1
|
Saati-Santamaría Z, Navarro-Gómez P, Martínez-Mancebo JA, Juárez-Mugarza M, Flores A, Canosa I. Genetic and species rearrangements in microbial consortia impact biodegradation potential. THE ISME JOURNAL 2025; 19:wraf014. [PMID: 39861970 PMCID: PMC11892951 DOI: 10.1093/ismejo/wraf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/27/2025]
Abstract
Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs. We have obtained and further enriched two ibuprofen-degrading microbial consortia from two unrelated wastewater treatment plants. We have also studied their ability to degrade the drug and the dynamics of the re-organisations of the genetic information responsible for its biodegradation among the species within the consortium. Our results show that genomic reorganisation within microorganisms and species rearrangements occur rapidly and efficiently during the selection process, which may be facilitated by plasmids and/or transposable elements located within the sequences. We show the evolution of at least two different plasmid backbones on samples from different locations, showing rearrangements of genomic information, including genes encoding activities for IBU degradation. As a result, we found variations in the expression pattern of the consortia after evolution under selective pressure, as an adaptation process to the new conditions. This work provides evidence for changes in the metagenomes of microbial communities that allow adaptation under a selective constraint -ibuprofen as a sole carbon source- and represents a step forward in knowledge that can inspire future biotechnological developments for drug bioremediation.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Agrobiotechnology Research (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Pilar Navarro-Gómez
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| | - Juan A Martínez-Mancebo
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| | - Maitane Juárez-Mugarza
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
- Department of Plant Biology and Ecology, Faculty of Science and Technology, The University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Amando Flores
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| | - Inés Canosa
- Department of Molecular Biology and Biochemistry, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, 41013 Seville, Spain
| |
Collapse
|
2
|
Zhang WH, Deng YD, Chen ZF, Zuo ZH, Tian YS, Xu J, Wang B, Wang LJ, Han HJ, Li ZJ, Wang Y, Yao QH, Gao JJ, Fu XY, Peng RH. Metabolic engineering of Escherichia coli for 2,4-dinitrotoluene degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115287. [PMID: 37567105 DOI: 10.1016/j.ecoenv.2023.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment. In this study, we relocated a complete degradation pathway of 2,4-DNT into Escherichia coli to degrade 2,4-DNT completely. Eight genes from Burkholderia sp. strain were re-synthesized by PCR-based two-step DNA synthesis method and introduced into E. coli. Degradation experiments revealed that the transformant was able to degrade 2,4-DNT completely in 12 h when the 2,4-DNT concentration reached 3 mM. The organic acids in the tricarboxylic acid cycle were detected to prove the degradation of 2,4-DNT through the artificial degradation pathway. The results proved that 2,4-DNT could be completely degraded by the engineered bacteria. In this study, the complete degradation pathway of 2,4-DNT was constructed in E. coli for the first time using synthetic biology techniques. This research provides theoretical and experimental bases for the actual treatment of 2,4-DNT, and lays a technical foundation for the bioremediation of organic pollutants.
Collapse
Affiliation(s)
- Wen-Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Yong-Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Zhi-Feng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi, China
| | - Zhi-Hao Zuo
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Li-Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Hong-Juan Han
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Zhen-Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Quan-Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China
| | - Jian-Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China.
| | - Xiao-Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China.
| | - Ri-He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, China; Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
3
|
Murdoch RW, Hay AG. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 2015; 26:105-13. [PMID: 25663336 DOI: 10.1007/s10532-015-9719-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
Abstract
A bacterium was isolated from activated sewage sludge that has the ability to use ibuprofen as its sole carbon and energy source. Phylogenetic analysis of the 16S rRNA gene sequence placed the strain in the Variovorax genus within the β-proteobacteria. When grown on ibuprofen it accumulated a transient yellow intermediate that disappeared upon acidification, a trait consistent with meta ring-fission metabolites. GC/MS analysis of derivatized culture supernatant yielded two spectra consistent with trihydroxyibuprofen bearing all three hydroxyl groups on the aromatic ring. These metabolites were only detected when 3-fluorocatechol, a meta ring-fission inhibitor, was added to Ibu-1 cultures and the supernatant was then derivatized with aqueous acetic anhydride and diazomethane. These findings suggest the possibility of ibuprofen metabolism proceeding via a trihydroxyibuprofen meta ring-fission pathway. Identical spectra, consistent with these putative ring-hydroxylated trihydroxyibuprofen metabolites, were also obtained from ibuprofen-spiked sewage sludge, but only when it was poisoned with 3-fluorocatechol. The presence of the same trihydroxylated metabolites in both spiked sewage sludge and culture supernatants suggests that this trihydroxyibuprofen extradiol ring-cleavage pathway for the degradation of ibuprofen may have environmental relevance.
Collapse
Affiliation(s)
- Robert W Murdoch
- Graduate Program in Environmental Toxicology, Institute for Comparative and Environmental Toxicology, Cornell University, Ithaca, NY, 14850, USA,
| | | |
Collapse
|
4
|
Küce P, Coral G, Kantar Ç. Biodegradation of 2,4-dinitrotoluene (DNT) by Arthrobacter sp. K1 isolated from a crude oil contaminated soil. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0880-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Abstract
Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed.
Collapse
Affiliation(s)
- Kou-San Ju
- Department of Microbiology, University of California, Davis, California 95616
| | - Rebecca E. Parales
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
6
|
Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: an overview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2007; 85:496-512. [PMID: 17703873 DOI: 10.1016/j.jenvman.2007.06.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/18/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Nitro-aromatic compounds are produced by incomplete combustion of fossil fuel or nitration reactions and are used as chemical feedstock for synthesis of explosives, pesticides, herbicides, dyes, pharmaceuticals, etc. The indiscriminate use of nitro-aromatics in the past due to wide applications has resulted in inexorable environmental pollution. Hence, nitro-aromatics are recognized as recalcitrant and given Hazardous Rating-3. Although several conventional pump and treat clean up methods are currently in use for the removal of nitro-aromatics, none has proved to be sustainable. Recently, remediation by biological systems has attracted worldwide attention to decontaminate nitro-aromatics polluted sources. The incredible versatility inherited in microbes has rendered these compounds as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or non-specific transformation of nitro-aromatics either by aerobic or anaerobic processes. Aerobic degradation of nitro-aromatics applies mainly to mono-, dinitro-derivatives and to some extent to poly-nitro-aromatics through oxygenation by: (i) monooxygenase, (ii) dioxygenase catalyzed reactions, (iii) Meisenheimer complex formation, and (iv) partial reduction of aromatic ring. Under anaerobic conditions, nitro-aromatics are reduced to amino-aromatics to facilitate complete mineralization. The nitro-aromatic explosives from contaminated sediments are effectively degraded at field scale using in situ bioremediation strategies, while ex situ techniques using whole cell/enzyme(s) immobilized on a suitable matrix/support are gaining acceptance for decontamination of nitrophenolic pesticides from soils at high chemical loading rates. Presently, the qualitative and quantitative performance of biological approaches of remediation is undergoing improvement due to: (i) knowledge of catabolic pathways of degradation, (ii) optimization of various parameters for accelerated degradation, and (iii) design of microbe(s) through molecular biology tools, capable of detoxifying nitro-aromatic pollutants. Among them, degradative plasmids have provided a major handle in construction of recombinant strains. Although recombinants designed for high performance seem to provide a ray of hope, their true assessment under field conditions is required to address ecological considerations for sustainable bioremediation.
Collapse
Affiliation(s)
- Meenal Kulkarni
- School of Life Sciences, North Maharashtra University, P.B. No. 80, Jalgaon 425 001, Maharashtra, India
| | | |
Collapse
|
7
|
Porter AW, Hay AG. Identification of opdA, a gene involved in biodegradation of the endocrine disrupter octylphenol. Appl Environ Microbiol 2007; 73:7373-9. [PMID: 17890335 PMCID: PMC2168194 DOI: 10.1128/aem.01478-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Octylphenol (OP) is an estrogenic detergent breakdown product. Structurally similar nonylphenols are transformed via type II ispo substitution, resulting in the production of hydroquinone and removal of the branched side chain. Nothing is known, however, about the gene(s) encoding this activity. We report here on our efforts to clone the gene(s) encoding OP degradation activity from Sphingomonas sp. strain PWE1, which we isolated for its ability to grow on OP. A fosmid library of PWE1 DNA yielded a single clone, aew4H12, which accumulated a brown polymerization product in the presence of OP. Sequence analysis of loss-of-function transposon mutants of aew4H12 revealed a single open reading frame, opdA, that conferred OP degradation activity. Escherichia coli subclones expressing opdA caused OP disappearance, with the concomitant production of hydroquinone and 2,4,4-trimethyl-1-pentene as well as small amounts of 2,4,4-trimethyl-2-pentanol. These metabolites are consistent with a type II ipso substitution reaction, the same mechanism described for nonylphenol biodegradation in other sphingomonads. Based on opdA's sequence homology to a unique group of putative flavin monooxygenases and the recovery of hydroxylated OP intermediates from E. coli expressing opdA, we conclude that this gene encodes the observed type II ipso substitution activity responsible for the initial step in OP biodegradation.
Collapse
Affiliation(s)
- A W Porter
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
8
|
Siani L, Viggiani A, Notomista E, Pezzella A, Di Donato A. The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1. FEBS J 2006; 273:2963-76. [PMID: 16734718 DOI: 10.1111/j.1742-4658.2006.05307.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bioremediation strategies use microorganisms to remove hazardous substances, such as aromatic molecules, from polluted sites. The applicability of these techniques would greatly benefit from the expansion of the catabolic ability of these bacteria in transforming a variety of aromatic compounds. Catechol-2,3-dioxygenase (C2,3O) from Pseudomonas stutzeri OX1 is a key enzyme in the catabolic pathway for aromatic molecules. Its specificity and regioselectivity control the range of molecules degraded through the catabolic pathway of the microorganism that is able to use aromatic hydrocarbons as growth substrates. We have used in silico substrate docking procedures to investigate the molecular determinants that direct the enzyme substrate specificity. In particular, we looked for a possible molecular explanation of the inability of catechol-2,3-dioxygenase to cleave 3,5-dimethylcatechol and 3,6-dimethylcatechol and of the efficient cleavage of 3,4-dimethylcatechol. The docking study suggested that reduction in the volume of the side chain of residue 249 could allow the binding of 3,5-dimethylcatechol and 3,6-dimethylcatechol. This information was used to prepare and characterize mutants at position 249. The kinetic and regiospecificity parameters of the mutants confirm the docking predictions, and indicate that this position controls the substrate specificity of catechol-2,3-dioxygenase. Moreover, our results suggest that Thr249 also plays a previously unsuspected role in the catalytic mechanism of substrate cleavage. The hypothesis is advanced that a water molecule bound between one of the hydroxyl groups of the substrate and the side chain of Thr249 favors the deprotonation/protonation of this hydroxyl group, thus assisting the final steps of the cleavage reaction.
Collapse
Affiliation(s)
- Loredana Siani
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
9
|
Monti MR, Smania AM, Fabro G, Alvarez ME, Argaraña CE. Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl Environ Microbiol 2006; 71:8864-72. [PMID: 16332883 PMCID: PMC1317424 DOI: 10.1128/aem.71.12.8864-8872.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using the genes encoding the 2,4-dinitrotoluene degradation pathway enzymes, the nonpathogenic psychrotolerant rhizobacterium Pseudomonas fluorescens ATCC 17400 was genetically modified for degradation of this priority pollutant. First, a recombinant strain designated MP was constructed by conjugative transfer from Burkholderia sp. strain DNT of the pJS1 megaplasmid, which contains the dnt genes for 2,4-dinitrotoluene degradation. This strain was able to grow on 2,4-dinitrotoluene as the sole source of carbon, nitrogen, and energy at levels equivalent to those of Burkholderia sp. strain DNT. Nevertheless, loss of the 2,4-dinitrotoluene degradative phenotype was observed for strains carrying pJS1. The introduction of dnt genes into the P.fluorescens ATCC 17400 chromosome, using a suicide chromosomal integration Tn5-based delivery plasmid system, generated a degrading strain that was stable for a long time, which was designated RE. This strain was able to use 2,4-dinitrotoluene as a sole nitrogen source and to completely degrade this compound as a cosubstrate. Furthermore, P. fluorescens RE, but not Burkholderia sp. strain DNT, was capable of degrading 2,4-dinitrotoluene at temperatures as low as 10 degrees C. Finally, the presence of P. fluorescens RE in soils containing levels of 2,4-dinitrotoluene lethal to plants significantly decreased the toxic effects of this nitro compound on Arabidopsis thaliana growth. Using synthetic medium culture, P. fluorescens RE was found to be nontoxic for A.thaliana and Nicotiana tabacum, whereas under these conditions Burkholderia sp. strain DNT inhibited A.thaliana seed germination and was lethal to plants. These features reinforce the advantageous environmental robustness of P. fluorescens RE compared with Burkholderia sp. strain DNT.
Collapse
Affiliation(s)
- Mariela R Monti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
10
|
Tago K, Sato J, Takesa H, Kawagishi H, Hayatsu M. Characterization of methylhydroquinone-metabolizing oxygenase genes encoded on plasmid in Burkholderia sp. NF100. J Biosci Bioeng 2005; 100:517-23. [PMID: 16384790 DOI: 10.1263/jbb.100.517] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 07/20/2005] [Indexed: 11/17/2022]
Abstract
Methylhydroquinone is an intermediate in the degradation of fenitrothion by Burkholderia sp. NF100. The catabolic gene (mhq) for methylhydroquinone degradation encoded on the plasmid pNF1 in the strain was cloned and sequenced. The mhq clone contained two ORFs, mhqA and mhqB, of which the deduced amino acid sequence shared significant homology with NAD(P)H-dependent flavoprotein monooxygenases and extradiol dioxygenases, respectively. Parts of the consensus sequences of the monooxygenase gene and dioxygenase gene have been identified in MhqA and MhqB from strain NF100, respectively. MhqA was overexpressed in Escherichia coli, and partially purified MhqA catalyzed the NADPH-dependent hydroxylation of methylhydroquinone. MhqB was also overexpressed in E. coli, and the purified enzyme showed an extradiol ring cleavage activity toward 3-methylcatechol but a very low activity was observed toward 4-methylcatechol.
Collapse
Affiliation(s)
- Kanako Tago
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Japan
| | | | | | | | | |
Collapse
|
11
|
Lewis TA, Newcombe DA, Crawford RL. Bioremediation of soils contaminated with explosives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2004; 70:291-307. [PMID: 15016438 DOI: 10.1016/j.jenvman.2003.12.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2002] [Revised: 12/09/2003] [Accepted: 12/09/2003] [Indexed: 05/24/2023]
Abstract
The large-scale industrial production and processing of munitions such as 2,4,6-trinitrotoluene (TNT) over the past 100 years led to the disposal of wastes containing explosives and nitrated organic by-products into the environment. In the US, the Army alone has estimated that over 1.2 million tons of soil have been contaminated with explosives, and the impact of explosives contamination in other countries is of similar magnitude. In recent years, growing concern about the health and ecological threats posed by man-made chemicals have led to studies of the toxicology of explosives, which have identified toxic and mutagenic effects of the common military explosives and their transformation products (Bruns-Nagel et al., 1999a; Fuchs et al., 2001; Homma-Takeda et al., 2002; Honeycutt et al., 1996; Rosenblatt et al., 1991; Spanggord et al., 1982; Tan et al., 1992 and Won et al., 1976). Because the cleanup of areas contaminated by explosives is now mandated because of public health concerns, considerable effort has been invested in finding economical remediation technologies. Biological treatment processes are often considered, since these are usually the least expensive means of destroying organic pollution. This review examines the most important groups of chemicals that must be treated at sites contaminated by explosives processing, the chemical and biological transformations they undergo, and commercial processes developed to exploit these transformations for treatment of contaminated soil. We critically examine about 150 papers on the topic, including approximately 60 published within the past 5 years.
Collapse
Affiliation(s)
- Thomas A Lewis
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
12
|
Fortner JD, Zhang C, Spain JC, Hughes JB. Soil column evaluation of factors controlling biodegradation of DNT in the vadose zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:3382-3391. [PMID: 12966985 DOI: 10.1021/es021066s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
High concentrations of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) are present in vadose zone soils at many facilities where explosives manufacturing has taken place. Both DNT isomers can be biodegraded under aerobic conditions, but rates of intrinsic biodegradation observed in vadose zone soils are not appreciable. Studies presented herein demonstrate that nutrient limitations control the onset of rapid 2,4-DNT biodegradation in such soils. In column studies conducted at field capacity, high levels of 2,4-DNT biodegradation were rapidly stimulated by the addition of a complete mineral medium but not by bicarbonate-buffered distilled deionized water or by phosphate-amended tap water. Biodegradation of 2,6-DNT was not observed under any conditions. Microcosm studies using a DNT-degrading culture from column effluent suggest that, after the onset of 2,4-DNT degradation, nitrite evolution will eventually control the extent of degradation achieved by two mechanisms. First, high levels of nitrite (40 mM) were found to strongly inhibit 2,4-DNT degradation. Second, nitrite production reduces the solution pH, and at pH levels below 6.0, 2,4-DNT degradation slows rapidly. Under conditions evaluated in laboratory-scale studies, 2,4-DNT biodegradation enhanced the rate of contaminant loss from the vadose zone by a factor of 10 when compared to the washout due to leaching.
Collapse
Affiliation(s)
- John D Fortner
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
13
|
Johnson GR, Jain RK, Spain JC. Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 2002; 184:4219-32. [PMID: 12107140 PMCID: PMC135200 DOI: 10.1128/jb.184.15.4219-4232.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022] Open
Abstract
The degradation of synthetic compounds requires bacteria to recruit and adapt enzymes from pathways for naturally occurring compounds. Previous work defined the steps in 2,4-dinitrotoluene (2,4-DNT) metabolism through the ring fission reaction. The results presented here characterize subsequent steps in the pathway that yield the central metabolic intermediates pyruvate and propionyl coenzyme A (CoA). The genes encoding the degradative pathway were identified within a 27-kb region of DNA cloned from Burkholderia cepacia R34, a strain that grows using 2,4-DNT as a sole carbon, energy, and nitrogen source. Genes for the lower pathway in 2,4-DNT degradation were found downstream from dntD, the gene encoding the extradiol ring fission enzyme of the pathway. The region includes genes encoding a CoA-dependent methylmalonate semialdehyde dehydrogenase (dntE), a putative NADH-dependent dehydrogenase (ORF13), and a bifunctional isomerase/hydrolase (dntG). Results from analysis of the gene sequence, reverse transcriptase PCR, and enzyme assays indicated that dntD dntE ORF13 dntG composes an operon that encodes the lower pathway. Additional genes that were uncovered encode the 2,4-DNT dioxygenase (dntAaAbAcAd), methylnitrocatechol monooxygenase (dntB), a putative LysR-type transcriptional (ORF12) regulator, an intradiol ring cleavage enzyme (ORF3), a maleylacetate reductase (ORF10), a complete ABC transport complex (ORF5 to ORF8), a putative methyl-accepting chemoreceptor protein (ORF11), and remnants from two transposable elements. Some of the additional gene products might play as-yet-undefined roles in 2,4-DNT degradation; others appear to remain from recruitment of the neighboring genes. The presence of the transposon remnants and vestigial genes suggests that the pathway for 2,4-DNT degradation evolved relatively recently because the extraneous elements have not been eliminated from the region.
Collapse
Affiliation(s)
- Glenn R Johnson
- Air Force Research Laboratory, U.S. Air Force, Tyndall Air Force Base, Florida 32403, USA
| | | | | |
Collapse
|
14
|
Labidi M, Ahmad D, Halasz A, Hawari J. Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia. Can J Microbiol 2001; 47:559-66. [PMID: 11467731 DOI: 10.1139/w01-040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three strains, T10, B5, and M8, each belonging to a different species of the family Rhizobiaceae and isolated from atrazine-contaminated soils, were tested for their ability to transform 2,4,6-trinitrotoluene (TNT) (50 microg x mL(-1)) in liquid cultures using glucose as the C-source. All three strains were able to transform TNT to hydroxylaminodinitrotoluenes (2-HADNT, 4-HADNT), aminodinitrotoluenes (2-ADNT, 4-ADNT), and diaminonitrotoluene (2,4-DANT). The transformation was significantly faster in the presence of glutamate. Furthermore, the major metabolites that accumulated in cultures were 2-ADNT with glucose, and 4-ADNT with glutamate plus glucose. Rhizobium trifolii T10 was also tested for its ability to transform high levels of TNT (approximately 350 microg x mL(-1)) in a soil slurry. Almost 60% of the TNT was transformed within 2 days in bioaugmented soil slurries, and up to 90% when cultures were supplemented with glucose and glutamate. However, mineralization was minimal in all cases, less than 2% in 78 days. This is the first report on the degradation of TNT by rhizobial strains, and our findings suggest that rhizobia have the potential to play an important role in the safe decontamination of soils and sites contaminated with TNT if bioaugmentation with rhizobia is shown to have no ecotoxicological consequence.
Collapse
Affiliation(s)
- M Labidi
- Institut national de la recherche scientifique-Institut Armand Frappier, Centre de microbiologie et biotechnologie, Université du Québec, Pointe-Claire, Canada
| | | | | | | |
Collapse
|
15
|
Zhao JS, Ward OP. Substrate selectivity of a 3-nitrophenol-induced metabolic system in Pseudomonas putida 2NP8 transforming nitroaromatic compounds into ammonia under aerobic conditions. Appl Environ Microbiol 2001; 67:1388-91. [PMID: 11229938 PMCID: PMC92741 DOI: 10.1128/aem.67.3.1388-1391.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 3-nitrophenol-induced enzyme system in cells of Pseudomonas putida 2NP8 manifested a wide substrate range in transforming nitroaromatic compounds through to ammonia production. All of the 30 mono- or dinitroaromatic substrates except 4-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, 3-nitroaniline, 2-nitrobenzoic acid, and 2-nitrofuran were quickly transformed. Ammonia production from most nitroaromatic substrates appeared to be stoichiometric.
Collapse
Affiliation(s)
- J S Zhao
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
16
|
He Z, Nadeau LJ, Spain JC. Characterization of hydroxylaminobenzene mutase from pNBZ139 cloned from Pseudomonas pseudoalcaligenes JS45. A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1110-6. [PMID: 10672020 DOI: 10.1046/j.1432-1327.2000.01107.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hydroxylaminobenzene mutase is the enzyme that converts intermediates formed during initial steps in the degradation of nitrobenzene to a novel ring-fission lower pathway in Pseudomonas pseudoalcaligenes JS45. The mutase catalyzes a rearrangement of hydroxylaminobenzene to 2-aminophenol. The mechanism of the reactions and the properties of the enzymes are unknown. In crude extracts, the hydroxylaminobenzene mutase was stable at SDS concentrations as high as 2%. A procedure including Hitrap-SP, Hitrap-Q and Cu(II)-chelating chromatography was used to partially purify the enzyme from an Escherichia coli clone. The partially purified enzyme was eluted in the void volume of a Superose-12 gel-filtration column even in the presence of 0.05% SDS in 25 mM Tris/HCl buffer, which indicated that it was highly associated. When the enzymatic conversion of hydroxylaminobenzene to 2-aminophenol was carried out in 18O-labeled water, the product did not contain 18O, as determined by GC-MS. The results indicate that the reaction proceeded by intramolecular transfer of the hydroxy group from the nitrogen to the C-2 position of the ring. The mechanism is clearly different from the intermolecular transfer of the hydroxy group in the non-enzymatic Bamberger rearrangement of hydroxylaminobenzene to 4-aminophenol and in the enzymatic hydroxymutation of chorismate to isochorismate.
Collapse
Affiliation(s)
- Z He
- Air Force Research Laboratory, Tyndall Air Force Base, FL 32403, USA
| | | | | |
Collapse
|