1
|
Yin L, Shi K, Chen Y, Harris RS, Aihara H. Structural basis for sequence context-independent single-stranded DNA cytosine deamination by the bacterial toxin SsdA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611884. [PMID: 39282293 PMCID: PMC11398452 DOI: 10.1101/2024.09.08.611884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
DNA deaminase toxins are involved in interbacterial antagonism and the generation of genetic diversity in surviving bacterial populations. These enzymes have also been adopted as genome engineering tools. The single-stranded (ss)DNA deaminase SsdA represents the bacterial deaminase toxin family-2 (BaDTF2) and it deaminates ssDNA cytosines with little sequence context dependence, which contrasts with the AID/APOBEC family of sequence-selective ssDNA cytosine deaminases. Here we report the crystal structure of SsdA in complex with a ssDNA substrate. The structure reveals a unique mode of substrate binding, in which a cluster of aromatic residues of SsdA engages ssDNA in a V-shaped conformation sharply bent across the target cytosine. The bases 5' or 3' to the target cytosine are stacked linearly and make few sequence-specific protein contacts, thus explaining the broad substrate selectivity of SsdA. Unexpectedly, SsdA contains a β-amino acid isoaspartate, which is important for enzymatic activity and may contribute to the stability of SsdA as a toxin. Structure- function studies helped to design SsdA mutants active in human cells, which could lead to future applications in genome engineering.
Collapse
|
2
|
Saurer M, Leibundgut M, Nadimpalli HP, Scaiola A, Schönhut T, Lee RG, Siira SJ, Rackham O, Dreos R, Lenarčič T, Kummer E, Gatfield D, Filipovska A, Ban N. Molecular basis of translation termination at noncanonical stop codons in human mitochondria. Science 2023; 380:531-536. [PMID: 37141370 DOI: 10.1126/science.adf9890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.
Collapse
Affiliation(s)
- Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Alain Scaiola
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Tanja Schönhut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Richard G Lee
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
- Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tea Lenarčič
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Program, Blegdamsvej 3B, 2200 København N, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Cottilli P, Itoh Y, Nobe Y, Petrov AS, Lisón P, Taoka M, Amunts A. Cryo-EM structure and rRNA modification sites of a plant ribosome. PLANT COMMUNICATIONS 2022; 3:100342. [PMID: 35643637 PMCID: PMC9483110 DOI: 10.1016/j.xplc.2022.100342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 05/25/2023]
Abstract
Protein synthesis in crop plants contributes to the balance of food and fuel on our planet, which influences human metabolic activity and lifespan. Protein synthesis can be regulated with respect to changing environmental cues via the deposition of chemical modifications into rRNA. Here, we present the structure of a plant ribosome from tomato and a quantitative mass spectrometry analysis of its rRNAs. The study reveals fine features of the ribosomal proteins and 71 plant-specific rRNA modifications, and it re-annotates 30 rRNA residues in the available sequence. At the protein level, isoAsp is found in position 137 of uS11, and a zinc finger previously believed to be universal is missing from eL34, suggesting a lower effect of zinc deficiency on protein synthesis in plants. At the rRNA level, the plant ribosome differs markedly from its human counterpart with respect to the spatial distribution of modifications. Thus, it represents an additional layer of gene expression regulation, highlighting the molecular signature of a plant ribosome. The results provide a reference model of a plant ribosome for structural studies and an accurate marker for molecular ecology.
Collapse
Affiliation(s)
- Patrick Cottilli
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden.
| |
Collapse
|
4
|
Itoh Y, Singh V, Khawaja A, Naschberger A, Nguyen MD, Rorbach J, Amunts A. Structure of the mitoribosomal small subunit with streptomycin reveals Fe-S clusters and physiological molecules. eLife 2022; 11:77460. [PMID: 36480258 PMCID: PMC9731571 DOI: 10.7554/elife.77460] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/27/2022] [Indexed: 12/13/2022] Open
Abstract
The mitoribosome regulates cellular energy production, and its dysfunction is associated with aging. Inhibition of the mitoribosome can be caused by off-target binding of antimicrobial drugs and was shown to be coupled with a bilateral decreased visual acuity. Previously, we reported mitochondria-specific protein aspects of the mitoribosome, and in this article we present a 2.4-Å resolution structure of the small subunit in a complex with the anti-tuberculosis drug streptomycin that reveals roles of non-protein components. We found iron-sulfur clusters that are coordinated by different mitoribosomal proteins, nicotinamide adenine dinucleotide (NAD) associated with rRNA insertion, and posttranslational modifications. This is the first evidence of inter-protein coordination of iron-sulfur, and the finding of iron-sulfur clusters and NAD as fundamental building blocks of the mitoribosome directly links to mitochondrial disease and aging. We also report details of streptomycin interactions, suggesting that the mitoribosome-bound streptomycin is likely to be in hydrated gem-diol form and can be subjected to other modifications by the cellular milieu. The presented approach of adding antibiotics to cultured cells can be used to define their native structures in a bound form under more physiological conditions, and since streptomycin is a widely used drug for treatment, the newly resolved features can serve as determinants for targeting.
Collapse
Affiliation(s)
- Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Anas Khawaja
- Department of Medical Biochemistry and Biophysics, Karolinska InstituteStockholmSweden,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska InstitutetStockholmSweden
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Minh Duc Nguyen
- Department of Medical Biochemistry and Biophysics, Karolinska InstituteStockholmSweden,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska InstitutetStockholmSweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska InstituteStockholmSweden,Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska InstitutetStockholmSweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| |
Collapse
|
5
|
PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) in plants: regulations and functions. Biochem J 2020; 477:4453-4471. [PMID: 33245750 DOI: 10.1042/bcj20200794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
Collapse
|
6
|
Zhang T, Hansen K, Politis A, Müller MM. An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA. Biochemistry 2020; 59:3683-3695. [PMID: 32930597 DOI: 10.1021/acs.biochem.0c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered "molecular wear-and-tear", destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to "mature" via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.
Collapse
Affiliation(s)
- Tianze Zhang
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Kjetil Hansen
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Manuel M Müller
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
7
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
8
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
9
|
Lee SM, Park SY, Kim MJ, Cho EA, Jun CH, Park CH, Kim HS, Choi SK, Rew JS. Key lime ( Citrus aurantifolia) inhibits the growth of triple drug resistant Helicobacter pylori. Gut Pathog 2018; 10:16. [PMID: 29942354 PMCID: PMC5961513 DOI: 10.1186/s13099-018-0244-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 01/17/2023] Open
Abstract
Background Eradication rate for Helicobacter pylori (H. pylori) has decreased due to antibiotic resistance. Therefore, new strategies are needed to enhance H. pylori eradication, especially for H. pylori with high antibiotic resistance. The objective of this study was to evaluate anti-H. pylori activities of constituents from key lime (Citrus aurantifolia) and their possible inhibitory effects on urease activity of H. pylori. Methods Helicobacter pylori strain ATCC 43526 and triple drug resistant (TDR) H. pylori strains were used in this study. Urease activities of H. pylori strains were measured by ammonia colorimetrical quantification using ELISA reader. Minimum inhibitory concentrations were determined by agar dilution method for antibiotics and by modified media dilution method for each constituent of Citrus aurantifolia (C. aurantifolia). Results Citrus aurantifolia extract decreased the number of colonies of H. pylori strain ATCC 43526 and TDR H. pylori stains. An increasing concentration of C. aurantifolia extract attenuated urease activities of H. pylori strain ATCC 43526 and TDR H. pylori strains. Among constituents of C. aurantifolia, citral and 4-hexen-3-one were found to be able to inhibit the growth of H. pylori strain ATCC 43526 and TDR H. pylori strains. Furthermore, citral and 4-hexen-3-one inhibited urease activities of H. pylori strain ATCC 43526 and TDR H. pylori strains in a dose-dependent manner. Conclusion Citrus aurantifolia has antimicrobial effect on TDR H. pylori strains, suggesting that C. aurantifolia might have therapeutic potential to control antibiotic-resistant H. pylori strains that cause eradication failure using other antibiotics.
Collapse
Affiliation(s)
- Su-Mi Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Seon-Young Park
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Moon-Ju Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Eun-Ae Cho
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Chung-Hwan Jun
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Chang-Hwan Park
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Hyun-Soo Kim
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Sung-Kyu Choi
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| | - Jong-Sun Rew
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chonnam National University Medical School, 42, Jaebongro, Dong-ku Gwangju, 501-757 South Korea
| |
Collapse
|
10
|
Müller MM. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Biochemistry 2017; 57:177-185. [PMID: 29064683 PMCID: PMC5770884 DOI: 10.1021/acs.biochem.7b00861] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Post-translational
modifications (PTMs) dramatically enhance the
capabilities of proteins. They introduce new functionalities and dynamically
control protein activity by modulating intra- and intermolecular interactions.
Traditionally, PTMs have been considered as reversible attachments
to nucleophilic functional groups on amino acid side chains, whereas
the polypeptide backbone is often thought to be inert. This paradigm
is shifting as chemically and functionally diverse alterations of
the protein backbone are discovered. Importantly, backbone PTMs can
control protein structure and function just as side chain modifications
do and operate through unique mechanisms to achieve these features.
In this Perspective, I outline the various types of protein backbone
modifications discovered so far and highlight their contributions
to biology as well as the challenges in studying this versatile yet
poorly characterized class of PTMs.
Collapse
Affiliation(s)
- Manuel M Müller
- Department of Chemistry, King's College London , 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
11
|
Pesingi PK, Kumawat M, Behera P, Dixit SK, Agarwal RK, Goswami TK, Mahawar M. Protein-L-Isoaspartyl Methyltransferase (PIMT) Is Required for Survival of Salmonella Typhimurium at 42°C and Contributes to the Virulence in Poultry. Front Microbiol 2017; 8:361. [PMID: 28326072 PMCID: PMC5339242 DOI: 10.3389/fmicb.2017.00361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/21/2017] [Indexed: 01/07/2023] Open
Abstract
Poultry birds are asymptomatic reservoir of Salmonella Typhimurium (S. Typhimurium) but act as source of human infection for this bacterium. Inside the poultry, S. Typhimurium experiences several stresses, 42°C body temperature of birds is one of them. Proteins are highly susceptible to temperature mediated damage. Conversion of protein bound aspartate (Asp) residues to iso-aspartate (iso-Asp) is one of such modifications that occur at elevated temperature. Iso-Asp formation has been linked to protein inactivation and compromised cellular survival. Protein-L-isoaspartyl methyltransferase (PIMT) can repair iso-Asp back to Asp, thus enhances the cellular survival at elevated temperature. Here, we show that the pimt gene deletion strain of S. Typhimurium (Δpimt mutant strain) is hypersensitive to 42°C in vitro. The hypersusceptibility of Δpimt strain is partially reversed by plasmid based complementation (trans-complementation) of Δpimt strain. Following oral inoculation, Δpimt strain showed defective colonization in poultry caecum, and compromised dissemination to spleen and liver. Interestingly, we have observed three and half folds induction of the PIMT protein following exposure of S. Typhimurium to 42°C. Our data suggest a novel role of pimt gene in the survival of S. Typhimurium at elevated temperature and virulence.
Collapse
Affiliation(s)
- Pavan K Pesingi
- Division of Veterinary Public Health, Indian Veterinary Research Institute Izatnagar, India
| | - Manoj Kumawat
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| | - Pranatee Behera
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| | - Sunil K Dixit
- Division of Immunology, Indian Veterinary Research Institute Izatnagar, India
| | - Rajesh K Agarwal
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute Izatnagar, India
| | - Tapas K Goswami
- Division of Immunology, Indian Veterinary Research Institute Izatnagar, India
| | - Manish Mahawar
- Division of Biochemistry, Indian Veterinary Research Institute Izatnagar, India
| |
Collapse
|
12
|
Roth C, Weizenmann N, Bexten N, Saenger W, Zimmermann W, Maier T, Sträter N. Amylose recognition and ring-size determination of amylomaltase. SCIENCE ADVANCES 2017; 3:e1601386. [PMID: 28097217 PMCID: PMC5235332 DOI: 10.1126/sciadv.1601386] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/28/2016] [Indexed: 05/25/2023]
Abstract
Starch is a major carbon and energy source throughout all kingdoms of life. It consists of two carbohydrate polymers, branched amylopectin and linear amylose, which are sparingly soluble in water. Hence, the enzymatic breakdown by glycoside hydrolases (GHs) is of great biological and societal importance. Amylomaltases (AMs) are GHs specialized in the hydrolysis of α-1,4-linked sugar chains such as amylose. They are able to catalyze an intramolecular transglycosylation of a bound sugar chain yielding polymeric sugar rings, the cycloamyloses (CAs), consisting of 20 to 100 glucose units. Despite a wealth of data on short oligosaccharide binding to GHs, no structural evidence is available for their interaction with polymeric substrates that better represent the natural polysaccharide. We have determined the crystal structure of Thermus aquaticus AM in complex with a 34-meric CA-one of the largest carbohydrates resolved by x-ray crystallography and a mimic of the natural polymeric amylose substrate. In total, 15 glucose residues interact with the protein in an extended crevice with a length of more than 40 Å. A modified succinimide, derived from aspartate, mediates protein-sugar interactions, suggesting a biological role for this nonstandard amino acid. The structure, together with functional assays, provides unique insights into the interaction of GHs with their polymeric substrate and reveals a molecular ruler mechanism for minimal ring-size determination of CA products.
Collapse
Affiliation(s)
- Christian Roth
- Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Nicole Weizenmann
- Institut für Biochemie, Universität Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Nicola Bexten
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Wolfram Saenger
- Institut für Chemie-Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Wolfgang Zimmermann
- Institut für Biochemie, Universität Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Timm Maier
- Biozentrum, Universität Basel, Biozentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Norbert Sträter
- Institut für Bioanalytische Chemie, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Sergeeva OV, Sergiev PV, Bogdanov AA, Dontsova OA. Ribosome: Lessons of a molecular factory construction. Mol Biol 2014. [DOI: 10.1134/s0026893314040116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Nesterchuk M, Sergiev P, Dontsova O. Posttranslational Modifications of Ribosomal Proteins in Escherichia coli. Acta Naturae 2011; 3:22-33. [PMID: 22649682 PMCID: PMC3347575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
А number of ribosomal proteins inEscherichia coliundergo posttranslational modifications. Six ribosomal proteins are methylated (S11, L3, L11, L7/L12, L16, and L33), three proteins are acetylated (S5, S18, and L7), and protein S12 is methylthiolated. Extra amino acid residues are added to protein S6. С-terminal amino acid residues are partially removed from protein L31. The functional significance of these modifications has remained unclear. These modifications are not vital to the cells, and it is likely that they have regulatory functions. This paper reviews all the known posttranslational modifications of ribosomal proteins inEscherichia coli. Certain enzymes responsible for the modifications and mechanisms of enzymatic reactions are also discussed.
Collapse
Affiliation(s)
- M.V. Nesterchuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
| | - P.V. Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
| | - O.A. Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Chemistry, Lomonosov Moscow State University
| |
Collapse
|
15
|
Noguchi S. Structural changes induced by the deamidation and isomerization of asparagine revealed by the crystal structure of Ustilago sphaerogena ribonuclease U2B. Biopolymers 2010; 93:1003-10. [PMID: 20623666 DOI: 10.1002/bip.21514] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Under physiological conditions, the deamidation and isomerization of asparagine to isoaspartate (isoAsp) proceeds nonenzymatically via succinimide. Although a large number of proteins have been reported to contain isoAsp, information concerning the three-dimensional structure of proteins containing isoaspartate is still limited. We have crystallized isoAsp containing Ustilago sphaerogena ribonuclease U2B, and determined the crystal structure at 1.32 Å resolution. The structure revealed that the formation of isoAsp32 induces a single turn unfolding of the α-helix from Asp29 to Asp34, and the region from Asp29 to Arg35 forms a U-shaped loop structure. The electron density map shows that isoAsp32 retained the L-configuration at the C(α) atom. IsoAsp32 is in gauche conformation about a C(α)--C(β) bond, and the polypeptide chain bends by ∼90° at isoAsp32. IsoAsp32 protrudes from the surface of the protein, and the abnormal β-peptide bond in the main-chain and α-carboxylate in the side-chain is fully exposed. The structure suggests that the deamidation of the Asn and the isoAsp formation in proteins could confer immunogenicity.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
16
|
Fang P, Li X, Wang J, Xing L, Gao Y, Niu L, Teng M. Crystal Structure of the Protein l-Isoaspartyl Methyltransferase from Escherichia coli. Cell Biochem Biophys 2010; 58:163-7. [DOI: 10.1007/s12013-010-9103-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Pengfei Fang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Noguchi S. Isomerization mechanism of aspartate to isoaspartate implied by structures of Ustilago sphaerogena ribonuclease U2 complexed with adenosine 3'-monophosphate. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:843-9. [PMID: 20606265 DOI: 10.1107/s0907444910019621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/25/2010] [Indexed: 11/11/2022]
Abstract
Aspartates in proteins are isomerized non-enzymatically to isoaspartate via succinimide in vitro and in vivo. In order to elucidate the mechanism of isoaspartate formation within the Asp45-Glu46 sequence of Ustilago sphaerogena ribonuclease U2 based on three-dimensional structure, crystal structures of ribonuclease U2 complexed with adenosine 3'-monophosphate have been solved at 0.96 and 0.99 A resolution. The crystal structures revealed that the C(gamma) atom of Asp45 is located just beside the main-chain N atom of Glu46 and that the conformation which is suitable for succinimide formation is stabilized by a hydrogen-bond network mediated by water molecules 190, 219 and 220. These water molecules are suggested to promote the formation of isoaspartate via succinimide: in the succinimide-formation reaction water 219 receives a proton from the N atom of Glu46 as a general base and waters 190 and 220 stabilize the tetrahedral intermediate, and in the succinimide-hydrolysis reaction water 219 provides a proton for the N atom of Glu46 as a general acid. The purine-base recognition scheme of ribonuclease U2 is also discussed.
Collapse
Affiliation(s)
- Shuji Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Rutherford K, Daggett V. The V119I polymorphism in protein L-isoaspartate O-methyltransferase alters the substrate-binding interface. Protein Eng Des Sel 2009; 22:713-21. [PMID: 19801578 DOI: 10.1093/protein/gzp056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein L-isoaspartate O-methyltransferase (PIMT) repairs isoaspartate residues in damaged proteins, and it contains a Val-Ile polymorphismin in alpha5, approximately 13 A from its active site. Val119 has lower activity and thermal stability but increased affinity for endogenous substrates. Studies suggest that heterozygosity for Val/Ile favors efficient isoaspartate repair. We have performed multiple molecular dynamics simulations of 119I and 119V PIMT. Both V119 and I119 interact with the same residues throughout all of the simulations. However, the larger Ile altered the orientations of alpha5 and beta5, both of which have co-substrate binding residues on their distal ends. I119 increases the flexibility of several residues, loosening up the S-adenosylmethionine (SAM)-binding site. These subtle changes are propagated towards the isoaspartate-docking site via residues common to both active sites. The increased mobility in 119I PIMT reorients alpha3, resulting in a salt-bridge network at the substrate-binding interface that disrupts several key side-chain interactions in the isoaspartate site. In contrast, 119V PIMT remains quite rigid with little change to the co-substrate binding site, which could hinder SAM's binding and release, accounting for the decreased activity. These results shed light on the molecular basis behind the decreased activity and increased specificity for endogenous substrates of 119V PIMT relative to the 119I variant. 119I PIMT catalyzes the methylation reaction but may have difficulties recognizing and orienting specific substrates due to its distorted substrate-binding site. Heterozygosity for both the Ile and Val alleles may provide the best of both worlds, allowing the fast and specific methylation of damaged proteins.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry, University of Washington, Box 355013, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
19
|
Abstract
Genomes replicate while the host cells reproduce. I explore the reproduction/replication dialogue, based on a deep analysis of bacterial genomes, in relation to ageing. Making young structures from aged ones implies creating information. I revisit Information Theory, showing that the laws of physics permit de novo creation of information, provided an energy-dependent process preserving functional entities makes room for entities accumulating information. I identify explicit functions involved in the process and characterise some of their genes. I suggest that the energy source necessary to establish reproduction while replication is temporarily stopped could be the ubiquitous polyphosphates. Finally, I show that rather than maintain and repair the original individual, organisms tend to metamorphose into young ones, sometimes totally, sometimes progressively. This permits living systems to accumulate information over generations, but has the drawback, in multicellular organisms, to open the door for immortalisation, leading to cancer.
Collapse
Affiliation(s)
- Antoine Danchin
- Genetics of Bacterial Genomes, CNRS URA2171, Institut Pasteur, Paris, France.
| |
Collapse
|
20
|
Dinkins RD, Majee SM, Nayak NR, Martin D, Xu Q, Belcastro MP, Houtz RL, Beach CM, Downie AB. Changing transcriptional initiation sites and alternative 5'- and 3'-splice site selection of the first intron deploys Arabidopsis protein isoaspartyl methyltransferase2 variants to different subcellular compartments. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:1-13. [PMID: 18318686 DOI: 10.1111/j.1365-313x.2008.03471.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arabidopsis thaliana (L.) Heynh. possesses two PROTEIN-L-ISOASPARTATE METHYLTRANSFERASE (PIMT) genes encoding enzymes (EC 2.1.1.77) capable of converting uncoded l-isoaspartyl residues, arising spontaneously at l-asparaginyl and l-aspartyl sites in proteins, to l-aspartate. PIMT2 produces at least eight transcripts by using four transcriptional initiation sites (TIS; resulting in three different initiating methionines) and both 5'- and 3'-alternative splice site selection of the first intron. The transcripts produce mature proteins capable of converting l-isoaspartate to l-aspartate in small peptide substrates. PIMT:GFP fusion proteins generated a detectable signal in the nucleus. However, whether the protein was also detectable in the cytoplasm, endo-membrane system, chloroplasts, and/or mitochondria, depended on the transcript from which it was produced. On-blot-methylation of proteins, prior to the completion of germination, indicated that cruciferin subunits contain isoaspartate. The implications of using transcriptional mechanisms to expand a single gene's repertoire to protein variants capable of entry into the cell's various compartments are discussed in light of PIMT's presumed role in repairing the proteome.
Collapse
Affiliation(s)
- Randy D Dinkins
- USDA-ARS Forage-Animal Production Research Unit, N220C Agriculture Science Center, North, University of Kentucky, Lexington, KY 40546-0091, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kaczanowska M, Rydén-Aulin M. Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 2007; 71:477-94. [PMID: 17804668 PMCID: PMC2168646 DOI: 10.1128/mmbr.00013-07] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation, the decoding of mRNA into protein, is the third and final element of the central dogma. The ribosome, a nucleoprotein particle, is responsible and essential for this process. The bacterial ribosome consists of three rRNA molecules and approximately 55 proteins, components that are put together in an intricate and tightly regulated way. When finally matured, the quality of the particle, as well as the amount of active ribosomes, must be checked. The focus of this review is ribosome biogenesis in Escherichia coli and its cross-talk with the ongoing protein synthesis. We discuss how the ribosomal components are produced and how their synthesis is regulated according to growth rate and the nutritional contents of the medium. We also present the many accessory factors important for the correct assembly process, the list of which has grown substantially during the last few years, even though the precise mechanisms and roles of most of the proteins are not understood.
Collapse
Affiliation(s)
- Magdalena Kaczanowska
- Department of Genetics, Microbiology, and Toxicology, Stockholm University, S-10691 Stockholm, Sweden
| | | |
Collapse
|
22
|
Abstract
Methylation is one of the most common protein modifications. Many different prokaryotic and eukaryotic proteins are methylated, including proteins involved in translation, including ribosomal proteins (RPs) and translation factors (TFs). Positions of the methylated residues in six Escherichia coli RPs and two Saccharomyces cerevisiae RPs have been determined. At least two RPs, L3 and L12, are methylated in both organisms. Both prokaryotic and eukaryotic elongation TFs (EF1A) are methylated at lysine residues, while both release factors are methylated at glutamine residues. The enzymes catalysing methylation reactions, protein methyltransferases (MTases), generally use S-adenosylmethionine as the methyl donor to add one to three methyl groups that, in case of arginine, can be asymetrically positioned. The biological significance of RP and TF methylation is poorly understood, and deletions of the MTase genes usually do not cause major phenotypes. Apparently methylation modulates intra- or intermolecular interactions of the target proteins or affects their affinity for RNA, and, thus, influences various cell processes, including transcriptional regulation, RNA processing, ribosome assembly, translation accuracy, protein nuclear trafficking and metabolism, and cellular signalling. Differential methylation of specific RPs and TFs in a number of organisms at different physiological states indicates that this modification may play a regulatory role.
Collapse
Affiliation(s)
- Bogdan Polevoda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | |
Collapse
|
23
|
Chi A, Bai DL, Geer LY, Shabanowitz J, Hunt DF. Analysis of intact proteins on a chromatographic time scale by electron transfer dissociation tandem mass spectrometry. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2007; 259:197-203. [PMID: 17364019 PMCID: PMC1826913 DOI: 10.1016/j.ijms.2006.09.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Direct analysis of intact proteins on a chromatographic time scale is demonstrated on a modified linear ion trap mass spectrometer using sequential ion/ion reactions, electron transfer and proton transfer, to dissociate the sample and to convert the resulting peptide fragments to a mixture of singly and doubly charged species. Proteins are converted to gas-phase, multiply-charged, positive ions by electrospray ionization and then allowed to react with fluoranthene radical anions. Electron transfer to the multiply charged protein promotes random fragmentation of amide bonds along the protein backbone. Multiply charged fragment ions are then deprotonated in a second ion/ion reaction with even-electron benzoate anions. M/z values for the resulting singly and doubly charged ions are used to read a sequence of 15-40 amino acids at both the N-terminus and the C-terminus of the protein. This information, along with the measured mass of the intact protein, are employed to identify known proteins and to detect the presence of post-translational modifications. In this study, we analyze intact proteins from the Escherchia coli 70S ribosomal protein complex and identify 46 of the 55 known unique components in a single, 90 min, on-line, chromatography experiment. Truncated versions of the above proteins along with several post-translational modifications are also detected.
Collapse
|
24
|
O'Connor CM. 13 Protein L-isoaspartyl, D-aspartyl O-methyltransferases: Catalysts for protein repair. Enzymes 2006; 24:385-433. [PMID: 26718047 DOI: 10.1016/s1874-6047(06)80015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Protein L-isoaspartyl, D-aspartyl O-methyltransferases (PIMTs) are ancient enzymes distributed through all phylogenetic domains. PIMTs catalyze the methylation of L-isoaspartyl, and to a lesser extent D-aspartyl, residues arising from the spontaneous deamidation and isomerization of protein asparaginyl and aspartyl residues. PIMTs catalyze the methylation of isoaspartyl residues in a large number of primary sequence configurations, which accounts for the broad specificity of the enzyme for protein substrates both in vitro and in vivo. PIMT-catalyzed methylation of isoaspartyl substrates initiates the repair of the polypeptide backbone in its damaged substrates by a spontaneous mechanism that involves a succinimidyl intermediate. The repair process catalyzed by PEVITs is not completely efficient, however, leaving open the possibility that unidentified enzymatic activities cooperate with PIMT in the repair process. Structurally, PIMTs are members of the class I family of AdoMet-dependent methyltransferases. PIMTs have a unique topological arrangement of strands in the central β sheet that provides a signature for this class of enzymes. The regulation and physiological significance of PIMT has been studied in several model organisms. PIMTs are constitutively synthesized by cells, but they can be upregulated in response to conditions that are potentially damaging to protein structures, or when proteins are stored for prolonged periods of time. Disruption of PIMT genes in bacteria and simple eukaryotes produces subtle phenotypes that are apparent only under stress. Loss of PIMT function in transgenic mice leads to fatalepilepsy, suggesting that PIMT function is particularly important to neurons in mammals.
Collapse
Affiliation(s)
- Clare M O'Connor
- Biology Department Boston College 140 Commonwealth Avenue Chestnut Hill, MA 02467, USA
| |
Collapse
|
25
|
Shimizu T, Matsuoka Y, Shirasawa T. Biological significance of isoaspartate and its repair system. Biol Pharm Bull 2005; 28:1590-6. [PMID: 16141521 DOI: 10.1248/bpb.28.1590] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isomerization of L-aspartate and deamidation of L-asparagine in proteins or peptides dominantly give rise to L-isoaspartate by a non-enzymatic reaction via succinimide as a intermediate under physiological conditions. Isoaspartates have been identified in a variety of cellular proteins in vivo as well as pathologically deposited proteins in neurodegenerative brain tissue. We described here that the formation of isoaspartate is enhanced in amyloid-beta (Abeta) peptides in Alzheimer's disease (AD). Specific antibodies recognizing isoaspartate of Abeta revealed that isomerized Abeta peptides were deposited in senile plaques as well as amyloid-bearing vessels. Moreover, it was revealed that Abeta peptides, isomerized at position 7 or 23, were differentially deposited in senile plaques and vascular amyloids in AD brains. In vitro experiments showed that the modification at position 23 greatly enhanced the aggregation of Abeta. Furthermore, systematic proline substitution analyses revealed that the beta-turn structure at positions 22 and 23 of Abeta42 plays a crucial role in the aggregation and neurotoxicity of Abeta peptides. It is suggested that spontaneous isomerization at position 23 induces the conformational change to form a beta-turn at position 23, which plays a pathogenic role in the deposition of Abeta peptides in sporadic AD. Protein L-isoaspartyl methyltransferase (PIMT) is a putative protein repair enzyme, which converts L-isoaspartyl residues in damaged proteins to normal L-aspartyl residues. PIMT-deficient mice manifested neurodegenerative changes concomitant with the accumulation of L-isoaspartate in the brain. We discuss here the pathological implications of the formation of isoaspartate in damaged proteins during neurodegeneration in model mice and AD.
Collapse
Affiliation(s)
- Takahiko Shimizu
- Research Team for Molecular Biomarkers, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Kern R, Malki A, Abdallah J, Liebart JC, Dubucs C, Yu MH, Richarme G. Protein isoaspartate methyltransferase is a multicopy suppressor of protein aggregation in Escherichia coli. J Bacteriol 2005; 187:1377-83. [PMID: 15687202 PMCID: PMC545615 DOI: 10.1128/jb.187.4.1377-1383.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 11/12/2004] [Indexed: 11/20/2022] Open
Abstract
We used preS2-S'-beta-galactosidase, a three-domain fusion protein that aggregates extensively at 43 degrees C in the cytoplasm of Escherichia coli, to search for multicopy suppressors of protein aggregation and inclusion body formation and took advantage of the known differential solubility of preS2-S'-beta-galactosidase at 37 and 43 degrees C to develop a selection procedure for the gene products that would prevent its aggregation in vivo at 43 degrees C. First, we demonstrate that the differential solubility of preS2-S'-beta-galactosidase results in a lactose-positive phenotype at 37 degrees C as opposed to a lactose-negative phenotype at 43 degrees C. We searched for multicopy suppressors of preS2-S'-beta-galactosidase aggregation by selecting pink lactose-positive colonies on a background of white lactose-negative colonies at 43 degrees C after transformation of bacteria with an E. coli gene bank. We discovered that protein isoaspartate methyltransferase (PIMT) is a multicopy suppressor of preS2-S'-beta-galactosidase aggregation at 43 degrees C. Overexpression of PIMT reduces the amount of preS2-S'-beta-galactosidase found in inclusion bodies at 43 degrees C and increases its amount in soluble fractions. It reduces the level of isoaspartate formation in preS2-S'-beta-galactosidase and increases its thermal stability in E. coli crude extracts without increasing the thermostability of a control protein, citrate synthase, in the same extracts. We could not detect any induction of the heat shock response resulting from PIMT overexpression, as judged from amounts of DnaK and GroEL, which were similar in the PIMT-overproducing and control strains. These results suggest that PIMT might be overburdened in some physiological conditions and that its overproduction may be beneficial in conditions in which protein aggregation occurs, for example, during biotechnological protein overproduction or in protein aggregation diseases.
Collapse
Affiliation(s)
- Renée Kern
- Biochimie Génétique, Institut Jacques Monod, Université Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB. A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. PLANT PHYSIOLOGY 2004; 136:2652-64. [PMID: 15347786 PMCID: PMC523330 DOI: 10.1104/pp.104.046094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 05/31/2004] [Accepted: 06/07/2004] [Indexed: 05/18/2023]
Abstract
The spontaneous and deleterious conversion of l-asparaginyl and l-aspartyl protein residues to l-iso-Asp or d-Asp occurs as proteins age and is accelerated under stressful conditions. Arabidopsis (Arabidopsis L. Heynh.) contains two genes (At3g48330 and At5g50240) encoding protein-l-isoaspartate methyltransferase (EC 2.1.1.77; PIMT), an enzyme capable of correcting this damage. The gene located on chromosome 5 (PIMT2) produces two proteins differing by three amino acids through alternative 3' splice site selection in the first intron. Recombinant protein from both splicing variants has PIMT activity. Subcellular localization using cell fractionation followed by immunoblot detection, as well as confocal visualization of PIMT:GFP fusions, demonstrated that PIMT1 is cytosolic while a canonical nuclear localization signal, present in PIMT2psi and the shorter PIMT2omega, is functional. Multiplex reverse transcription-PCR was used to establish PIMT1 and PIMT2 transcript presence and abundance, relative to beta-TUBULIN, in various tissues and under a variety of stresses imposed on seeds and seedlings. PIMT1 transcript is constitutively present but can increase, along with PIMT2, in developing seeds presumably in response to increasing endogenous abscisic acid (ABA). Transcript from PIMT2 also increases in establishing seedlings due to exogenous ABA and applied stress presumably through an ABA-dependent pathway. Furthermore, cleaved amplified polymorphic sequences from PIMT2 amplicons determined that ABA preferentially enhances the production of PIMT2omega transcript in leaves and possibly in tissues other than germinating seeds.
Collapse
Affiliation(s)
- Qilong Xu
- Department of Horticulture, University of Kentucky Agriculture Experiment Station, S129, Agriculture Science Center North, University of Kentucky, 800 Rose Street, Lexington, KY 40546-0312, USA
| | | | | | | | | | | |
Collapse
|
28
|
Clarke S. Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2003; 2:263-85. [PMID: 12726775 DOI: 10.1016/s1568-1637(03)00011-4] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deamidated, isomerized, and racemized aspartyl and asparaginyl residues represent a significant part of the spontaneous damage to proteins that results from the aging process. The accumulation of these altered residues can lead to the loss of protein function and the consequent loss of cellular function. However, almost all cells in nature contain a methyltransferase that can recognize the major damaged form of the L-isoaspartyl residue, and some of these enzymes can also recognize the racemized D-aspartyl residue. The methyl esterification reaction can initiate the conversion of these altered residues to the normal L-aspartyl form, although there is no evidence yet that the L-asparaginyl form can be regenerated. This enzyme, the protein L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.1.1.77), thus functions as a protein repair enzyme. The importance of this enzyme in attenuating age-related protein damage can be seen by the phenotypes of organisms where the gene encoding has been disrupted, or where its expression has been augmented.
Collapse
Affiliation(s)
- Steven Clarke
- Department of Chemistry and Biochemistry, the Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|