1
|
Hurtado-Bautista E, Islas-Robles A, Moreno-Hagelsieb G, Olmedo-Alvarez G. Thermal Plasticity and Evolutionary Constraints in Bacillus: Implications for Climate Change Adaptation. BIOLOGY 2024; 13:1088. [PMID: 39765755 PMCID: PMC11673879 DOI: 10.3390/biology13121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The ongoing rise in global temperatures poses significant challenges to ecosystems, particularly impacting bacterial communities that are central to biogeochemical cycles. The resilience of wild mesophilic bacteria to temperature increases of 2-4 °C remains poorly understood. In this study, we conducted experimental evolution on six wild Bacillus strains from two lineages (Bacillus cereus and Bacillus subtilis) to examine their thermal adaptation strategies. We exposed the bacteria to gradually increasing temperatures to assess their thermal plasticity, focusing on the genetic mechanisms underlying adaptation. While B. subtilis lineages improved growth at highly critical temperatures, only one increased its thermal niche to 4 °C above their natural range. This finding is concerning given climate change projections. B. cereus strains exhibited higher mutation rates but were not able to grow at increasing temperatures, while B. subtilis required fewer genetic changes to increase heat tolerance, indicating distinct adaptive strategies. We observed convergent evolution in five evolved lines, with mutations in genes involved in c-di-AMP synthesis, which is crucial for potassium transport, implicating this chemical messenger for the first time in heat tolerance. These insights highlight the vulnerability of bacteria to climate change and underscore the importance of genetic background in shaping thermal adaptation.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| | | | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav 36824, Mexico; (E.H.-B.); (A.I.-R.)
| |
Collapse
|
2
|
Schroeder JW, Hurto RL, Randall JR, Wozniak KJ, Timko TA, Nye TM, Wang JD, Freddolino PL, Simmons LA. RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome wide. SCIENCE ADVANCES 2023; 9:eadi5945. [PMID: 37494439 PMCID: PMC10371020 DOI: 10.1126/sciadv.adi5945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
RNA:DNA hybrids compromise replication fork progression and genome integrity in all cells. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate strongly in noncoding RNAs and 5'-UTRs of coding sequences. For ΔrnhB, hybrids accumulate preferentially in untranslated regions and early in coding sequences. We show that hybrid accumulation is particularly sensitive to gene expression in ΔrnhC cells. DNA replication in ΔrnhC cells is disrupted, leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts cause mutagenesis and shape genome organization.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Rebecca L. Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Room 743E, Houston, TX 77030, USA
| | - Taylor A. Timko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Schroeder JW, Hurto RL, Randall JR, Wozniak KJ, Timko TA, Nye TM, Wang JD, Freddolino PL, Simmons LA. RNase H genes cause distinct impacts on RNA:DNA hybrid formation and mutagenesis genome-wide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539860. [PMID: 37214986 PMCID: PMC10197577 DOI: 10.1101/2023.05.08.539860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA:DNA hybrids such as R-loops affect genome integrity and DNA replication fork progression. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome-wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation, but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate most strongly in non-coding RNAs and 5'-UTRs of coding sequences. For Δ rnhB , hybrids accumulate preferentially in untranslated regions and early in coding sequences. Hybrid accumulation is particularly sensitive to gene expression in Δ rnhC ; in cells lacking RnhC, DNA replication is disrupted leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts interact with replication to cause mutagenesis and shape genome organization.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706
| | - Rebecca L. Hurto
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Katherine J. Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Taylor A. Timko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Taylor M. Nye
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | - Jue D. Wang
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI 53706
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Dupuy P, Glickman MS. The C-Terminal Acid Phosphatase Module of the RNase HI Enzyme RnhC Controls Rifampin Sensitivity and Light-Dependent Colony Pigmentation of Mycobacterium smegmatis. J Bacteriol 2023; 205:e0043122. [PMID: 36916909 PMCID: PMC10127661 DOI: 10.1128/jb.00431-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
RNase H enzymes participate in various processes that require processing of RNA-DNA hybrids, including DNA replication, transcription, and ribonucleotide excision from DNA. Mycobacteria encode multiple RNase H enzymes, and prior data indicate that RNase HI activity is essential for mycobacterial viability. However, the additional roles of mycobacterial RNase Hs are unknown, including whether RNase HII (RnhB and RnhD) excises chromosomal ribonucleotides misincorporated during DNA replication and whether individual RNase HI enzymes (RnhA and RnhC) mediate additional phenotypes. We find that loss of RNase HII activity in Mycobacterium smegmatis (through combined deletion of rnhB/rnhD) or individual RNase HI enzymes does not affect growth, hydroxyurea sensitivity, or mutagenesis, whereas overexpression (OE) of either RNase HII severely compromises bacterial viability. We also show that deletion of rnhC, which encodes a protein with an N-terminal RNase HI domain and a C-terminal acid phosphatase domain, confers sensitivity to rifampin and oxidative stress as well as loss of light-induced carotenoid pigmentation. These phenotypes are due to loss of the activity of the C-terminal acid phosphatase domain rather than the RNase HI activity, suggesting that the acid phosphatase activity may confer rifampin resistance through the antioxidant properties of carotenoid pigment production. IMPORTANCE Mycobacteria encode multiple RNase H enzymes, with RNase HI being essential for viability. Here, we examine additional functions of RNase H enzymes in mycobacteria. We find that RNase HII is not involved in mutagenesis but is highly toxic when overexpressed. The RNase HI enzyme RnhC is required for tolerance to rifampin, but this role is surprisingly independent of its RNase H activity and is instead mediated by an autonomous C-terminal acid phosphatase domain. This study provides new insights into the functions of the multiple RNase H enzymes of mycobacteria.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, New York, USA
| |
Collapse
|
5
|
Krin E, Baharoglu Z, Sismeiro O, Varet H, Coppée JY, Mazel D. Systematic transcriptome analysis allows the identification of new type I and type II Toxin/Antitoxin systems located in the superintegron of Vibrio cholerae. Res Microbiol 2023; 174:103997. [PMID: 36347445 DOI: 10.1016/j.resmic.2022.103997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Vibrio cholerae N16961 genome encodes 18 type II Toxin/Antitoxin (TA) systems, all but one located inside gene cassettes of its chromosomal superintegron (SI). This study aims to investigate additional TA systems in this genome. We screened for all two-genes operons of uncharacterized function by analyzing previous RNAseq data. Assays on nine candidates, revealed one additional functional type II TA encoded by the VCA0497-0498 operon, carried inside a SI cassette. We showed that VCA0498 antitoxin alone and in complex with VCA0497 represses its own operon promoter. VCA0497-0498 is the second element of the recently identified dhiT/dhiA superfamily uncharacterized type II TA system. RNAseq analysis revealed that another SI cassette encodes a novel type I TA system: VCA0495 gene and its two associated antisense non-coding RNAs, ncRNA495 and ncRNA496. Silencing of both antisense ncRNAs lead to cell death, demonstrating the type I TA function. Both VCA0497 and VCA0495 toxins do not show any homology to functionally characterized toxins, however our preliminary data suggest that their activity may end up in mRNA degradation, directly or indirectly. Our findings increase the TA systems number carried in this SI to 19, preferentially located in its distal end, confirming their importance in this large cassette array.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Jean-Yves Coppée
- Institut Pasteur, Université Paris Cité, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, 28 rue du Docteur Roux, F-75015 Paris, France.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité de Plasticité du Génome Bactérien, 28 rue du Docteur Roux, F-75015 Paris, France.
| |
Collapse
|
6
|
Pang J, Guo Q, Lu Z. The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H. Front Microbiol 2022; 13:1034811. [PMID: 36478866 PMCID: PMC9719913 DOI: 10.3389/fmicb.2022.1034811] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2023] Open
Abstract
Ribonucleoside monophosphates are inevitably misincorporated into the DNA genome inside cells, and they need to be excised to avoid chromosome instability. Ribonucleases H (RNases H) are enzymes that specifically hydrolyze the RNA strand of RNA/DNA hybrids or the RNA moiety from DNA containing a stretch of RNA, they therefore are required for DNA integrity. Extensive studies have drawn a mostly clear picture of the mechanisms of RNase H catalysis, but some questions are still lacking definitive answers. This review summarizes three alternative models of RNase H catalysis. The two-metal model is prevalent, but a three-metal model suggests the involvement of a third cation in catalysis. Apparently, the mechanisms underlying metal-dependent hydrolyzation are more complicated than initially thought. We also discuss the metal choices of RNases H and analyze how chemically similar cations function differently. Substrate and cleavage-site specificities vary among RNases H, and this is explicated in detail. An intriguing phenomenon is that organisms have diverse RNase H combinations, which may provide important hints to how rnh genes were transferred during evolution. Whether RNase H is essential for cellular growth, a key question in the study of in vivo functions, is also discussed. This article may aid in understanding the mechanisms underlying RNase H and in developing potentially promising applications of it.
Collapse
Affiliation(s)
| | | | - Zheng Lu
- Department of Biology, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
7
|
Moreno-del Álamo M, Carrasco B, Torres R, Alonso JC. Bacillus subtilis PcrA Helicase Removes Trafficking Barriers. Cells 2021; 10:935. [PMID: 33920686 PMCID: PMC8074105 DOI: 10.3390/cells10040935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Bacillus subtilis PcrA interacts with the RNA polymerase and might contribute to mitigate replication-transcription conflicts (RTCs). We show that PcrA depletion lethality is partially suppressed by rnhB inactivation, but cell viability is significantly reduced by rnhC or dinG inactivation. Following PcrA depletion, cells lacking RnhC or DinG are extremely sensitive to DNA damage. Chromosome segregation is not further impaired by rnhB or dinG inactivation but is blocked by rnhC or recA inactivation upon PcrA depletion. Despite our efforts, we could not construct a ΔrnhC ΔrecA strain. These observations support the idea that PcrA dismantles RTCs. Purified PcrA, which binds single-stranded (ss) DNA over RNA, is a ssDNA-dependent ATPase and preferentially unwinds DNA in a 3'→5'direction. PcrA unwinds a 3'-tailed RNA of an RNA-DNA hybrid significantly faster than that of a DNA substrate. Our results suggest that a replicative stress, caused by mis-incorporated rNMPs, indirectly increases cell viability upon PcrA depletion. We propose that PcrA, in concert with RnhC or DinG, contributes to removing spontaneous or enzyme-driven R-loops, to counteract deleterious trafficking conflicts and preserve to genomic integrity.
Collapse
Affiliation(s)
| | | | | | - Juan Carlos Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 28049 Madrid, Spain; (M.M.-d.Á.); (B.C.); (R.T.)
| |
Collapse
|
8
|
Zhang M, Li W, Feng J, Gong Z, Yao Y, Zheng C. Integrative transcriptomics and proteomics analysis constructs a new molecular model for ovule abortion in the female-sterile line of Pinus tabuliformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110462. [PMID: 32234230 DOI: 10.1016/j.plantsci.2020.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Ovule development is critical to plant reproduction and free nuclear mitosis of megagametophyte (FNMM) is vital for ovule development. However, most results of ovule development were based on the studies in angiosperms, and its molecular regulation remained largely unknown in gymnosperms, particularly, during FNMM. In this context, we studied the genome-wide difference between sterile line (SL) and fertile line (FL) ovules using transcriptomics and proteomics approaches in Pinus tabuliformis Carr. Comparative analyses revealed that genes involved in DNA replication, DNA damage repair, Cell cycle, Apoptosis and Energy metabolism were highlighted. Further results showed the low expressions of MCM 2-7, RRM1, etc. perhaps led to abnormal DNA replication and damage repair, and the significantly different expressions of PARP2, CCs1, CCs3, etc. implied that the accumulated DNA double-stranded breaks were failed to be repaired and the cell cycle was arrested at G2/M in SL ovules, potentially resulting in the occurrence of apoptosis. Moreover, the deficiency of ETF-QO might hinder FNMM. Consequently, FNMM stopped and ovule aborted in SL ovules. Our results suggested a selective regulatory mechanism led to FNMM half-stop and ovule abortion in P. tabuliformis and these insights could be exploited to investigate the molecular regulations of ovule development in woody gymnosperms.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Wenhai Li
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Jun Feng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China.
| |
Collapse
|
9
|
Luciano DJ, Levenson-Palmer R, Belasco JG. Stresses that Raise Np 4A Levels Induce Protective Nucleoside Tetraphosphate Capping of Bacterial RNA. Mol Cell 2019; 75:957-966.e8. [PMID: 31178354 DOI: 10.1016/j.molcel.2019.05.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Present in all realms of life, dinucleoside tetraphosphates (Np4Ns) are generally considered signaling molecules. However, only a single pathway for Np4N signaling has been delineated in eukaryotes, and no receptor that mediates the influence of Np4Ns has ever been identified in bacteria. Here we show that, under disulfide stress conditions that elevate cellular Np4N concentrations, diverse Escherichia coli mRNAs and sRNAs acquire a cognate Np4 cap. Purified E. coli RNA polymerase and lysyl-tRNA synthetase are both capable of adding such 5' caps. Cap removal by either of two pyrophosphatases, ApaH or RppH, triggers rapid RNA degradation in E. coli. ApaH, the predominant decapping enzyme, functions as both a sensor and an effector of disulfide stress, which inactivates it. These findings suggest that the physiological changes attributed to elevated Np4N concentrations in bacteria may result from widespread Np4 capping, leading to altered RNA stability and consequent changes in gene expression.
Collapse
Affiliation(s)
- Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Rose Levenson-Palmer
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA.
| |
Collapse
|
10
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Raghunathan N, Kapshikar RM, Leela JK, Mallikarjun J, Bouloc P, Gowrishankar J. Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli. Nucleic Acids Res 2018; 46:3400-3411. [PMID: 29474582 PMCID: PMC5909445 DOI: 10.1093/nar/gky118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/30/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Transcription termination by Rho is essential for viability in various bacteria, including some major pathogens. Since Rho acts by targeting nascent RNAs that are not simultaneously translated, it also regulates antisense transcription. Here we show that RNase H-deficient mutants of Escherichia coli exhibit heightened sensitivity to the Rho inhibitor bicyclomycin, and that Rho deficiency provokes increased formation of RNA-DNA hybrids (R-loops) which is ameliorated by expression of the phage T4-derived R-loop helicase UvsW. We also provide evidence that in Rho-deficient cells, R-loop formation blocks subsequent rounds of antisense transcription at more than 500 chromosomal loci. Hence these antisense transcripts, which can extend beyond 10 kb in their length, are only detected when Rho function is absent or compromised and the UvsW helicase is concurrently expressed. Thus the potential for antisense transcription in bacteria is much greater than hitherto recognized; and the cells are able to retain viability even when nearly one-quarter of their total non-rRNA abundance is accounted for by antisense transcripts, provided that R-loop formation from them is curtailed.
Collapse
Affiliation(s)
- Nalini Raghunathan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rajvardhan M Kapshikar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jakku K Leela
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
| | - Jillella Mallikarjun
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Philippe Bouloc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana 500039, India
| |
Collapse
|
12
|
Schroeder JW, Randall JR, Hirst WG, O'Donnell ME, Simmons LA. Mutagenic cost of ribonucleotides in bacterial DNA. Proc Natl Acad Sci U S A 2017; 114:11733-11738. [PMID: 29078353 PMCID: PMC5676920 DOI: 10.1073/pnas.1710995114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context-dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.
Collapse
Affiliation(s)
- Jeremy W Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Justin R Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - William G Hirst
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
13
|
Replication-Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell 2017; 170:787-799.e18. [PMID: 28802046 DOI: 10.1016/j.cell.2017.07.044] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Abstract
Replication-transcription collisions shape genomes, influence evolution, and promote genetic diseases. Although unclear why, head-on transcription (lagging strand genes) is especially disruptive to replication and promotes genomic instability. Here, we find that head-on collisions promote R-loop formation in Bacillus subtilis. We show that pervasive R-loop formation at head-on collision regions completely blocks replication, elevates mutagenesis, and inhibits gene expression. Accordingly, the activity of the R-loop processing enzyme RNase HIII at collision regions is crucial for stress survival in B. subtilis, as many stress response genes are head-on to replication. Remarkably, without RNase HIII, the ability of the intracellular pathogen Listeria monocytogenes to infect and replicate in hosts is weakened significantly, most likely because many virulence genes are head-on to replication. We conclude that the detrimental effects of head-on collisions stem primarily from excessive R-loop formation and that the resolution of these structures is critical for bacterial stress survival and pathogenesis.
Collapse
|
14
|
Kouzminova EA, Kadyrov FF, Kuzminov A. RNase HII Saves rnhA Mutant Escherichia coli from R-Loop-Associated Chromosomal Fragmentation. J Mol Biol 2017; 429:2873-2894. [PMID: 28821455 DOI: 10.1016/j.jmb.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023]
Abstract
The rnhAB mutant Escherichia coli, deficient in two RNase H enzymes that remove both R-loops and incorporated ribonucleotides (rNs) from DNA, grow slowly, suggesting accumulation of rN-containing DNA lesions (R-lesions). We report that the rnhAB mutants have reduced viability, form filaments with abnormal nucleoids, induce SOS, and fragment their chromosome, revealing replication and/or segregation stress. R-loops are known to interfere with replication forks, and sensitivity of the double rnhAB mutants to translation inhibition points to R-loops as precursors for R-lesions. However, the strict specificity of bacterial RNase HII for RNA-DNA junctions indicates that R-lesions have rNs integrated into DNA. Indeed, instead of relieving problems of rnhAB mutants, transient inhibition of replication from oriC kills them, suggesting that oriC-initiated replication removes R-loops instead of compounding them to R-lesions. Yet, replication from an R-loop-initiating plasmid origin kills the double rnhAB mutant, revealing generation of R-lesions by R-loop-primed DNA synthesis. These R-lesions could be R-tracts, contiguous runs of ≥4 RNA nucleotides within DNA strand and the only common substrate between the two bacterial RNase H enzymes. However, a plasmid relaxation test failed to detect R-tracts in DNA of the rnhAB mutants, although it readily detected R-patches (runs of 1-3 rNs). Instead, we detected R-gaps, single-strand gaps containing rNs, in the chromosomal DNA of the rnhAB mutant. Therefore, we propose that RNase H-deficient mutants convert some R-loops into R-tracts, which progress into R-gaps and then to double-strand breaks-explaining why R-tracts do not accumulate in RNase H-deficient cells, while double-strand breaks do.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Farid F Kadyrov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Comparative transcriptional profiling of tildipirosin-resistant and sensitive Haemophilus parasuis. Sci Rep 2017; 7:7517. [PMID: 28790420 PMCID: PMC5548900 DOI: 10.1038/s41598-017-07972-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/03/2017] [Indexed: 11/09/2022] Open
Abstract
Numerous studies have been conducted to examine the molecular mechanism of Haemophilus parasuis resistance to antibiotic, but rarely to tildipirosin. In the current study, transcriptional profiling was applied to analyse the variation in gene expression of JS0135 and tildipirosin-resistant JS32. The growth curves showed that JS32 had a higher growth rate but fewer bacteria than JS0135. The cell membranes of JS32 and a resistant clinical isolate (HB32) were observed to be smoother than those of JS0135. From the comparative gene expression profile 349 up- and 113 downregulated genes were observed, covering 37 GO and 63 KEGG pathways which are involved in biological processes (11), cellular components (17), molecular function (9), cellular processes (1), environmental information processing (4), genetic information processing (9) and metabolism (49) affected in JS32. In addition, the relative overexpression of genes of the metabolism pathway (HAPS_RS09315, HAPS_RS09320), ribosomes (HAPS_RS07815) and ABC transporters (HAPS_RS10945) was detected, particularly the metabolism pathway, and verified with RT-qPCR. Collectively, the gene expression profile in connection with tildipirosin resistance factors revealed unique and highly resistant determinants of H. parasuis to macrolides that warrant further attention due to the significant threat of bacterial resistance.
Collapse
|
16
|
Luciano DJ, Vasilyev N, Richards J, Serganov A, Belasco JG. A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli. Mol Cell 2017; 67:44-54.e6. [PMID: 28673541 DOI: 10.1016/j.molcel.2017.05.035] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/10/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023]
Abstract
RNA modifications that once escaped detection are now thought to be pivotal for governing RNA lifetimes in both prokaryotes and eukaryotes. For example, converting the 5'-terminal triphosphate of bacterial transcripts to a monophosphate triggers 5' end-dependent degradation by RNase E. However, the existence of diphosphorylated RNA in bacteria has never been reported, and no biological role for such a modification has ever been proposed. By using a novel assay, we show here for representative Escherichia coli mRNAs that ~35%-50% of each transcript is diphosphorylated. The remainder is primarily monophosphorylated, with surprisingly little triphosphorylated RNA evident. Furthermore, diphosphorylated RNA is the preferred substrate of the RNA pyrophosphohydrolase RppH, whose biological function was previously assumed to be pyrophosphate removal from triphosphorylated transcripts. We conclude that triphosphate-to-monophosphate conversion to induce 5' end-dependent RNA degradation is a two-step process in E. coli involving γ-phosphate removal by an unidentified enzyme to enable subsequent β-phosphate removal by RppH.
Collapse
Affiliation(s)
- Daniel J Luciano
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
17
|
Gupta R, Chatterjee D, Glickman MS, Shuman S. Division of labor among Mycobacterium smegmatis RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase. Nucleic Acids Res 2016; 45:1-14. [PMID: 27899559 PMCID: PMC5224475 DOI: 10.1093/nar/gkw1046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/16/2016] [Accepted: 10/20/2016] [Indexed: 02/05/2023] Open
Abstract
RNase H enzymes sense the presence of ribonucleotides in the genome and initiate their removal by incising the ribonucleotide-containing strand of an RNA:DNA hybrid. Mycobacterium smegmatis encodes four RNase H enzymes: RnhA, RnhB, RnhC and RnhD. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of RnhA. We report that RnhA (like RnhC characterized previously) is an RNase H1-type magnesium-dependent endonuclease with stringent specificity for RNA:DNA hybrid duplexes. Whereas RnhA does not incise an embedded mono-ribonucleotide, it can efficiently cleave within tracts of four or more ribonucleotides in duplex DNA. We gained genetic insights to the division of labor among mycobacterial RNases H by deleting the rnhA, rnhB, rnhC and rnhD genes, individually and in various combinations. The salient conclusions are that: (i) RNase H1 activity is essential for mycobacterial growth and can be provided by either RnhC or RnhA; (ii) the RNase H2 enzymes RnhB and RnhD are dispensable for growth and (iii) RnhB and RnhA collaborate to protect M. smegmatis against oxidative damage in stationary phase. Our findings highlight RnhC, the sole RNase H1 in pathogenic mycobacteria, as a candidate drug discovery target for tuberculosis and leprosy.
Collapse
Affiliation(s)
- Richa Gupta
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Debashree Chatterjee
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA .,Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
18
|
Krishnan S, Petchiappan A, Singh A, Bhatt A, Chatterji D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. Mol Microbiol 2016; 102:168-82. [PMID: 27349932 DOI: 10.1111/mmi.13453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 02/03/2023]
Abstract
Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response.
Collapse
Affiliation(s)
- Sushma Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anushya Petchiappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
19
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
20
|
Minias AE, Brzostek AM, Korycka- Machala M, Dziadek B, Minias P, Rajagopalan M, Madiraju M, Dziadek J. RNase HI Is Essential for Survival of Mycobacterium smegmatis. PLoS One 2015; 10:e0126260. [PMID: 25965344 PMCID: PMC4429107 DOI: 10.1371/journal.pone.0126260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/31/2015] [Indexed: 12/21/2022] Open
Abstract
RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides are present. Here we investigated the importance of RNase H type I encoding genes for model organism Mycobacterium smegmatis. By performing gene replacement through homologous recombination, we demonstrate that each of the two presumable RNase H type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome without affecting the growth rate of the mutant. Further, we demonstrate that deletion of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally, we question the possibility of existence of RNase HI related alternative mode of initiation of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis as the first bacterial species, where function of RNase H type I has been found essential.
Collapse
Affiliation(s)
- Alina E. Minias
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| | - Anna M. Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Bozena Dziadek
- Department of Immunoparasitology, University of Lodz, Lodz, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Lodz, Lodz, Poland
| | - Malini Rajagopalan
- Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas, United States of America
| | - Murty Madiraju
- Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas, United States of America
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
21
|
Tannous E, Kanaya E, Kanaya S. Role of RNase H1 in DNA repair: removal of single ribonucleotide misincorporated into DNA in collaboration with RNase H2. Sci Rep 2015; 5:9969. [PMID: 25951507 PMCID: PMC4423430 DOI: 10.1038/srep09969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/24/2015] [Indexed: 01/09/2023] Open
Abstract
Several RNases H1 cleave the RNA-DNA junction of Okazaki fragment-like RNA-DNA/DNA substrate. This activity, termed 3’-junction ribonuclease (3’-JRNase) activity, is different from the 5’-JRNase activity of RNase H2 that cleaves the 5’-side of the ribonucleotide of the RNA-DNA junction and is required to initiate the ribonucleotide excision repair pathway. To examine whether RNase H1 exhibits 3’-JRNase activity for dsDNA containing a single ribonucleotide and can remove this ribonucleotide in collaboration with RNase H2, cleavage of a DNA8-RNA1-DNA9/DNA18 substrate with E. coli RNase H1 and H2 was analyzed. This substrate was cleaved by E. coli RNase H1 at the (5’)RNA-DNA(3’) junction, regardless of whether it was cleaved by E. coli RNase H2 at the (5’)DNA-RNA(3’) junction in advance or not. Likewise, this substrate was cleaved by E. coli RNase H2 at the (5’)DNA-RNA(3’) junction, regardless of whether it was cleaved by E. coli RNase H1 at the (5’)RNA-DNA(3’) junction in advance or not. When this substrate was cleaved by a mixture of E. coli RNases H1 and H2, the ribonucleotide was removed from the substrate. We propose that RNase H1 is involved in the excision of single ribonucleotides misincorporated into DNA in collaboration with RNase H2.
Collapse
Affiliation(s)
- Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiko Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
RNA Degradation in Staphylococcus aureus: Diversity of Ribonucleases and Their Impact. Int J Genomics 2015; 2015:395753. [PMID: 25977913 PMCID: PMC4419217 DOI: 10.1155/2015/395753] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/04/2015] [Indexed: 11/18/2022] Open
Abstract
The regulation of RNA decay is now widely recognized as having a central role in bacterial adaption to environmental stress. Here we present an overview on the diversity of ribonucleases (RNases) and their impact at the posttranscriptional level in the human pathogen Staphylococcus aureus. RNases in prokaryotes have been mainly studied in the two model organisms Escherichia coli and Bacillus subtilis. Based on identified RNases in these two models, putative orthologs have been identified in S. aureus. The main staphylococcal RNases involved in the processing and degradation of the bulk RNA are (i) endonucleases RNase III and RNase Y and (ii) exonucleases RNase J1/J2 and PNPase, having 5' to 3' and 3' to 5' activities, respectively. The diversity and potential roles of each RNase and of Hfq and RppH are discussed in the context of recent studies, some of which are based on next-generation sequencing technology.
Collapse
|
23
|
Enzymatic Activities of RNase H Domains of HIV-1 Reverse Transcriptase with Substrate Binding Domains of Bacterial RNases H1 and H2. Mol Biotechnol 2015; 57:526-38. [DOI: 10.1007/s12033-015-9846-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Minias AE, Brzostek AM, Minias P, Dziadek J. The deletion of rnhB in Mycobacterium smegmatis does not affect the level of RNase HII substrates or influence genome stability. PLoS One 2015; 10:e0115521. [PMID: 25603150 PMCID: PMC4300193 DOI: 10.1371/journal.pone.0115521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022] Open
Abstract
RNase HII removes RNA from RNA/DNA hybrids, such as single ribonucleotides and RNA primers generated during DNA synthesis. Both, RNase HII substrates and RNase HII deficiency have been associated with genome instability in several organisms, and genome instability is a major force leading to the acquisition of drug resistance in bacteria. Understanding the mechanisms that underlie this phenomenon is one of the challenges in identifying efficient methods to combat bacterial pathogens. The aim of the present study was set to investigate the role of rnhB, presumably encoding RNase HII, in maintaining genome stability in the M. tuberculosis model organism Mycobacterium smegmatis. We performed gene replacement through homologous recombination to obtain mutant strains of Mycobacterium smegmatis lacking the rnhB gene. The mutants did not present an altered phenotype, according to the growth rate in liquid culture or susceptibility to hydroxyurea, and did not show an increase in the spontaneous mutation rate, determined using the Luria-Delbrück fluctuation test for streptomycin resistance in bacteria. The mutants also did not present an increase in the level of RNase HII substrates, measured as the level of alkaline degradation of chromosomal DNA or determined through immunodetection. We conclude that proteins other than RnhB proteins efficiently remove RNase HII substrates in M. smegmatis. These results highlight differences in the basic biology between Mycobacteria and eukaryotes and between different species of bacteria.
Collapse
Affiliation(s)
- Alina E. Minias
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- Department of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
- * E-mail: (AM); (JD)
| | - Anna M. Brzostek
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Piotr Minias
- Department of Teacher Training and Biodiversity Studies, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Department of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
25
|
Abstract
In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.
Collapse
Affiliation(s)
- Jeremy W. Schroeder
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin R. Randall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsay A. Matthews
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Divalent metal ion-induced folding mechanism of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. PLoS One 2014; 9:e109016. [PMID: 25268753 PMCID: PMC4182655 DOI: 10.1371/journal.pone.0109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/28/2014] [Indexed: 01/23/2023] Open
Abstract
RNase H1 from Halobacterium sp. NRC-1 (Halo-RNase H1) is characterized by the abundance of acidic residues on the surface, including bi/quad-aspartate site residues. Halo-RNase H1 exists in partially folded (I) and native (N) states in low-salt and high-salt conditions respectively. Its folding is also induced by divalent metal ions. To understand this unique folding mechanism of Halo-RNase H1, the active site mutant (2A-RNase H1), the bi/quad-aspartate site mutant (6A-RNase H1), and the mutant at both sites (8A-RNase H1) were constructed. The far-UV CD spectra of these mutants suggest that 2A-RNase H1 mainly exists in the I state, 6A-RNase H1 exists both in the I and N states, and 8A-RNase H1 mainly exists in the N state in a low salt-condition. These results suggest that folding of Halo-RNase H1 is induced by binding of divalent metal ions to the bi/quad-aspartate site. To examine whether metal-induced folding is unique to Halo-RNase H1, RNase H2 from the same organism (Halo-RNase H2) was overproduced and purified. Halo-RNase H2 exists in the I and N states in low-salt and high-salt conditions respectively, as does Halo-RNase H1. However, this protein exists in the I state even in the presence of divalent metal ions. Halo-RNase H2 exhibits junction ribonuclease activity only in a high-salt condition. A tertiary model of this protein suggests that this protein does not have a quad-aspartate site. We propose that folding of Halo-RNase H1 is induced by binding of divalent metal ion to the quad-aspartate site in a low-salt condition.
Collapse
|
27
|
Ilinskaya ON, Sokurenko YV, Ul’yanova VV, Vershinina VI, Zelenikhin PV, Kolpakov AI, Medvedeva ES, Baranova NB, Davydova MN, Muzykantov AA, Chernova OA, Chernov VM. Ribonucleolytic activity of mycoplasmas. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Permanasari ED, Angkawidjaja C, Koga Y, Kanaya S. Role of N-terminal extension of Bacillus stearothermophilus RNase H2 and C-terminal extension of Thermotoga maritima RNase H2. FEBS J 2013; 280:5065-79. [PMID: 23937561 DOI: 10.1111/febs.12479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 11/28/2022]
Abstract
Bacillus stearothermophilus RNase H2 (BstRNH2) and Thermotoga maritima RNase H2 (TmaRNH2) have N-terminal and C-terminal extensions, respectively, as compared with Aquifex aeolicus RNase H2 (AaeRNH2). To analyze the role of these extensions, BstRNH2 and TmaRNH2 without these extensions were constructed, and their biochemical properties were compared with those of their intact partners and AaeRNH2. The far-UV CD spectra of all proteins were similar, suggesting that the protein structure is not significantly altered by removal of these extensions. However, both the junction ribonuclease and RNase H activities of BstRNH2 and TmaRNH2, as well as their substrate-binding affinities, were considerably decreased by removal of these extensions. The stability of BstRNH2 and TmaRNH2 was also decreased by removal of these extensions. The activity, substrate binding affinity and stability of TmaRNH2 without the C-terminal 46 residues were partly restored by the attachment of the N-terminal extension of BstRNH2. These results suggest that the N-terminal extension of BstRNH2 functions as a substrate-binding domain and stabilizes the RNase H domain. Because the C-terminal extension of TmaRNH2 assumes a helix hairpin structure and does not make direct contact with the substrate, this extension is probably required to make the conformation of the substrate-binding site functional. AaeRNH2 showed comparable junction ribonuclease activity to those of BstRNH2 and TmaRNH2, and was more stable than these proteins, indicating that bacterial RNases H2 do not always require an N-terminal or C-terminal extension to increase activity, substrate-binding affinity, and/or stability.
Collapse
Affiliation(s)
- Etin-Diah Permanasari
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | |
Collapse
|
29
|
Abstract
The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing. The effect of rNTPs on Pol rate generalizes to B-family eukaryotic replicases, Pols δ and ε. Imbalance of the dNTP pool also slows the replisome and thus is not specific to rNTPs. We observe a measurable frequency of rNMP incorporation that predicts one rNTP incorporated every 2.3 kb during chromosome replication. Given the frequency of rNMP incorporation, the repair of rNMPs is likely rapid. RNase HII nicks DNA at single rNMP residues to initiate replacement with dNMP. Considering that rNMPs will mark the new strand, RNase HII may direct strand-specificity for mismatch repair (MMR). How the newly synthesized strand is recognized for MMR is uncertain in eukaryotes and most bacteria, which lack a methyl-directed nicking system. Here we demonstrate that Bacillus subtilis incorporates rNMPs in vivo, that RNase HII plays a role in their removal, and the RNase HII gene deletion enhances mutagenesis, suggesting a possible role of incorporated rNMPs in MMR.
Collapse
|
30
|
Tadokoro T, Kazama H, Koga Y, Takano K, Kanaya S. Investigating the Structural Dependence of Protein Stabilization by Amino Acid Substitution. Biochemistry 2013; 52:2839-47. [DOI: 10.1021/bi400076f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takashi Tadokoro
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirotaka Kazama
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biomolecular Chemistry, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo,
Sakyo-ku, Kyoto 606-8522, Japan
| | - Shigenori Kanaya
- Department of Material and Life
Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
31
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
32
|
Nguyen TN, You DJ, Matsumoto H, Kanaya E, Koga Y, Kanaya S. Crystal structure of metagenome-derived LC11-RNase H1 in complex with RNA/DNA hybrid. J Struct Biol 2013; 182:144-54. [PMID: 23500886 DOI: 10.1016/j.jsb.2013.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
Abstract
LC11-RNase H1 is a Sulfolobus tokodaii RNase H1 (Sto-RNase H1) homologue isolated by metagenomic approach. In this study, the crystal structure of LC11-RNase H1 in complex with an RNA/DNA substrate was determined. Unlike Bacillus halodurans RNase H1 without hybrid binding domain (HBD) (Bh-RNase HC) and human RNase H1 without HBD (Hs-RNase HC), LC11-RNase H1 interacts with four non-consecutive 2'-OH groups of the RNA strand. The lack of interactions with four consecutive 2'-OH groups leads to a dramatic decrease in the ability of LC11-RNase H1 to cleave the DNA-RNA-DNA/DNA substrate containing four ribonucleotides as compared to those to cleave the substrates containing five and six ribonucleotides. The interaction of LC11-RNase H1 with the DNA strand is also different from those of Bh-RNase HC and Hs-RNase HC. Beside the common phosphate-binding pocket, LC11-RNase H1 has a unique DNA-binding channel. Furthermore, the active-site residues of LC11-RNase H1 are located farther away from the scissile phosphate group than those of Bh-RNase HC and Hs-RNase HC. Modeling of Sto-RNase H1 in complex with the 14bp RNA/DNA substrate, together with the structure-based mutational analyses, suggest that the ability of Sto-RNase H1 to cleave double-stranded RNA is dependent on the local conformation of the basic residues located at the DNA binding site.
Collapse
Affiliation(s)
- Tri-Nhan Nguyen
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci U S A 2012; 110:258-63. [PMID: 23251031 DOI: 10.1073/pnas.1213123110] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two pathways of transcription termination, factor-independent and -dependent, exist in bacteria. The latter pathway operates on nascent transcripts that are not simultaneously translated and requires factors Rho, NusG, and NusA, each of which is essential for viability of WT Escherichia coli. NusG and NusA are also involved in antitermination of transcription at the ribosomal RNA operons, as well as in regulating the rates of transcription elongation of all genes. We have used a bisulfite-sensitivity assay to demonstrate genome-wide increase in the occurrence of RNA-DNA hybrids (R-loops), including from antisense and read-through transcripts, in a nusG missense mutant defective for Rho-dependent termination. Lethality associated with complete deficiency of Rho and NusG (but not NusA) was rescued by ectopic expression of an R-loop-helicase UvsW, especially so on defined growth media. Our results suggest that factor-dependent transcription termination subserves a surveillance function to prevent translation-uncoupled transcription from generating R-loops, which would block replication fork progression and therefore be lethal, and that NusA performs additional essential functions as well in E. coli. Prevention of R-loop-mediated transcription-replication conflicts by cotranscriptional protein engagement of nascent RNA is emerging as a unifying theme among both prokaryotes and eukaryotes.
Collapse
|
34
|
McDonald JP, Vaisman A, Kuban W, Goodman MF, Woodgate R. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V. PLoS Genet 2012; 8:e1003030. [PMID: 23144626 PMCID: PMC3493448 DOI: 10.1371/journal.pgen.1003030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/25/2012] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli pol V (UmuD'(2)C), the main translesion DNA polymerase, ensures continued nascent strand extension when the cellular replicase is blocked by unrepaired DNA lesions. Pol V is characterized by low sugar selectivity, which can be further reduced by a Y11A "steric-gate" substitution in UmuC that enables pol V to preferentially incorporate rNTPs over dNTPs in vitro. Despite efficient error-prone translesion synthesis catalyzed by UmuC_Y11A in vitro, strains expressing umuC_Y11A exhibit low UV mutability and UV resistance. Here, we show that these phenotypes result from the concomitant dual actions of Ribonuclease HII (RNase HII) initiating removal of rNMPs from the nascent DNA strand and nucleotide excision repair (NER) removing UV lesions from the parental strand. In the absence of either repair pathway, UV resistance and mutagenesis conferred by umuC_Y11A is significantly enhanced, suggesting that the combined actions of RNase HII and NER lead to double-strand breaks that result in reduced cell viability. We present evidence that the Y11A-specific UV phenotype is tempered by pol IV in vivo. At physiological ratios of the two polymerases, pol IV inhibits pol V-catalyzed translesion synthesis (TLS) past UV lesions and significantly reduces the number of Y11A-incorporated rNTPs by limiting the length of the pol V-dependent TLS tract generated during lesion bypass in vitro. In a recA730 lexA(Def) ΔumuDC ΔdinB strain, plasmid-encoded wild-type pol V promotes high levels of spontaneous mutagenesis. However, umuC_Y11A-dependent spontaneous mutagenesis is only ~7% of that observed with wild-type pol V, but increases to ~39% of wild-type levels in an isogenic ΔrnhB strain and ~72% of wild-type levels in a ΔrnhA ΔrnhB double mutant. Our observations suggest that errant ribonucleotides incorporated by pol V can be tolerated in the E. coli genome, but at the cost of higher levels of cellular mutagenesis.
Collapse
Affiliation(s)
- John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexandra Vaisman
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wojciech Kuban
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, United States of America
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Tannous E, Yokoyama K, You DJ, Koga Y, Kanaya S. A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. FEBS Open Bio 2012; 2:345-52. [PMID: 23772368 PMCID: PMC3678122 DOI: 10.1016/j.fob.2012.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/03/2022] Open
Abstract
RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNH1) consists of an N-terminal domain with unknown function and a C-terminal RNase H domain. It is characterized by the high content of acidic residues on the protein surface. The far- and near-UV CD spectra of Halo-RNH1 suggested that Halo-RNH1 assumes a partially folded structure in the absence of salt and divalent metal ions. It requires either salt or divalent metal ions for folding. However, thermal denaturation of Halo-RNH1 analyzed in the presence of salt and/or divalent metal ions by CD spectroscopy suggested that salt and divalent metal ions independently stabilize the protein and thereby facilitate folding. Divalent metal ions stabilize the protein probably by binding mainly to the active site and suppressing negative charge repulsions at this site. Salt stabilizes the protein probably by increasing hydrophobic interactions at the protein core and decreasing negative charge repulsions on the protein surface. Halo-RNH1 exhibited activity in the presence of divalent metal ions regardless of the presence or absence of 3 M NaCl. However, higher concentrations of divalent metal ions are required for activity in the absence of salt to facilitate folding. Thus, divalent metal ions play a dual role in catalysis and folding of Halo-RNH1. Construction of the Halo-RNH1 derivatives lacking an N- or C-terminal domain, followed by biochemical characterizations, indicated that an N-terminal domain is dispensable for stability, activity, folding, and substrate binding of Halo-RNH1.
Collapse
Affiliation(s)
- Elias Tannous
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
36
|
Jongruja N, You DJ, Angkawidjaja C, Kanaya E, Koga Y, Kanaya S. Structure and characterization of RNase H3 from Aquifex aeolicus. FEBS J 2012; 279:2737-53. [PMID: 22686566 DOI: 10.1111/j.1742-4658.2012.08657.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The crystal structure of ribonuclease H3 from Aquifex aeolicus (Aae-RNase H3) was determined at 2.0 Å resolution. Aae-RNase H3 consists of an N-terminal TATA box-binding protein (TBP)-like domain (N-domain) and a C-terminal RNase H domain (C-domain). The structure of the C-domain highly resembles that of Bacillus stearothermophilus RNase H3 (Bst-RNase H3), except that it contains three disulfide bonds, and the fourth conserved glutamate residue of the Asp-Glu-Asp-Glu active site motif (Glu198) is located far from the active site. These disulfide bonds were shown to contribute to hyper-stabilization of the protein. Non-conserved Glu194 was identified as the fourth active site residue. The structure of the N-domain without the C-domain also highly resembles that of Bst-RNase H3. However, the arrangement of the N-domain relative to the C-domain greatly varies for these proteins because of the difference in the linker size between the domains. The linker of Bst-RNase H3 is relatively long and flexible, while that of Aae-RNase H3 is short and assumes a helix formation. Biochemical characterizations of Aae-RNase H3 and its derivatives without the N- or C-domain or with a mutation in the N-domain indicate that the N-domain of Aae-RNase H3 is important for substrate binding, and uses the flat surface of the β-sheet for substrate binding. However, this surface is located far from the active site and on the opposite side to the active site. We propose that the N-domain of Aae-RNase H3 is required for initial contact with the substrate. The resulting complex may be rearranged such that only the C-domain forms a complex with the substrate.
Collapse
Affiliation(s)
- Nujarin Jongruja
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
37
|
MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis. J Bacteriol 2012; 194:4003-14. [PMID: 22636779 DOI: 10.1128/jb.00258-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the noninfectious soil saprophyte Mycobacterium smegmatis, intracellular levels of the stress alarmones guanosine tetraphosphate and guanosine pentaphosphate, together termed (p)ppGpp, are regulated by the enzyme Rel(Msm). This enzyme consists of a single, bifunctional polypeptide chain that is capable of both synthesizing and hydrolyzing (p)ppGpp. The rel(Msm) knockout strain of M. smegmatis (Δrel(Msm)) is expected to show a (p)ppGpp null [(p)ppGpp(0)] phenotype. Contrary to this expectation, the strain is capable of synthesizing (p)ppGpp in vivo. In this study, we identify and functionally characterize the open reading frame (ORF), MSMEG_5849, that encodes a second functional (p)ppGpp synthetase in M. smegmatis. In addition to (p)ppGpp synthesis, the 567-amino-acid-long protein encoded by this gene is capable of hydrolyzing RNA·DNA hybrids and bears similarity to the conventional RNase HII enzymes. We have classified this protein as actRel(Msm) in accordance with the recent nomenclature proposed and have named it MS_RHII-RSD, indicating the two enzymatic activities present [RHII, RNase HII domain, originally identified as domain of unknown function 429 (DUF429), and RSD, RelA_SpoT nucleotidyl transferase domain, the SYNTH domain responsible for (p)ppGpp synthesis activity]. MS_RHII-RSD is expressed and is constitutively active in vivo and behaves like a monofunctional (p)ppGpp synthetase in vitro. The occurrence of the RNase HII and (p)ppGpp synthetase domains together on the same polypeptide chain is suggestive of an in vivo role for this novel protein as a link connecting the essential life processes of DNA replication, repair, and transcription to the highly conserved stress survival pathway, the stringent response.
Collapse
|
38
|
Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC. BMC Genomics 2012; 13:69. [PMID: 22333191 PMCID: PMC3814617 DOI: 10.1186/1471-2164-13-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. RESULTS Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. CONCLUSION DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.
Collapse
|
39
|
Kanaya E, Sakabe T, Nguyen NT, Koikeda S, Koga Y, Takano K, Kanaya S. Cloning of the RNase H genes from a metagenomic DNA library: identification of a new type 1 RNase H without a typical active-site motif. J Appl Microbiol 2011; 109:974-83. [PMID: 20408915 DOI: 10.1111/j.1365-2672.2010.04724.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The study aimed to combine a metagenomics approach with complementary genetics to identify novel bacterial genes with orthologous functions, with the identification of novel RNase H genes as a test case. METHODS AND RESULTS A metagenomic DNA library was prepared from leaf-and-branch compost and used to screen for the RNase H genes by their abilities to complement the temperature-sensitive growth phenotype of the rnhA mutant Escherichia coli strain MIC3001. Determination of the nucleotide sequences of the cloned DNA fragments allowed us to identify 12 different genes encoding type 1 RNases H. Eleven of them encode novel RNases H, which show 40-72% amino acid sequence identities to those available from database. One of them lacks a typical DEDD/E active-site motif, which is almost fully conserved in various RNases H. CONCLUSIONS Functional screening of environmental DNA without cultivation of microbes is a useful procedure to isolate novel RNase H genes. SIGNIFICANCE AND IMPACT OF THE STUDY One of the identified RNase H genes had no sequence similarity to a previously assumed conserved motif, suggesting multiple catalytic mechanisms exist. This test case illustrates that metagenomics combined with complementary genetics can identify novel genes that are orthologous without sequence similarity to those from cultivated bacteria.
Collapse
Affiliation(s)
- E Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bigot A, Raynaud C, Dubail I, Dupuis M, Hossain H, Hain T, Chakraborty T, Charbit A. lmo1273, a novel gene involved in Listeria monocytogenes virulence. Microbiology (Reading) 2009; 155:891-902. [DOI: 10.1099/mic.0.022277-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen able to infect humans and many other mammalian species, leading to serious, often fatal disease. We have previously identified a five-gene locus in the genome of L. monocytogenes EGD-e which comprised three contiguous genes encoding paralogous type I signal peptidases. In the present study, we focused on the two distal genes of the locus (lmo1272 and lmo1273), encoding proteins sharing significant similarities with the YlqF and RnhB proteins, respectively, of Bacillus subtilis. lmo1273 could complement an Escherichia coli rnhA-rnhB thermosensitive growth phenotype, suggesting that it encodes a functional RNase H. Strikingly, inactivation of lmo1273 provoked a strong attenuation of virulence in the mouse model, and kinetic studies in infected mice revealed that multiplication of the lmo1273 mutant in target organs was significantly impaired. However, the mutation did not impair L. monocytogenes intracellular multiplication or cell-to-cell spread in cell culture models. Transcriptional profiles obtained with an lmo1273-overexpressing strain were compared to those of the wild-type strain, using microarray analyses. The data obtained suggest a pleiotropic regulatory role of Lmo1273 and possible links with amino acid uptake.
Collapse
Affiliation(s)
- Armelle Bigot
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Catherine Raynaud
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Iharilalao Dubail
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Marion Dupuis
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| | - Hamid Hossain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig-University, Frankfurter Strasse 107, D-35392 Giessen, Germany
| | - Alain Charbit
- Inserm, U570, Unité de Pathogénie des Infections Systémiques, Paris F-75015, France
- Université Paris Descartes, Faculté de Médecine René Descartes, Paris F-75015, France
| |
Collapse
|
42
|
Tadokoro T, Kanaya S. Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes. FEBS J 2009; 276:1482-93. [PMID: 19228197 DOI: 10.1111/j.1742-4658.2009.06907.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prokaryotic genomes, for which complete nucleotide sequences are available, always contain at least one RNase H gene, indicating that RNase H is ubiquitous in all prokaryotic cells. Coupled with its unique substrate specificity, the enzyme has been expected to play crucial roles in the biochemical processes associated with DNA replication, gene expression and DNA repair. The physiological role of prokaryotic RNases H, especially of type 1 RNases H, has been extensively studied using Escherichia coli strains that are defective in RNase HI activity or overproduce RNase HI. However, it is not fully understood yet. By contrast, significant progress has been made in this decade in identifying novel RNases H with respect to their biochemical properties and structures, and elucidating catalytic mechanism and substrate recognition mechanism of RNase H. We review the results of these studies.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Department of Material and Life Science, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
43
|
Rohman MS, Tadokoro T, Angkawidjaja C, Abe Y, Matsumura H, Koga Y, Takano K, Kanaya S. Destabilization of psychrotrophic RNase HI in a localized fashion as revealed by mutational and X-ray crystallographic analyses. FEBS J 2008; 276:603-13. [PMID: 19120449 DOI: 10.1111/j.1742-4658.2008.06811.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Arg97 --> Gly and Asp136 --> His mutations stabilized So-RNase HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 by 5.4 and 9.7 degrees C, respectively, in T(m), and 3.5 and 6.1 kJ x mol(-1), respectively, in DeltaG(H2O). These mutations also stabilized the So-RNase HI derivative (4x-RNase HI) with quadruple thermostabilizing mutations in an additive manner. As a result, the resultant sextuple mutant protein (6x-RNase HI) was more stable than the wild-type protein by 28.8 degrees C in T(m) and 27.0 kJ x mol(-1) in DeltaG(H2O). To analyse the effects of the mutations on the protein structure, the crystal structure of the 6x-RNase HI protein was determined at 2.5 A resolution. The main chain fold and interactions of the side-chains of the 6x-RNase HI protein were basically identical to those of the wild-type protein, except for the mutation sites. These results indicate that all six mutations independently affect the protein structure, and are consistent with the fact that the thermostabilizing effects of the mutations are roughly additive. The introduction of favourable interactions and the elimination of unfavourable interactions by the mutations contribute to the stabilization of the 6x-RNase HI protein. We propose that So-RNase HI is destabilized when compared with its mesophilic and thermophilic counterparts in a localized fashion by increasing the number of amino acid residues unfavourable for protein stability.
Collapse
Affiliation(s)
- Muhammad S Rohman
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rohman MS, Koga Y, Takano K, Chon H, Crouch RJ, Kanaya S. Effect of the disease-causing mutations identified in human ribonuclease (RNase) H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII. FEBS J 2008; 275:4836-49. [PMID: 18721139 PMCID: PMC3178050 DOI: 10.1111/j.1742-4658.2008.06622.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eukaryotic ribonuclease (RNase) H2 consists of one catalytic and two accessory subunits. Several single mutations in any one of these subunits of human RNase H2 cause Aicardi-Goutières syndrome. To examine whether these mutations affect the complex stability and activity of RNase H2, three mutant proteins of His-tagged Saccharomyces cerevisiae RNase H2 (Sc-RNase H2*) were constructed. Sc-G42S*, Sc-L52R*, and Sc-K46W* contain single mutations in Sc-Rnh2Ap*, Sc-Rnh2Bp*, and Sc-Rnh2Cp*, respectively. The genes encoding the three subunits were coexpressed in Escherichia coli, and Sc-RNase H2* and its derivatives were purified in a heterotrimeric form. All of these mutant proteins exhibited enzymatic activity. However, only the enzymatic activity of Sc-G42S* was greatly reduced compared to that of the wild-type protein. Gly42 is conserved as Gly10 in Thermococcus kodakareansis RNase HII. To analyze the role of this residue, four mutant proteins, Tk-G10S, Tk-G10A, Tk-G10L, and Tk-G10P, were constructed. All mutant proteins were less stable than the wild-type protein by 2.9-7.6 degrees C in T(m). A comparison of their enzymatic activities, substrate binding affinities, and CD spectra suggests that the introduction of a bulky side chain into this position induces a local conformational change, which is unfavorable for both activity and substrate binding. These results indicate that Gly10 is required to make the protein fully active and stable.
Collapse
Affiliation(s)
- Muhammad Saifur Rohman
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CRESTO, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hyongi Chon
- Laboratory of Molecular Genetics, National Institute of Health, Bethesda, MD 20892, USA
| | - Robert J. Crouch
- Laboratory of Molecular Genetics, National Institute of Health, Bethesda, MD 20892, USA
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Junction ribonuclease: a ribonuclease HII orthologue from Thermus thermophilus HB8 prefers the RNA-DNA junction to the RNA/DNA heteroduplex. Biochem J 2008; 412:517-26. [PMID: 18318663 DOI: 10.1042/bj20080140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The genome of an extremely thermophilic bacterium, Thermus thermophilus HB8, contains a single ORF (open reading frame) encoding an RNase-HII-like sequence. Despite the presence of significant amino acid sequence identities with RNase (ribonuclease) HII enzymes, the ORF TTHA0198 could not suppress the temperature-sensitive growth defect of an RNase-H-deficient Escherichia coli mutant and the purified recombinant protein could not cleave an RNA strand of an RNA/DNA heteroduplex, suggesting that the TTHA0198 exhibited no RNase H activity both in vivo and in vitro. When oligomeric RNA-DNA/DNAs were used as a mimic substrate for Okazaki fragments, however, the protein cleaved them only at the 5' side of the last ribonucleotide at the RNA-DNA junction. In fact, the TTHA0198 protein prefers the RNA-DNA junction to the RNA/DNA hybrid. We have referred to this activity as JRNase (junction RNase) activity, which recognizes an RNA-DNA junction of the RNA-DNA/DNA heteroduplex and cleaves it leaving a mono-ribonucleotide at the 5' terminus of the RNA-DNA junction. E. coli and Deinococcus radiodurans RNases HII also cleaved the RNA-DNA/DNA substrates at the same site with a different metal-ion preference from that for RNase H activity, implying that the enzymes have JRNase activity as well as RNase H activity. The specialization in the JRNase activity of the RNase HII orthologue from T. thermophilus HB8 (Tth-JRNase) suggests that the JRNase activity of RNase HII enzymes might be independent of the RNase H activity.
Collapse
|
46
|
Tadokoro T, Matsushita K, Abe Y, Rohman MS, Koga Y, Takano K, Kanaya S. Remarkable Stabilization of a Psychrotrophic RNase HI by a Combination of Thermostabilizing Mutations Identified by the Suppressor Mutation Method. Biochemistry 2008; 47:8040-7. [DOI: 10.1021/bi800246e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Tadokoro
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Matsushita
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yumi Abe
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Muhammad Saifur Rohman
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan, and CREST, JST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Fukushima S, Itaya M, Kato H, Ogasawara N, Yoshikawa H. Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth. J Bacteriol 2007; 189:8575-83. [PMID: 17905985 PMCID: PMC2168925 DOI: 10.1128/jb.00653-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major factor in removing RNA primers during the processing of Okazaki fragments is DNA polymerase I (Pol I). Pol I is thought to remove the RNA primers and to fill the resulting gaps simultaneously. RNase H, encoded by rnh genes, is another factor in removing the RNA primers, and there is disagreement with respect to the essentiality of both the polA and rnh genes. In a previous study, we looked for the synthetic lethality of paralogs in Bacillus subtilis and detected several essential doublet paralogs, including the polA ypcP pair. YpcP consists of only the 5'-3' exonuclease domain. In the current study, we first confirmed that the polA genes of both Escherichia coli and B. subtilis could be completely deleted. We found that the 5'-3' exonuclease activity encoded by either polA or ypcP xni was required for the growth of B. subtilis and E. coli. Also, the 5'-3' exonuclease activity of Pol I was indispensable in the cyanobacterium Synechococcus elongatus. These results suggest that a 5'-3' exonuclease activity is essential in these organisms. Our success in constructing a B. subtilis strain that lacked all RNase H genes indicates that the enzymatic activity is dispensable, at least in the wild type. Increasing the 5'-3' exonuclease activity partially compensated for a defective phenotype of an RNase H-deficient mutant, suggesting cooperative functions for the two enzyme systems. Our search for the distribution of the 5'-3' exonuclease domain among 250 bacterial genomes resulted in the finding that all eubacteria, but not archaea, possess this domain.
Collapse
Affiliation(s)
- Sanae Fukushima
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1 Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | |
Collapse
|
48
|
Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes. BMC Evol Biol 2007; 7:128. [PMID: 17663799 PMCID: PMC1950709 DOI: 10.1186/1471-2148-7-128] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 07/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. However, no example of actual gene evolution has been reported that can be used to test this model. Here, we analyzed the molecular evolution of the ribonuclease H (RNase H) family in prokaryotes and used the results to examine the implications of functional redundancy for gene evolution. RESULTS In prokaryotes, RNase H has been classified into RNase HI, HII, and HIII on the basis of amino acid sequences. Using 353 prokaryotic genomes, we identified the genes encoding the RNase H group and examined combinations of these genes in individual genomes. We found that the RNase H group may have evolved in such a way that the RNase HI and HIII genes will not coexist within a single genome--in other words, these genes are inherited in a mutually exclusive manner. Avoiding the simultaneous inheritance of the RNase HI and HIII genes is remarkable when RNase HI contains an additional non-RNase H domain, double-stranded RNA, and an RNA-DNA hybrid-binding domain, which is often observed in eukaryotic RNase H1. This evolutionary process may have resulted from functional redundancy of these genes, because the substrate preferences of RNase HI and RNase HIII are similar. CONCLUSION We provide two possible evolutionary models for RNase H genes in which functional redundancy contributes to the exclusion of redundant genes from the genome of a species. This is the first empirical study to show the effect of functional redundancy on changes in gene constitution during the course of evolution.
Collapse
|
49
|
Tadokoro T, Chon H, Koga Y, Takano K, Kanaya S. Identification of the gene encoding a type 1 RNase H with an N-terminal double-stranded RNA binding domain from a psychrotrophic bacterium. FEBS J 2007; 274:3715-3727. [PMID: 17608717 DOI: 10.1111/j.1742-4658.2007.05903.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gene encoding a bacterial type 1 RNase H, termed RBD-RNase HI, was cloned from the psychrotrophic bacterium Shewanella sp. SIB1, overproduced in Escherichia coli, and the recombinant protein was purified and biochemically characterized. SIB1 RBD-RNase HI consists of 262 amino acid residues and shows amino acid sequence identities of 26% to SIB1 RNase HI, 17% to E. coli RNase HI, and 32% to human RNase H1. SIB1 RBD-RNase HI has a double-stranded RNA binding domain (RBD) at the N-terminus, which is commonly present at the N-termini of eukaryotic type 1 RNases H. Gel mobility shift assay indicated that this domain binds to an RNA/DNA hybrid in an isolated form, suggesting that this domain is involved in substrate binding. SIB1 RBD-RNase HI exhibited the enzymatic activity both in vitro and in vivo. Its optimum pH and metal ion requirement were similar to those of SIB1 RNase HI, E. coli RNase HI, and human RNase H1. The specific activity of SIB1 RBD-RNase HI was comparable to that of E. coli RNase HI and was much higher than those of SIB1 RNase HI and human RNase H1. SIB1 RBD-RNase HI showed poor cleavage-site specificity for oligomeric substrates. SIB1 RBD-RNase HI was less stable than E. coli RNase HI but was as stable as human RNase H1. Database searches indicate that several bacteria and archaea contain an RBD-RNase HI. This is the first report on the biochemical characterization of RBD-RNase HI.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan CRESTO, JST, Osaka, Japan
| | - Hyongi Chon
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan CRESTO, JST, Osaka, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan CRESTO, JST, Osaka, Japan
| | - Kazufumi Takano
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan CRESTO, JST, Osaka, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan CRESTO, JST, Osaka, Japan
| |
Collapse
|
50
|
Loukachevitch LV, Egli M. Crystallization and preliminary X-ray analysis of Escherichia coli RNase HI-dsRNA complexes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:84-8. [PMID: 17277445 PMCID: PMC2330121 DOI: 10.1107/s1744309106055461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/20/2006] [Indexed: 11/10/2022]
Abstract
RNase H binds RNA-DNA hybrid and double-stranded RNA (dsRNA) duplexes with similar affinity, but only cleaves the RNA in the former. To potentially gain insight into the conformational origins of substrate recognition by the enzyme from Escherichia coli, cocrystallization experiments were carried out with RNase HI-dsRNA (enzyme-inhibitor) complexes. Crystals were obtained of two complexes containing 9-mer and 10-mer RNA duplexes that diffracted X-rays to 3.5 and 4 A resolution, respectively.
Collapse
Affiliation(s)
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
- Correspondence e-mail:
| |
Collapse
|