1
|
Gómez‐Campo CL, Abdelmoteleb A, Pulido V, Gost M, Sánchez‐Hevia DL, Berenguer J, Mencía M. Differential requirement for RecFOR pathway components in Thermus thermophilus. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13269. [PMID: 38822640 PMCID: PMC11143384 DOI: 10.1111/1758-2229.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/06/2024] [Indexed: 06/03/2024]
Abstract
Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.
Collapse
Affiliation(s)
- Cristina L. Gómez‐Campo
- Center for Plant Biotechnology and Genomics (CBGP)Polytechnic University of MadridMadridSpain
| | - Ali Abdelmoteleb
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
- Department of Botany, Faculty of AgricultureMenoufia UniversityShebin El‐KomEgypt
| | - Verónica Pulido
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| | - Marc Gost
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| | | | - José Berenguer
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| | - Mario Mencía
- Department of Molecular BiologyScience Faculty, Center for Molecular Biology Severo Ochoa (CBM), Autonomous University of Madrid‐Higher Council of Scientific Research (CSIC)MadridSpain
| |
Collapse
|
2
|
Zahradka K, Repar J, Đermić D, Zahradka D. Chromosome Segregation and Cell Division Defects in Escherichia coli Recombination Mutants Exposed to Different DNA-Damaging Treatments. Microorganisms 2023; 11:microorganisms11030701. [PMID: 36985274 PMCID: PMC10051365 DOI: 10.3390/microorganisms11030701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Homologous recombination repairs potentially lethal DNA lesions such as double-strand DNA breaks (DSBs) and single-strand DNA gaps (SSGs). In Escherichia coli, DSB repair is initiated by the RecBCD enzyme that resects double-strand DNA ends and loads RecA recombinase to the emerging single-strand (ss) DNA tails. SSG repair is mediated by the RecFOR protein complex that loads RecA onto the ssDNA segment of gaped duplex. In both repair pathways, RecA catalyses reactions of homologous DNA pairing and strand exchange, while RuvABC complex and RecG helicase process recombination intermediates. In this work, we have characterised cytological changes in various recombination mutants of E. coli after three different DNA-damaging treatments: (i) expression of I-SceI endonuclease, (ii) γ-irradiation, and (iii) UV-irradiation. All three treatments caused severe chromosome segregation defects and DNA-less cell formation in the ruvABC, recG, and ruvABC recG mutants. After I-SceI expression and γ-irradiation, this phenotype was efficiently suppressed by the recB mutation, indicating that cytological defects result mostly from incomplete DSB repair. In UV-irradiated cells, the recB mutation abolished cytological defects of recG mutants and also partially suppressed the cytological defects of ruvABC recG mutants. However, neither recB nor recO mutation alone could suppress the cytological defects of UV-irradiated ruvABC mutants. The suppression was achieved only by simultaneous inactivation of the recB and recO genes. Cell survival and microscopic analysis suggest that chromosome segregation defects in UV-irradiated ruvABC mutants largely result from defective processing of stalled replication forks. The results of this study show that chromosome morphology is a valuable marker in genetic analyses of recombinational repair in E. coli.
Collapse
Affiliation(s)
- Ksenija Zahradka
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jelena Repar
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Damir Đermić
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Davor Zahradka
- Laboratory for Molecular Microbiology, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Kumar A, Beloglazova N, Bundalovic-Torma C, Phanse S, Deineko V, Gagarinova A, Musso G, Vlasblom J, Lemak S, Hooshyar M, Minic Z, Wagih O, Mosca R, Aloy P, Golshani A, Parkinson J, Emili A, Yakunin AF, Babu M. Conditional Epistatic Interaction Maps Reveal Global Functional Rewiring of Genome Integrity Pathways in Escherichia coli. Cell Rep 2016; 14:648-661. [PMID: 26774489 DOI: 10.1016/j.celrep.2015.12.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/08/2015] [Accepted: 12/10/2015] [Indexed: 11/27/2022] Open
Abstract
As antibiotic resistance is increasingly becoming a public health concern, an improved understanding of the bacterial DNA damage response (DDR), which is commonly targeted by antibiotics, could be of tremendous therapeutic value. Although the genetic components of the bacterial DDR have been studied extensively in isolation, how the underlying biological pathways interact functionally remains unclear. Here, we address this by performing systematic, unbiased, quantitative synthetic genetic interaction (GI) screens and uncover widespread changes in the GI network of the entire genomic integrity apparatus of Escherichia coli under standard and DNA-damaging growth conditions. The GI patterns of untreated cultures implicated two previously uncharacterized proteins (YhbQ and YqgF) as nucleases, whereas reorganization of the GI network after DNA damage revealed DDR roles for both annotated and uncharacterized genes. Analyses of pan-bacterial conservation patterns suggest that DDR mechanisms and functional relationships are near universal, highlighting a modular and highly adaptive genomic stress response.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Computer Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Natalia Beloglazova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Cedoljub Bundalovic-Torma
- Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G OX4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sadhna Phanse
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Viktor Deineko
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Alla Gagarinova
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Gabriel Musso
- Department of Medicine, Harvard Medical School and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James Vlasblom
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Mohsen Hooshyar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Zoran Minic
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar Wagih
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Roberto Mosca
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, Barcelona, 08028, Catalonia, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, Barcelona, 08028, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Catalonia, Spain
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - John Parkinson
- Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G OX4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew Emili
- Terrence Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
4
|
Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF. A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 2011; 79:484-502. [PMID: 21219465 PMCID: PMC3071548 DOI: 10.1111/j.1365-2958.2010.07465.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and the associated proteins (Cas) comprise a system of adaptive immunity against viruses and plasmids in prokaryotes. Cas1 is a CRISPR-associated protein that is common to all CRISPR-containing prokaryotes but its function remains obscure. Here we show that the purified Cas1 protein of Escherichia coli (YgbT) exhibits nuclease activity against single-stranded and branched DNAs including Holliday junctions, replication forks and 5'-flaps. The crystal structure of YgbT and site-directed mutagenesis have revealed the potential active site. Genome-wide screens show that YgbT physically and genetically interacts with key components of DNA repair systems, including recB, recC and ruvB. Consistent with these findings, the ygbT deletion strain showed increased sensitivity to DNA damage and impaired chromosomal segregation. Similar phenotypes were observed in strains with deletion of CRISPR clusters, suggesting that the function of YgbT in repair involves interaction with the CRISPRs. These results show that YgbT belongs to a novel, structurally distinct family of nucleases acting on branched DNAs and suggest that, in addition to antiviral immunity, at least some components of the CRISPR-Cas system have a function in DNA repair.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Natalia Beloglazova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Robert Flick
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Chris Graham
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Tatiana Skarina
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Alla Gagarinova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Oxana Pogoutse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Greg Brown
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrew Binkowski
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Alexei Savchenko
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Aled M. Edwards
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
- Midwest Center for Structural Genomics and Structural Biology Center, Department of Biosciences, Argonne National Laboratory, Argonne, IL 60439
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Alexander F. Yakunin
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| |
Collapse
|
5
|
Usongo V, Nolent F, Sanscartier P, Tanguay C, Broccoli S, Baaklini I, Drlica K, Drolet M. Depletion of RNase HI activity in Escherichia coli lacking DNA topoisomerase I leads to defects in DNA supercoiling and segregation. Mol Microbiol 2008; 69:968-81. [PMID: 18554330 PMCID: PMC2875999 DOI: 10.1111/j.1365-2958.2008.06334.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gyrase-mediated hypernegative supercoiling is one manifestation of R-loop formation, a phenomenon that is normally suppressed by topoisomerase I (topA) in Escherichia coli. Overproduction of RNase HI (rnhA), an enzyme that removes the RNA moiety of R-loops, prevents hypernegative supercoiling and allows growth of topA null mutants. We previously showed that topA and rnhA null mutations are incompatible. We now report that such mutants were viable when RNase HI or topoisomerase III was expressed from a plasmid-borne gene. Surprisingly, DNA of topA null mutants became relaxed rather than hypernegatively supercoiled following depletion of RNase HI activity. This result failed to correlate with the cellular concentration of gyrase or topoisomerase IV (the other relaxing enzyme in the cell) or with transcription-induced supercoiling. Rather, intracellular DNA relaxation in the absence of RNase HI was related to inhibition of gyrase activity both in vivo and in extracts. Cells lacking topA and rnhA also exhibited properties consistent with segregation defects. Overproduction of topoisomerase III, an enzyme that can carry out DNA decatenation, corrected the segregation defects without restoring supercoiling activity. Collectively these data reveal (i) the existence of a cellular response to loss of RNase HI that counters the supercoiling activity of gyrase, and (ii) supercoiling-independent segregation defects due to loss of RNase HI from topA null mutants. Thus RNase HI plays a more central role in DNA topology than previously thought.
Collapse
Affiliation(s)
- Valentine Usongo
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Flora Nolent
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Patrick Sanscartier
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Cynthia Tanguay
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Sonia Broccoli
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Imad Baaklini
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, UMDNJ, Newark, NJ
| | - Marc Drolet
- Département de microbiologie et immunologie, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, P. Québec, Canada, H3C 3J7
| |
Collapse
|
6
|
Abstract
Recent studies have made great strides toward our understanding of the mechanisms of microbial chromosome segregation and partitioning. This review first describes the mechanisms that function to segregate newly replicated chromosomes, generating daughter molecules that are viable substrates for partitioning. Then experiments that address the mechanisms of bulk chromosome movement are summarized. Recent evidence indicates that a stationary DNA replication factory may be responsible for supplying the force necessary to move newly duplicated DNA toward the cell poles. Some factors contributing to the directionality of chromosome movement probably include centromere-like-binding proteins, DNA condensation proteins, and DNA translocation proteins.
Collapse
Affiliation(s)
- Geoffrey C Draper
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 90095-1569, USA
| | | |
Collapse
|
7
|
Brabetz W, Müller-Loennies S, Brade H. 3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase (WaaA) and kdo kinase (KdkA) of Haemophilus influenzae are both required to complement a waaA knockout mutation of Escherichia coli. J Biol Chem 2000; 275:34954-62. [PMID: 10952982 DOI: 10.1074/jbc.m005204200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipopolysaccharide (LPS) of the deep rough mutant Haemophilus influenzae I69 consists of lipid A and a single 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue substituted with one phosphate at position 4 or 5 (Helander, I. M., Lindner, B., Brade, H., Altmann, K., Lindberg, A. A., Rietschel, E. T., and Zähringer, U. (1988) Eur. J. Biochem. 177, 483-492). The waaA gene encoding the essential LPS-specific Kdo transferase was cloned from this strain, and its nucleotide sequence was identical to H. influenzae DSM11121. The gene was expressed in the Gram-positive host Corynebacterium glutamicum and characterized in vitro to encode a monofunctional Kdo transferase. waaA of H. influenzae could not complement a knockout mutation in the corresponding gene of an Re-type Escherichia coli strain. However, complementation was possible by coexpressing the recombinant waaA together with the LPS-specific Kdo kinase gene (kdkA) of H. influenzae DSM11121 or I69, respectively. The sequences of both kdkA genes were determined and differed in 25 nucleotides, giving rise to six amino acid exchanges between the deduced proteins. Both E. coli strains which expressed waaA and kdkA from H. influenzae synthesized an LPS containing a single Kdo residue that was exclusively phosphorylated at position 4. The structure was determined by nuclear magnetic resonance spectroscopy of deacylated LPS. Therefore, the reaction products of both cloned Kdo kinases represent only one of the two chemical structures synthesized by H. influenzae I69.
Collapse
Affiliation(s)
- W Brabetz
- Division of Medical and Biochemical Microbiology, Research Center Borstel, Center for Medicine and Biosciences, Parkallee 22, D-23845 Borstel, Germany
| | | | | |
Collapse
|
8
|
Pedersen LB, Setlow P. Penicillin-binding protein-related factor A is required for proper chromosome segregation in Bacillus subtilis. J Bacteriol 2000; 182:1650-8. [PMID: 10692371 PMCID: PMC94463 DOI: 10.1128/jb.182.6.1650-1658.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that the ponA gene, encoding penicillin-binding protein 1 (PBP1), is in a two-gene operon with prfA (PBP-related factor A) (also called recU), which encodes a putative 206-residue basic protein (pI = 10.1) with no significant sequence homology to proteins with known functions. Inactivation of prfA results in cells that grow slower and vary significantly in length relative to wild-type cells. We now show that prfA mutant cells have a defect in chromosome segregation resulting in the production of approximately 0.9 to 3% anucleate cells in prfA cultures grown at 30 or 37 degrees C in rich medium and that the lack of PrfA exacerbates the chromosome segregation defect in smc and spoOJ mutant cells. In addition, overexpression of prfA was found to be toxic for and cause nucleoid condensation in Escherichia coli.
Collapse
Affiliation(s)
- L B Pedersen
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|