHtrII which resemble experimentally observed light-induced changes. Further downstream in the cytoplasmic domain of the transducer the signal propagates via distinct changes in the dynamics of HAMP1, HAMP2, the adaptation domain and the binding region for the kinase CheA, where conformational rearrangements were found to be subtle. Overall these observations suggest a signaling mechanism based on dynamic allostery resembling models previously proposed for E. coli chemoreceptors, indicating similar properties of signal transduction for archaeal photoreceptors and bacterial chemoreceptors. Achaea and bacteria can “see” and “sniffle”, they have photo- and chemosensors that measure the environment. On the cell poles, these sensor proteins form large arrays built of several thousands of different receptors. The receptors comprise extracellular or transmembrane sensory domains and elongated homodimeric coiled-coil bundles, which transduce the signals from the membrane across ~20 nm to a conserved cytoplasmic signaling subdomain in an unknown manner. In our study we performed coarse-grained molecular dynamics simulations of the phototactic receptor/transducer complex from Natronomonas pharaonis. Comparing fully methylated and demethylated complexes reveals an interconversion between states of different dynamics along the coiled-coil bundle, which might represent the essential characteristics of the signal transfer from the membrane to the binding sites of the downstream kinase CheA.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daniel Klose
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
- Department of Bioengineering and Bioinformatics and A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Martin Engelhard
- Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Osnabrueck, Germany
| | | |
Collapse
|
4
|
Light-induced switching of HAMP domain conformation and dynamics revealed by time-resolved EPR spectroscopy. FEBS Lett 2014; 588:3970-6. [PMID: 25240192 DOI: 10.1016/j.febslet.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022]
Abstract
HAMP domains are widely abundant signaling modules. The putative mechanism of their function comprises switching between two distinct states. To unravel these conformational transitions, we apply site-directed spin labeling and time-resolved EPR spectroscopy to the phototactic receptor/transducer complex NpSRII/NpHtrII. We characterize the kinetic coupling of NpHtrII to NpSRII along with the activation period of the transducer and follow the transient conformational signal. The observed transient shift towards a more compact state of the HAMP domain upon light-activation agrees with structure-based calculations. It thereby validates the two modeled signaling states and integrates the domain's dynamics into the current model.
Collapse
|
5
|
|
6
|
Eichler J, Maupin-Furlow J. Post-translation modification in Archaea: lessons from Haloferax volcanii and other haloarchaea. FEMS Microbiol Rev 2012; 37:583-606. [PMID: 23167813 DOI: 10.1111/1574-6976.12012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 01/11/2023] Open
Abstract
As an ever-growing number of genome sequences appear, it is becoming increasingly clear that factors other than genome sequence impart complexity to the proteome. Of the various sources of proteomic variability, post-translational modifications (PTMs) most greatly serve to expand the variety of proteins found in the cell. Likewise, modulating the rates at which different proteins are degraded also results in a constantly changing cellular protein profile. While both strategies for generating proteomic diversity are adopted by organisms across evolution, the responsible pathways and enzymes in Archaea are often less well described than are their eukaryotic and bacterial counterparts. Studies on halophilic archaea, in particular Haloferax volcanii, originally isolated from the Dead Sea, are helping to fill the void. In this review, recent developments concerning PTMs and protein degradation in the haloarchaea are discussed.
Collapse
Affiliation(s)
- Jerry Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| | | |
Collapse
|
7
|
Schlesner M, Miller A, Besir H, Aivaliotis M, Streif J, Scheffer B, Siedler F, Oesterhelt D. The protein interaction network of a taxis signal transduction system in a halophilic archaeon. BMC Microbiol 2012; 12:272. [PMID: 23171228 PMCID: PMC3579733 DOI: 10.1186/1471-2180-12-272] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/20/2012] [Indexed: 11/28/2022] Open
Abstract
Background The taxis signaling system of the extreme halophilic archaeon Halobacterium (Hbt.) salinarum differs in several aspects from its model bacterial counterparts Escherichia coli and Bacillus subtilis. We studied the protein interactions in the Hbt. salinarum taxis signaling system to gain an understanding of its structure, to gain knowledge about its known components and to search for new members. Results The interaction analysis revealed that the core signaling proteins are involved in different protein complexes and our data provide evidence for dynamic interchanges between them. Fifteen of the eighteen taxis receptors (halobacterial transducers, Htrs) can be assigned to four different groups depending on their interactions with the core signaling proteins. Only one of these groups, which contains six of the eight Htrs with known signals, shows the composition expected for signaling complexes (receptor, kinase CheA, adaptor CheW, response regulator CheY). From the two Hbt. salinarum CheW proteins, only CheW1 is engaged in signaling complexes with Htrs and CheA, whereas CheW2 interacts with Htrs but not with CheA. CheY connects the core signaling structure to a subnetwork consisting of the two CheF proteins (which build a link to the flagellar apparatus), CheD (the hub of the subnetwork), two CheC complexes and the receptor methylesterase CheB. Conclusions Based on our findings, we propose two hypotheses. First, Hbt. salinarum might have the capability to dynamically adjust the impact of certain Htrs or Htr clusters depending on its current needs or environmental conditions. Secondly, we propose a hypothetical feedback loop from the response regulator to Htr methylation made from the CheC proteins, CheD and CheB, which might contribute to adaptation analogous to the CheC/CheD system of B. subtilis.
Collapse
Affiliation(s)
- Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Lin YC, Fu HY, Yang CS. Phototaxis of Haloarcula marismortui Revealed Through a Novel Microbial Motion Analysis Algorithm. Photochem Photobiol 2010; 86:1084-90. [DOI: 10.1111/j.1751-1097.2010.00768.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Streif S, Oesterhelt D, Marwan W. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis. BMC SYSTEMS BIOLOGY 2010; 4:27. [PMID: 20298562 PMCID: PMC2857822 DOI: 10.1186/1752-0509-4-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/18/2010] [Indexed: 11/10/2022]
Abstract
Background Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY. Results By mathematical modeling we infer the kinetic mechanisms of stimulus-induced transducer methylation and adaptation. The model (deterministic and in the form of ordinary differential equations) correctly predicts experimentally observed transducer demethylation (as detected by released methanol) in response to attractant and repellent stimuli of wildtype cells, a cheY deletion mutant, and a mutant in which the stimulated transducer species is methylation-deficient. Conclusions We provide a kinetic model for signal processing in photo- and chemotaxis in the archaeon H. salinarum suggesting an essential role of receptor cooperativity, antagonistic reversible methylation, and a CheY-dependent feedback on transducer demethylation.
Collapse
Affiliation(s)
- Stefan Streif
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Network Analysis Group, Sandtorstr, 1, Magdeburg, Germany.
| | | | | |
Collapse
|
10
|
Koch MK, Staudinger WF, Siedler F, Oesterhelt D. Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum. J Mol Biol 2008; 380:285-302. [PMID: 18514223 DOI: 10.1016/j.jmb.2008.04.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 02/03/2023]
Abstract
In Halobacterium salinarum, up to 18 sensory transducers (Htrs) relay environmental stimuli to an intracellular signaling system to induce tactic responses. As known from the extensively studied enterobacterial system, sensory adaptation to persisting stimulus intensities involves reversible methylation of certain transducer glutamate residues, some of which originate from glutamine residues by deamidation. This study analyzes the in vivo deamidation and methylation of membrane-bound Htrs under physiological conditions. Electrospray ionization tandem mass spectrometry of chromatographically separated proteolytic peptides identified 19 methylation sites in 10 of the 12 predicted membrane-spanning Htrs. Matrix-assisted laser desorption/ionization mass spectrometry additionally detected three sites in two soluble Htrs. Sensory transducers contain a cytoplasmic coiled-coil region, composed of hydrophobic heptads, seven-residue repeats in which the first and the fourth residues are mostly hydrophobic. All identified Htr methylations occurred at glutamate residues at the second and/or third position of such heptads. In addition to singly methylated pairs of glutamate and/or glutamine residues, we identified singly methylated aspartate-glutamate and alanine-glutamate pairs and doubly methylated glutamate pairs. The largest methylatable regions detected in Htrs comprise six heptads along the coiled coil. One methylated glutamate residue was detected outside of such a region, in the signaling region of Htr14. Our analysis produced evidence supporting the predicted methyltransferase and methylesterase activities of halobacterial CheR and CheB, respectively. It furthermore demonstrated that CheB is required for Htr deamidations, at least at a specific glutamine-glutamate pair in Htr2 and a specific aspartate-glutamine pair in Htr4. Compared to previously reported methods, the described approach significantly facilitates the identification of physiological transducer modification sites.
Collapse
Affiliation(s)
- Matthias K Koch
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | |
Collapse
|
11
|
Sasaki J, Nara T, Spudich EN, Spudich JL. Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane-inserted domain. Mol Microbiol 2007; 66:1321-30. [PMID: 17986191 DOI: 10.1111/j.1365-2958.2007.05983.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Halobacterium salinarum sensory rhodopsin II (HsSRII) is a phototaxis receptor for blue-light avoidance that relays signals to its tightly bound transducer HsHtrII (H. salinarum haloarchaeal transducer for SRII). We found that disruption of the salt bridge between the protonated Schiff base of the receptor's retinylidene chromophore and its counterion Asp73 by residue substitutions D73A, N or Q constitutively activates HsSRII, whereas the corresponding Asp75 counterion substitutions do not constitutively activate Natronomonas pharaonis SRII (NpSRII) when complexed with N. pharaonis haloarchaeal transducer for SRII (NpHtrII). However, NpSRII(D75Q) in complex with HsHtrII is fully constitutively active, showing that transducer sensitivity to the receptor signal contributes to the phenotype. The swimming behaviour of cells expressing chimeras exchanging portions of the two homologous transducers localizes their differing sensitivities to the HtrII transmembrane domains. Furthermore, deletion constructs show that the known contact region in the cytoplasmic domain of the NpSRII-NpHtrII complex is not required for phototaxis, excluding the domain as a site for signal transmission. These results distinguish between the prevailing models for SRII-HtrII signal relay, strongly supporting the 'steric trigger-transmembrane relay model', which proposes that retinal isomerization directly signals HtrII through the mid-membrane SRII-HtrII interface, and refuting alternative models that propose signal relay in the cytoplasmic membrane-proximal domain.
Collapse
Affiliation(s)
- Jun Sasaki
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Kondou Y, Nakazawa M, Higashi SI, Watanabe M, Manabe K. Equal-quantum Action Spectra Indicate Fluence-rate-selective Action of Multiple Photoreceptors for Photomovement of the Thermophilic Cyanobacterium Synechococcus elongatus¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730090eqasif2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Lucia S, Cercignani G, Frediani A, Petracchi D. Color-specific Conditioning Effects Due to Both Orange and Blue Stimuli Are Observed in a Halobacterium salinarum Strain Devoid of Putative Methylatable Sites on HtrI¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0770110cscedt2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Alexander RP, Zhulin IB. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci U S A 2007; 104:2885-90. [PMID: 17299051 PMCID: PMC1797150 DOI: 10.1073/pnas.0609359104] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Indexed: 11/18/2022] Open
Abstract
As an important model for transmembrane signaling, methyl-accepting chemotaxis proteins (MCPs) have been extensively studied by using genetic, biochemical, and structural techniques. However, details of the molecular mechanism of signaling are still not well understood. The availability of genomic information for hundreds of species enables the identification of features in protein sequences that are conserved over long evolutionary distances and thus are critically important for function. We carried out a large-scale comparative genomic analysis of the MCP signaling and adaptation domain family and identified features that appear to be critical for receptor structure and function. Based on domain length and sequence conservation, we identified seven major MCP classes and three distinct structural regions within the cytoplasmic domain: signaling, methylation, and flexible bundle subdomains. The flexible bundle subdomain, not previously recognized in MCPs, is a conserved element that appears to be important for signal transduction. Remarkably, the N- and C-terminal helical arms of the cytoplasmic domain maintain symmetry in length and register despite dramatic variation, from 24 to 64 7-aa heptads in overall domain length. Loss of symmetry is observed in some MCPs, where it is concomitant with specific changes in the sensory module. Each major MCP class has a distinct pattern of predicted methylation sites that is well supported by experimental data. Our findings indicate that signaling and adaptation functions within the MCP cytoplasmic domain are tightly coupled, and that their coevolution has contributed to the significant diversity in chemotaxis mechanisms among different organisms.
Collapse
Affiliation(s)
- Roger P. Alexander
- *Center for Bioinformatics and Computational Biology, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230; and
- Joint Institute for Computational Sciences and
| | - Igor B. Zhulin
- *Center for Bioinformatics and Computational Biology, School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230; and
- Joint Institute for Computational Sciences and
- Graduate School of Genome Science and Technology, University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6173
| |
Collapse
|
15
|
Perez E, Stock AM. Characterization of the Thermotoga maritima chemotaxis methylation system that lacks pentapeptide-dependent methyltransferase CheR:MCP tethering. Mol Microbiol 2007; 63:363-78. [PMID: 17163981 PMCID: PMC3645907 DOI: 10.1111/j.1365-2958.2006.05518.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.
Collapse
Affiliation(s)
- Eduardo Perez
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
- Howard Hughes Medical Institute, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
16
|
Stephens BB, Loar SN, Alexandre G. Role of CheB and CheR in the complex chemotactic and aerotactic pathway of Azospirillum brasilense. J Bacteriol 2006; 188:4759-68. [PMID: 16788185 PMCID: PMC1483015 DOI: 10.1128/jb.00267-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.
Collapse
Affiliation(s)
- Bonnie B Stephens
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | |
Collapse
|
17
|
Perez E, Zheng H, Stock AM. Identification of methylation sites in Thermotoga maritima chemotaxis receptors. J Bacteriol 2006; 188:4093-100. [PMID: 16707700 PMCID: PMC1482916 DOI: 10.1128/jb.00181-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/17/2006] [Indexed: 11/20/2022] Open
Abstract
Adaptation in bacterial chemotaxis involves reversible methylation of specific glutamate residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins. The specific sites of methylation in Salmonella enterica and Escherichia coli chemoreceptors, identified 2 decades ago, established a consensus sequence for methylation by methyltransferase CheR. Here we report the in vitro methylation of chemoreceptors from Thermotoga maritima, a hyperthermophile that has served as a useful source of chemotaxis proteins for structural analysis. Sites of methylation have been identified by liquid chromatography-mass spectrometry/mass spectrometry. Fifteen sites of methylation were identified within the cytoplasmic domains of four different T. maritima chemoreceptors. The results establish a consensus sequence for chemoreceptor methylation sites in T. maritima that is distinct from the previously identified consensus sequence for E. coli and S. enterica. These findings suggest that consensus sequences for posttranslational modifications in one organism may not be directly extrapolated to analogous modifications in other bacteria.
Collapse
Affiliation(s)
- Eduardo Perez
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA
| | | | | |
Collapse
|
18
|
Astling DP, Lee JY, Zusman DR. Differential effects of chemoreceptor methylation-domain mutations on swarming and development in the social bacterium Myxococcus xanthus. Mol Microbiol 2006; 59:45-55. [PMID: 16359317 DOI: 10.1111/j.1365-2958.2005.04926.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The soil bacterium Myxococcus xanthus is a model organism for the study of multicellular behaviour and development in bacteria. M. xanthus cells move on solid surfaces by gliding motility, periodically reversing their direction of movement. Motility is co-ordinated to allow cells to effectively feed on macromolecules or prey bacteria when nutrients are plentiful and to form developmental fruiting bodies when nutrients are limiting. The Frz signal transduction pathway regulates cellular movements by modulating cell reversal frequency. Input to the Frz pathway is controlled by the cytoplasmic receptor, FrzCD, a methyl-accepting chemotaxis protein (MCP). FrzCD lacks the transmembrane and periplasmic domains common to MCPs but contains a unique N-terminal domain, the predicted ligand-binding domain. As deletion of the N-terminal domain of FrzCD only results in minor defects in motility, we investigated the possibility that the methylation of the conserved C-terminal domain of FrzCD plays a central role in regulating the pathway. For this study, each of the potential methylation sites of FrzCD were systematically modified by site-directed mutagenesis, substituting glutamine/glutamate pairs for alanines. Four of the seven mutations produced dramatic phenotypes; two of the mutations had a stimulatory effect on the pathway, as evidenced by cells hyper-reversing, whereas another two had an inhibitory effect, causing these cells to rarely reverse. These four mutants displayed defects in vegetative swarming and developmental aggregation. These results suggests a model in which the methylation domain can both activate and inhibit the Frz pathway depending on which residues are methylated. The diversity of phenotypes suggests that specific modifications of FrzCD act to differentially regulate motility and developmental aggregation in M. xanthus.
Collapse
Affiliation(s)
- David P Astling
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| | | | | |
Collapse
|
19
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
20
|
Koch MK, Oesterhelt D. MpcT is the transducer for membrane potential changes in Halobacterium salinarum. Mol Microbiol 2005; 55:1681-94. [PMID: 15752193 DOI: 10.1111/j.1365-2958.2005.04516.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Halobacterium salinarum mutants containing either of the light-driven ion pumps bacteriorhodopsin (H(+)) or halorhodopsin (Cl(-)) as their only retinal protein, a decrease of irradiance in the absence of respiration causes a phototactic response. The conversion of the causal event, a decrease of proton motive force across the cell membrane, into a reversal of flagellar motor rotational direction was expected to involve a transducer. Via deletion analysis of all 18 known and putative halobacterial transducer (htr) genes, we found that Htr14, a methylatable membrane-bound transducer lacking an extracellular domain, mediates the biological response, which includes adaptive methylation. Based on a minimal stimulus length of 200 ms and the determined cytoplasmic buffering capacity, we conclude that the change in the membrane potential (DeltaPsi), and not that of the internal pH, is the signal-generating event. Htr14 was therefore renamed to Membrane potential change Transducer, or MpcT. It is the first transducer for which the causative stimulus could be narrowed to a change in DeltaPsi, as opposed to a change in pH or cellular redox state.
Collapse
Affiliation(s)
- Matthias K Koch
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
21
|
Weston AD, Baliga NS, Bonneau R, Hood L. Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:345-57. [PMID: 15338636 DOI: 10.1101/sqb.2003.68.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A D Weston
- Institute for Systems Biology, Seattle, Washington 98103-8904, USA
| | | | | | | |
Collapse
|
22
|
Trivedi VD, Spudich JL. Photostimulation of a Sensory Rhodopsin II/HtrII/Tsr Fusion Chimera Activates CheA-Autophosphorylation and CheY-Phosphotransfer in Vitro. Biochemistry 2003; 42:13887-92. [PMID: 14636056 DOI: 10.1021/bi034399q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A chimeric fusion protein consisting of Natronomonas pharaonis sensory rhodopsin II (SRII), fused by a flexible linker to the two transmembrane helices of its cognate transducer protein, HtrII, followed by the HtrII membrane-proximal cytoplasmic fragment joined to the cytoplasmic domains of the Escherichia coli chemotaxis receptor Tsr, was expressed in E. coli. Purified fusion chimera protein reconstituted in liposomes binds to E. coli CheA kinase in the presence of the coupling protein CheW, and activates CheA autophosphorylation activity. CheA kinase activity is stimulated by photoexcitation of the SRII domain of the fusion protein, as shown by the wavelength-dependence of photostimulated phosphotransfer to the E. coli flagellar motor response regulator CheY in the purified in vitro liposomal system. Further confirming the fidelity of the in vitro system, increased and decreased levels of CheA activation in vitro result from overmethylated and undermethylated fusion protein purified from methylesterase and methyltransferase-deficient E. coli, respectively. Photoexcitation of the undermethylated fusion protein resulted in a 3-fold increase in phosphotransfer over that of the dark state. The results directly demonstrate the coupling of SRII photoactivated states to histidine kinase activity, previously predicted on the basis of sequence homologies of the haloarchaeal phototaxis system components to those of E. coli chemotaxis. The fusion chimera provides the first tool for in vitro measurement of photosignaling activity of SRII-HtrII molecular complexes.
Collapse
Affiliation(s)
- Vishwa D Trivedi
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
23
|
Lucia S, Cercignani G, Frediani A, Petracchi D. Color-specific conditioning effects due to both orange and blue stimuli are observed in a Halobacterium salinarum strain devoid of putative methylatable sites on HtrI. Photochem Photobiol 2003; 77:110-3. [PMID: 12856891 DOI: 10.1562/0031-8655(2003)077<0110:cscedt>2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Behavioral responses of Halobacterium salinarum appear as changes in the frequency of motion reversals. Turning on orange light decreases the reversal frequency, whereas blue light induces reversals. Light pulses normally induce the same response as step-up stimuli. However, anomalous behavioral reactions, including inverse responses, are seen when stimuli are applied in sequence. The occurrence of a prior stimulus is conditioning for successive stimulation on a time scale of the same order of adaptational processes. These prolonged conditioning effects are color-specific. The only adaptation process identified so far is methylation of the transducers, and this could be somehow color-specific. Therefore we tested for the behavioral anomalies in a mutant in which all methylation sites on the transducer have been eliminated. The results show that behavioral anomalies are unaffected by the absence of methylation processes on the transducer.
Collapse
Affiliation(s)
- S Lucia
- Istituto di Biofisica, Area della Ricerca del CNR, Pisa, Italy
| | | | | | | |
Collapse
|
24
|
Sudo Y, Iwamoto M, Shimono K, Kamo N. Association between a photo-intermediate of a M-lacking mutant D75N of pharaonis phoborhodopsin and its cognate transducer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2002; 67:171-6. [PMID: 12167316 DOI: 10.1016/s1011-1344(02)00322-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pharaonis phoborhodopsin (ppR or pharaonis sensory rhodopsin II) is a receptor of the negative phototaxis of Natronobacterium pharaonis and forms a complex with its transducer pHtrII in membranes. Flash-photolyis of a D75N mutant did not yield the M-intermediate, but an O-like intermediate is observed in a ms time range. We examined the interaction between the D75N of ppR and t-Htr (truncated pHtrII). These formed a complex in the presence of 0.1% n-dodecyl-beta-maltoside, and the association accelerated the decay of the O of D75N from 15 to 56 s(-1). From the decay time constants under varying ratios of D75N and t-Htr, n, the molar ratio of D75N/t-Htr in the complex, and K(D), the dissociation constant, were estimated. The value of n was unity and K(D) was estimated to 146 nM. This K(D) value can be considered to be the association between the photo-intermediate and t-Htr, which is deduced by the method of estimation. Previously we (Photochem. Photobiol. 74 (2001) 489) reported a K(D) of 15 microM for the interaction between the wild-type and t-Htr by means of the change in M-decay rates. Therefore, this value should be the K(D) value for the interaction between M of the wild-type and t-Htr.
Collapse
Affiliation(s)
- Yuki Sudo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
25
|
Abstract
Chemotaxis transducers are specialized receptors that microorganisms use in order to sense the environment in directing their motility to favorable niches. The Escherichia coli transducers are models for studying the sensory and signaling events at the molecular level. Extensive studies in other organisms and the arrival of genomics has resulted in the accumulation of sequences of many transducer genes, but they are not fully understood. In silico analysis provides some assistance in classification of various transducers from different species and in predicting their function. All transducers contain two structural modules: a conserved C-terminal multidomain module, which is a signature element of the transducer superfamily, and a variable N-terminal module, which is responsible for the diversity within the superfamily. These structural modules have two distinct functions: the conserved C-terminal module is involved in signaling and adaptation, and the N-terminal module is involved in sensing various stimuli. Both C-terminal and N-terminal modules appear to be mobile genetic elements and subjects of duplication and lateral transfer. Although chemotaxis transducers are found exclusively in prokaryotic organisms that have some type of motility (flagellar, gliding or pili-based), several types of domains that are found in their N-terminal modules are also present in signal transduction proteins from eukaryotes, including humans. This indicates that basic principles of sensory transduction are conserved throughout the phylogenetic tree and that the chemotaxis transducer superfamily is a valuable source of novel sensory elements yet to be discovered.
Collapse
Affiliation(s)
- I B Zhulin
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
26
|
Sudo Y, Iwamoto M, Shimono K, Kamo N. Association of pharaonis phoborhodopsin with its cognate transducer decreases the photo-dependent reactivity by water-soluble reagents of azide and hydroxylamine. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:63-9. [PMID: 11750265 DOI: 10.1016/s0005-2736(01)00423-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. In halobacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. In the present work, the truncated transducer, t-Htr, was used which interacts with ppR [Sudo et al. (2001) Photochem. Photobiol. 74, 489-494]. Two water-soluble reagents, hydroxylamine and azide, reacted both with the transducer-free ppR and with the complex ppR/t-Htr (the complex between ppR and its truncated transducer). In the dark, the bleaching rates caused by hydroxylamine were not significantly changed between transducer-free ppR and ppR/t-Htr, or that of the free ppR was a little slower. Illumination accelerated the bleach rates, which is consistent with our previous conclusion that the reaction occurs selectively at the M-intermediate, but the rate of the complex was about 7.4-fold slower than that of the transducer-free ppR. Azide accelerated the M-decay, and its reaction rate of ppR/t-Htr was about 4.6-fold slower than free ppR. These findings suggest that the transducer binding decreases the water accessibility around the chromophore at the M-intermediate. Its implication is discussed.
Collapse
Affiliation(s)
- Yuki Sudo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, 060-0812, Sapporo, Japan
| | | | | | | |
Collapse
|
27
|
Bornhorst JA, Falke JJ. Evidence that both ligand binding and covalent adaptation drive a two-state equilibrium in the aspartate receptor signaling complex. J Gen Physiol 2001; 118:693-710. [PMID: 11723162 PMCID: PMC2229510 DOI: 10.1085/jgp.118.6.693] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 11/05/2001] [Indexed: 11/20/2022] Open
Abstract
The transmembrane aspartate receptor of bacterial chemotaxis regulates an associated kinase protein in response to both attractant binding to the receptor periplasmic domain and covalent modification of four adaptation sites on the receptor cytoplasmic domain. The existence of at least 16 covalent modification states raises the question of how many stable signaling conformations exist. In the simplest case, the receptor could have just two stable conformations ("on" and "off") yielding the two-state behavior of a toggle-switch. Alternatively, covalent modification could incrementally shift the receptor between many more than two stable conformations, thereby allowing the receptor to function as a rheostatic switch. An important distinction between these models is that the observed functional parameters of a toggle-switch receptor could strongly covary as covalent modification shifts the equilibrium between the on- and off-states, due to population-weighted averaging of the intrinsic on- and off-state parameters. By contrast, covalent modification of a rheostatic receptor would create new conformational states with completely independent parameters. To resolve the toggle-switch and rheostat models, the present study has generated all 16 homogeneous covalent modification states of the receptor adaptation sites, and has compared their effects on the attractant affinity and kinase activity of the reconstituted receptor-kinase signaling complex. This approach reveals that receptor covalent modification modulates both attractant affinity and kinase activity up to 100-fold, respectively. The regulatory effects of individual adaptation sites are not perfectly additive, indicating synergistic interactions between sites. The three adaptation sites at positions 295, 302, and 309 are more important than the site at position 491 in regulating attractant affinity and kinase activity, thereby explaining the previously observed dominance of the former three sites in in vivo studies. The most notable finding is that covalent modification of the adaptation sites alters the receptor attractant affinity and the receptor-regulated kinase activity in a highly correlated fashion, strongly supporting the toggle-switch model. Similarly, certain mutations that drive the receptor into the kinase activating state are found to have correlated effects on attractant affinity. Together these results provide strong evidence that chemotaxis receptors possess just two stable signaling conformations and that the equilibrium between these pure on- and off-states is modulated by both attractant binding and covalent adaptation. It follows that the attractant and adaptation signals drive the same conformational change between the two settings of a toggle. An approach that quantifies the fractional occupancy of the on- and off-states is illustrated.
Collapse
Affiliation(s)
- Joshua A. Bornhorst
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Joseph J. Falke
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
28
|
Kondou Y, Nakazawa M, Higashi S, Watanabe M, Manabe K. Equal-quantum action spectra indicate fluence-rate-selective action of multiple photoreceptors for photomovement of the thermophilic cyanobacterium Synechococcus elongatus. Photochem Photobiol 2001; 73:90-5. [PMID: 11202372 DOI: 10.1562/0031-8655(2001)073<0090:eqasif>2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Unicellular thermophilic cyanobacterium Synechococcus elongatus displayed phototaxis on agar plate at 55 degrees C. Equal-quantum action spectra for phototactic migration were determined at various fluence rates using the Okazaki Large Spectrograph as the light source. The shapes of the action spectra drastically changed depending on the fluence rate of the unilateral monochromatic irradiation: at a low fluence rate (3 mumol/m2/s), only lights in the red region had significant effect; at a medium fluence rate (10 mumol/m2/s), four major action peaks were observed at 530 nm (green), 570 nm (yellow), 640 nm (red) and 680 nm (red). At high fluence rates (30-90 mumol/m2/s), the former two peaks remained, while red peaks at 640 nm and 680 nm disappeared and, interestingly, an action peak around 700-740 nm (far-red) newly appeared. These results indicate that two or more distinct photoreceptors are involved in the phototaxis and that suitable photoreceptors are selectively active in response to the stimulus of light fluence rates. Far-red or red background lights irradiated vertically from above drastically inhibited phototaxis toward red light or far-red light, respectively. These results indicate involvement of some phytochrome(s).
Collapse
Affiliation(s)
- Y Kondou
- Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
29
|
Dassarma S, Kennedy SP, Berquist B, Victor Ng W, Baliga NS, Spudich JL, Krebs MP, Eisen JA, Johnson CH, Hood L. Genomic perspective on the photobiology of Halobacterium species NRC-1, a phototrophic, phototactic, and UV-tolerant haloarchaeon. PHOTOSYNTHESIS RESEARCH 2001; 70:3-17. [PMID: 16228359 DOI: 10.1023/a:1013879706863] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Halobacterium species display a variety of responses to light, including phototrophic growth, phototactic behavior, and photoprotective mechanisms. The complete genome sequence of Halobacterium species NRC-1 (Proc Natl Acad Sci USA 97: 12176-12181, 2000), coupled with the availability of a battery of methods for its analysis makes this an ideal model system for studying photobiology among the archaea. Here, we review: (1) the structure of the 2.57 Mbp Halobacterium NRC-1 genome, including a large chromosome, two minichromosomes, and 91 transposable IS elements; (2) the purple membrane regulon, which programs the accumulation of large quantities of the light-driven proton pump, bacteriorhodopsin, and allows for a period of phototrophic growth; (3) components of the sophisticated pathways for color-sensitive phototaxis; (4) the gas vesicle gene cluster, which codes for cell buoyancy organelles; (5) pathways for the production of carotenoid pigments and retinal, (6) processes for the repair of DNA damage; and (7) putative homologs of circadian rhythm regulators. We conclude with a discussion of the power of systems biology for comprehensive understanding of Halobacterium NRC-1 photobiology.
Collapse
Affiliation(s)
- S Dassarma
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD, 21202, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bornhorst JA, Falke JJ. Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state. Biochemistry 2000; 39:9486-93. [PMID: 10924144 PMCID: PMC2890267 DOI: 10.1021/bi0002737] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The manner by which the bacterial chemotaxis system responds to a wide range of attractant concentrations remains incompletely understood. In principle, positive cooperativity between chemotaxis receptors could explain the ability of bacteria to respond to extremely low attractant concentrations. By utilizing an in vitro receptor-coupled kinase assay, the attractant-dependent response curve has been measured for the Salmonella typhimurium aspartate chemoreceptor. The attractant chosen, alpha-methyl aspartate, was originally used to quantitate high receptor sensitivity at low attractant concentrations by Segall, Block, and Berg [(1986) Proc. Natl. Acad. Sci. U.S.A. 83, 8987-8991]. The attractant response curve exhibits limited positive cooperativity, yielding a Hill coefficient of 1.7-2.4, and this Hill coefficient is relatively independent of both the receptor modification state and the mole ratio of CheA to receptor. These results disfavor models in which there are strong cooperative interactions between large numbers of receptor dimers in an extensive receptor array. Instead, the results are consistent with cooperative interactions between a small number of coupled receptor dimers. Because the in vitro receptor-coupled kinase assay utilizes higher than native receptor densities arising from overexpression, the observed positive cooperativity may overestimate that present in native receptor populations. Such positive cooperativity between dimers is fully compatible with the negative cooperativity previously observed between the two symmetric ligand binding sites within a single dimer. The attractant affinity of the aspartate receptor is found to depend on the modification state of its covalent adaptation sites. Increasing the the level of modification decreases the apparent attractant affinity at least 10-fold in the in vitro receptor-coupled kinase assay. This observation helps explain the ability of the chemotaxis pathway to respond to a broad range of attractant concentrations in vivo.
Collapse
Affiliation(s)
| | - Joseph J. Falke
- Corresponding author. Telephone: (303) 492-3503. Fax: (303) 492-5894.
| |
Collapse
|
31
|
Kort R, Crielaard W, Spudich JL, Hellingwerf KJ. Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides. J Bacteriol 2000; 182:3017-21. [PMID: 10809677 PMCID: PMC94484 DOI: 10.1128/jb.182.11.3017-3021.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Blue-light-induced repellent and demethylation responses, characteristic of behavioral adaptation, were observed in Rhodobacter sphaeroides. They were analyzed by computer-assisted motion analysis and through the release of volatile tritiated compounds from [methyl-(3)H]methionine-labeled cells, respectively. Increases in the stop frequency and the rate of methanol release were induced by exposure of cells to repellent light signals, such as an increase in blue- and a decrease in infrared-light intensity. At a lambda of >500 nm the amplitude of the methanol release response followed the absorbance spectrum of the photosynthetic pigments, suggesting that they function as photosensors for this response. In contrast to the previously reported motility response to a decrease in infrared light, the blue-light response reported here does not depend on the number of photosynthetic pigments per cell, suggesting that it is mediated by a separate sensor. Therefore, color discrimination in taxis responses in R. sphaeroides involves two photosensing systems: the photosynthetic pigments and an additional photosensor, responding to blue light. The signal generated by the former system could result in the migration of cells to a light climate beneficial for photosynthesis, while the blue-light system could allow cells to avoid too-high intensities of (harmful) blue light.
Collapse
Affiliation(s)
- R Kort
- Laboratory for Microbiology, E. C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
32
|
Aizawa SI, Harwood CS, Kadner RJ. Signaling components in bacterial locomotion and sensory reception. J Bacteriol 2000; 182:1459-71. [PMID: 10692349 PMCID: PMC94441 DOI: 10.1128/jb.182.6.1459-1471.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- S I Aizawa
- Department of Biosciences, Teikyo University, Utsunomiya 320, Japan
| | | | | |
Collapse
|