1
|
Liu Y, Li X, He Q, Zuo M, Guo Y, Liu L, Yin J, He L, Li X, Shan J, Liu W, Lin C, Miao W. Plant salicylic acid signaling is inhibited by a cooperative strategy of two powdery mildew effectors. mBio 2025; 16:e0395924. [PMID: 40094360 PMCID: PMC11980547 DOI: 10.1128/mbio.03959-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Powdery mildew is a global threat to crops and economically valuable plants. Salicylic acid (SA) signaling plays a significant role in plant resistance to biotrophic parasites; however, the mechanisms behind how powdery mildew fungi circumvent SA-mediated resistance remain unclear. Many phytopathogenic microbes deliver effectors into the host to sustain infection. In this study, we showed that the rubber tree powdery mildew fungus Erysiphe quercicola inhibits host SA biosynthesis by employing two effector proteins, EqCmu and EqPdt. These effector proteins can be delivered into plant cells to hydrolyze chorismate, the main precursor of SA, through their enzymatic activities. Notably, EqCmu and EqPdt can interact with each other, providing mutual protection against protein degradation mediated by the plant ubiquitin-proteasome system. This interaction enhances their activities in the hydrolysis of chorismate. Our study reveals a new pathogenic strategy by which two powdery mildew effector proteins cooperate to evade recognition by dampening the host immune system. IMPORTANCE Powdery mildew fungi may develop diverse strategies to disturb salicylic acid (SA) signaling in plants, which plays an important role in activating immunity, and little is known about these strategies. Our results suggest that the Erysiphe quercicola effector protein EqCmu can be translocated into host cells and inhibit host SA levels during the infection stage; however, it is targeted by the plant ubiquitin-proteasome system (UPS) and ubiquitinated, which induces EqCmu degradation. To evade the UPS, EqCmu interacts with EqPdt, another E. quercicola effector protein, to prevent that ubiquitination. EqPdt also inhibits host SA biosynthesis through its prephenate dehydratase activity. Taken together, these two powdery mildew effector proteins cause a synergistic effect in disturbing host SA signaling. Our study also suggests that enhancing SA signaling is required for boosting immunity against powdery mildew fungus.
Collapse
Affiliation(s)
- Yuhan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life and Health Science, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Xiao Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Qiguang He
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs/State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Minghao Zuo
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yinjie Guo
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lijuan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Jinyao Yin
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life and Health Science, Hainan University, Haikou, China
| | - Lijuan He
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life and Health Science, Hainan University, Haikou, China
| | - Xiaoli Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life and Health Science, Hainan University, Haikou, China
| | - Jiaxin Shan
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- School of Life and Health Science, Hainan University, Haikou, China
| | - Wenbo Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Chunhua Lin
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| | - Weiguo Miao
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pest (Ministry of Education)/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- Danzhou Invasive Species Observation and Research Station of Hainan Province, Hainan University, Danzhou, China
| |
Collapse
|
2
|
Yoo H, Shrivastava S, Lynch JH, Huang XQ, Widhalm JR, Guo L, Carter BC, Qian Y, Maeda HA, Ogas JP, Morgan JA, Marshall-Colón A, Dudareva N. Overexpression of arogenate dehydratase reveals an upstream point of metabolic control in phenylalanine biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:737-751. [PMID: 34403557 DOI: 10.1111/tpj.15467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Out of the three aromatic amino acids, the highest flux in plants is directed towards phenylalanine, which is utilized to synthesize proteins and thousands of phenolic metabolites contributing to plant fitness. Phenylalanine is produced predominantly in plastids via the shikimate pathway and subsequent arogenate pathway, both of which are subject to complex transcriptional and post-transcriptional regulation. Previously, it was shown that allosteric feedback inhibition of arogenate dehydratase (ADT), which catalyzes the final step of the arogenate pathway, restricts flux through phenylalanine biosynthesis. Here, we show that in petunia (Petunia hybrida) flowers, which typically produce high phenylalanine levels, ADT regulation is relaxed, but not eliminated. Moderate expression of a feedback-insensitive ADT increased flux towards phenylalanine, while high overexpression paradoxically reduced phenylalanine formation. This reduction could be partially, but not fully, recovered by bypassing other known metabolic flux control points in the aromatic amino acid network. Using comparative transcriptomics, reverse genetics, and metabolic flux analysis, we discovered that transcriptional regulation of the d-ribulose-5-phosphate 3-epimerase gene in the pentose phosphate pathway controls flux into the shikimate pathway. Taken together, our findings reveal that regulation within and upstream of the shikimate pathway shares control over phenylalanine biosynthesis in the plant cell.
Collapse
Affiliation(s)
- Heejin Yoo
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, IN, 47907-2010, USA
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Stuti Shrivastava
- Department of Plant Biology, University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, Urbana, IL, 61801, USA
| | - Joseph H Lynch
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, IN, 47907-2010, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Longyun Guo
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Benjamin C Carter
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
| | - Yichun Qian
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, IN, 47907-2010, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Joseph P Ogas
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - John A Morgan
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN, 47907-2100, USA
| | - Amy Marshall-Colón
- Department of Plant Biology, University of Illinois Urbana-Champaign, 265 Morrill Hall, MC-116, Urbana, IL, 61801, USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, IN, 47907-2010, USA
- Department of Biochemistry, Purdue University, 175 South University St., West Lafayette, IN, 47907-2063, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Computational investigations of allostery in aromatic amino acid biosynthetic enzymes. Biochem Soc Trans 2021; 49:415-429. [PMID: 33544132 DOI: 10.1042/bst20200741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Allostery, in which binding of ligands to remote sites causes a functional change in the active sites, is a fascinating phenomenon observed in enzymes. Allostery can occur either with or without significant conformational changes in the enzymes, and the molecular basis of its mechanism can be difficult to decipher using only experimental techniques. Computational tools for analyzing enzyme sequences, structures, and dynamics can provide insights into the allosteric mechanism at the atomic level. Combining computational and experimental methods offers a powerful strategy for the study of enzyme allostery. The aromatic amino acid biosynthesis pathway is essential in microorganisms and plants. Multiple enzymes involved in this pathway are sensitive to feedback regulation by pathway end products and are known to use allostery to control their activities. To date, four enzymes in the aromatic amino acid biosynthesis pathway have been computationally investigated for their allosteric mechanisms, including 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, anthranilate synthase, chorismate mutase, and tryptophan synthase. Here we review the computational studies and findings on the allosteric mechanisms of these four enzymes. Results from these studies demonstrate the capability of computational tools and encourage future computational investigations of allostery in other enzymes of this pathway.
Collapse
|
4
|
Santos-Garcia D, Silva FJ, Morin S, Dettner K, Kuechler SM. The All-Rounder Sodalis: A New Bacteriome-Associated Endosymbiont of the Lygaeoid Bug Henestaris halophilus (Heteroptera: Henestarinae) and a Critical Examination of Its Evolution. Genome Biol Evol 2018; 9:2893-2910. [PMID: 29036401 PMCID: PMC5737371 DOI: 10.1093/gbe/evx202] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Hemipteran insects are well-known in their ability to establish symbiotic relationships with bacteria. Among them, heteropteran insects present an array of symbiotic systems, ranging from the most common gut crypt symbiosis to the more restricted bacteriome-associated endosymbiosis, which have only been detected in members of the superfamily Lygaeoidea and the family Cimicidae so far. Genomic data of heteropteran endosymbionts are scarce and have merely been analyzed from the Wolbachia endosymbiont in bed bug and a few gut crypt-associated symbionts in pentatomoid bugs. In this study, we present the first detailed genomic analysis of a bacteriome-associated endosymbiont of a phytophagous heteropteran, present in the seed bug Henestaris halophilus (Hemiptera: Heteroptera: Lygaeoidea). Using phylogenomics and genomics approaches, we have assigned the newly characterized endosymbiont to the Sodalis genus, named as Candidatus Sodalis baculum sp. nov. strain kilmister. In addition, our findings support the reunification of the Sodalis genus, currently divided into six different genera. We have also conducted comparative analyses between 15 Sodalis species that present different genome sizes and symbiotic relationships. These analyses suggest that Ca. Sodalis baculum is a mutualistic endosymbiont capable of supplying the amino acids tyrosine, lysine, and some cofactors to its host. It has a small genome with pseudogenes but no mobile elements, which indicates middle-stage reductive evolution. Most of the genes in Ca. Sodalis baculum are likely to be evolving under purifying selection with several signals pointing to the retention of the lysine/tyrosine biosynthetic pathways compared with other Sodalis.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain.,Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Spain
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Konrad Dettner
- Department of Animal Ecology II, University of Bayreuth, Germany
| | | |
Collapse
|
5
|
Mori M, Ponce-de-León M, Peretó J, Montero F. Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality. Front Microbiol 2016; 7:1553. [PMID: 27774085 PMCID: PMC5054487 DOI: 10.3389/fmicb.2016.01553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities may display metabolic complementation, in which different members of the association partially contribute to the same biosynthetic pathway. In this way, the end product of the pathway is synthesized by the community as a whole. However, the emergence and the benefits of such complementation are poorly understood. Herein, we present a simple model to analyze the metabolic interactions among bacteria, including the host in the case of endosymbiotic bacteria. The model considers two cell populations, with both cell types encoding for the same linear biosynthetic pathway. We have found that, for metabolic complementation to emerge as an optimal strategy, both product inhibition and large permeabilities are needed. In the light of these results, we then consider the patterns found in the case of tryptophan biosynthesis in the endosymbiont consortium hosted by the aphid Cinara cedri. Using in-silico computed physicochemical properties of metabolites of this and other biosynthetic pathways, we verified that the splitting point of the pathway corresponds to the most permeable intermediate.
Collapse
Affiliation(s)
- Matteo Mori
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de MadridMadrid, Spain; Department of Physics, University of California, San DiegoLa Jolla, CA, USA
| | - Miguel Ponce-de-León
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Madrid, Spain
| | - Juli Peretó
- Department of Biochemistry and Molecular Biology and Institute for Integrative Systems Biology, Universitat de València-CSIC Valencia, Spain
| | - Francisco Montero
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Madrid, Spain
| |
Collapse
|
6
|
A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME JOURNAL 2015; 10:376-88. [PMID: 26172209 DOI: 10.1038/ismej.2015.119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/29/2015] [Accepted: 06/09/2015] [Indexed: 12/20/2022]
Abstract
The evolution of eukaryotic organisms is often strongly influenced by microbial symbionts that confer novel traits to their hosts. Here we describe the intracellular Enterobacteriaceae symbiont of the invasive ant Cardiocondyla obscurior, 'Candidatus Westeberhardia cardiocondylae'. Upon metamorphosis, Westeberhardia is found in gut-associated bacteriomes that deteriorate following eclosion. Only queens maintain Westeberhardia in the ovarian nurse cells from where the symbionts are transmitted to late-stage oocytes during nurse cell depletion. Functional analyses of the streamlined genome of Westeberhardia (533 kb, 23.41% GC content) indicate that neither vitamins nor essential amino acids are provided for the host. However, the genome encodes for an almost complete shikimate pathway leading to 4-hydroxyphenylpyruvate, which could be converted into tyrosine by the host. Taken together with increasing titers of Westeberhardia during pupal stage, this suggests a contribution of Westeberhardia to cuticle formation. Despite a widespread occurrence of Westeberhardia across host populations, one ant lineage was found to be naturally symbiont-free, pointing to the loss of an otherwise prevalent endosymbiont. This study yields insights into a novel intracellular mutualist that could play a role in the invasive success of C. obscurior.
Collapse
|
7
|
A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC SYSTEMS BIOLOGY 2009; 3:24. [PMID: 19232131 PMCID: PMC2649895 DOI: 10.1186/1752-0509-3-24] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 02/21/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND In silico analyses provide valuable insight into the biology of obligately intracellular pathogens and symbionts with small genomes. There is a particular opportunity to apply systems-level tools developed for the model bacterium Escherichia coli to study the evolution and function of symbiotic bacteria which are metabolically specialised to overproduce specific nutrients for their host and, remarkably, have a gene complement that is a subset of the E. coli genome. RESULTS We have reconstructed and analysed the metabolic network of the gamma-proteobacterium Buchnera aphidicola (symbiont of the pea aphid) as a model for using systems-level approaches to discover key traits of symbionts with small genomes. The metabolic network is extremely fragile with > 90% of the reactions essential for viability in silico; and it is structured so that the bacterium cannot grow without producing the essential amino acid, histidine, which is released to the insect host. Further, the amount of essential amino acid produced by the bacterium in silico can be controlled by host supply of carbon and nitrogen substrates. CONCLUSION This systems-level analysis predicts that the fragility of the bacterial metabolic network renders the symbiotic bacterium intolerant of drastic environmental fluctuations, whilst the coupling of histidine production to growth prevents the bacterium from exploiting host nutrients without reciprocating. These metabolic traits underpin the sustained nutritional contribution of B. aphidicola to the host and, together with the impact of host-derived substrates on the profile of nutrients released from the bacteria, point to a dominant role of the host in controlling the symbiosis.
Collapse
|
8
|
Yamada T, Matsuda F, Kasai K, Fukuoka S, Kitamura K, Tozawa Y, Miyagawa H, Wakasa K. Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan. THE PLANT CELL 2008; 20:1316-29. [PMID: 18487352 PMCID: PMC2438470 DOI: 10.1105/tpc.107.057455] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/16/2008] [Accepted: 04/29/2008] [Indexed: 05/22/2023]
Abstract
Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between the synthesis of Phe and Trp. Here, we show that the Mtr1 mutant gene (mtr1-D) encodes a form of rice PDT with a point mutation in the putative allosteric regulatory region of the protein. Transformed callus lines expressing mtr1-D exhibited all the characteristics of Mtr1 callus tissue. Biochemical analysis revealed that rice PDT possesses both PDT and ADT activities, with a preference for arogenate as substrate, suggesting that it functions primarily as an ADT. The wild-type enzyme is feedback regulated by Phe, whereas the mutant enzyme showed a reduced feedback sensitivity, resulting in Phe accumulation. In addition, these observations indicate that rice PDT is critical for regulating the size of the Phe pool in plant cells. Feeding external Phe to wild-type callus tissue and seedlings resulted in Trp accumulation, demonstrating a connection between Phe accumulation and Trp pool size.
Collapse
Affiliation(s)
- Tetsuya Yamada
- CREST, Japan Science and Technology Agency, Tokyo 103-0027, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Moran NA, Plague GR, Sandström JP, Wilcox JL. A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci U S A 2003; 100 Suppl 2:14543-8. [PMID: 14527994 PMCID: PMC304116 DOI: 10.1073/pnas.2135345100] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals show intimate interactions with bacterial symbionts that provision hosts with limiting nutrients. The best studied such association is that between aphids and Buchnera aphidicola, which produces essential amino acids that are rare in the phloem sap diet. Genomic studies of Buchnera have provided a new means for inferring metabolic capabilities of the symbionts and their likely contributions to hosts. Despite evolutionary reduction of genome size, involving loss of most ancestral genes, Buchnera retains capabilities for biosynthesis of all essential amino acids. In contrast, most genes duplicating amino acid biosynthetic capabilities of hosts have been eliminated. In Buchnera of many aphids, genes for biosynthesis of leucine and tryptophan have been transferred from the chromosome to distinctive plasmids, a feature interpreted as a mechanism for overproducing these amino acids through gene amplification. However, the extent of plasmid-associated amplification varies between and within species, and plasmid-borne genes are sometimes fewer in number than single copy genes on the (polyploid) main chromosome. This supports the broader interpretation of the plasmid location as a means of achieving regulatory control of gene copy number and/or transcription. Buchnera genomes have eliminated most regulatory sequences, raising the question of the extent to which gene expression is moderated in response to changing demands imposed by host nutrition or other factors. Microarray analyses of the Buchnera transcriptome reveal only slight changes in expression of nutrition-related genes in response to shifts in host diet, with responses less dramatic than those observed for the related nonsymbiotic species, Escherichia coli.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
10
|
Douglas AE, Minto LB, Wilkinson TL. Quantifying nutrient production by the microbial symbionts in an aphid. J Exp Biol 2001; 204:349-58. [PMID: 11136620 DOI: 10.1242/jeb.204.2.349] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The symbiotic bacteria Buchnera sp. provide aphids with essential amino acids, nutrients in short supply in the aphid diet of plant phloem sap. The contribution of Buchnera-derived amino acids to net protein growth of the aphid Aphis fabae was quantified from the protein growth of aphids reared on chemically defined diets lacking individual amino acids. The amino acid production rates varied among the nine essential amino acids over the range 8–156 pmol microg(−1)protein day(−1) (for tryptophan and leucine, respectively), equivalent to 0.02-0.33 fmol Buchnera(−1)day(−1). In a complementary metabolic analysis, the aphids incorporated radioactivity from dietary [(14)C]glutamic acid into the essential amino acids isoleucine, lysine and threonine. Incorporation into isoleucine was significantly elevated by the omission of dietary isoleucine, indicating that dietary supply may affect the biosynthetic rates of certain amino acids by Buchnera. Aphids experimentally deprived of Buchnera did not synthesize essential amino acids from dietary glutamic acid. The mortality of aposymbionts was high over 7 days on the phenylalanine-free diet, and their assimilation of dietary leucine was depressed on the complete diet, suggesting that both the absence of bacteria-derived amino acids and the low rates of assimilation of certain dietary amino acids may contribute to the poor growth of these insects.
Collapse
Affiliation(s)
- A E Douglas
- Department of Biology, University of York, York YO10 5YW, UK
| | | | | |
Collapse
|