1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnol Adv 2017; 35:950-970. [PMID: 28723577 DOI: 10.1016/j.biotechadv.2017.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field.
Collapse
|
3
|
Abstract
Phenolic aromatic compounds are a major source of environmental pollution. Currently there are no in situ methods for specifically and selectively detecting these pollutants. Here, we exploit the nature's biosensory machinery by employing Acinetobacter calcoaceticus NCIB8250 protein, MopR, as a model system to develop biosensors for selective detection of a spectrum of these pollutants. The X-ray structure of the sensor domain of MopR was used as a scaffold for logic-based tunable biosensor design. By employing a combination of in silico structure guided approaches, mutagenesis and isothermal calorimetric studies, we were able to generate biosensor templates, that can selectively and specifically sense harmful compounds like chlorophenols, cresols, catechol, and xylenols. Furthermore, the ability of native protein to selectively sense phenol as the primary ligand was also enhanced. Overall, this methodology can be extended as a suitable framework for development of a series of exclusive biosensors for accurate and selective detection of aromatic pollutants from real time environmental samples.
Collapse
Affiliation(s)
- Shamayeeta Ray
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Santosh Panjikar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra India
- Wadhwani
Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
4
|
Ray S, Gunzburg MJ, Wilce M, Panjikar S, Anand R. Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator. ACS Chem Biol 2016; 11:2357-65. [PMID: 27362503 DOI: 10.1021/acschembio.6b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenol and its derivatives are common pollutants that are present in industrial discharge and are major xenobiotics that lead to water pollution. To monitor as well as improve water quality, attempts have been made in the past to engineer bacterial in vivo biosensors. However, due to the paucity of structural information, there is insufficiency in gauging the factors that lead to high sensitivity and selectivity, thereby impeding development. Here, we present the crystal structure of the sensor domain of MopR (MopR(AB)) from Acinetobacter calcoaceticus in complex with phenol and its derivatives to a maximum resolution of 2.5 Å. The structure reveals that the N-terminal residues 21-47 possess a unique fold, which are involved in stabilization of the biological dimer, and the central ligand binding domain belongs to the "nitric oxide signaling and golgi transport" fold, commonly present in eukaryotic proteins that bind long-chain fatty acids. In addition, MopR(AB) nests a zinc atom within a novel zinc binding motif, crucial for maintaining structural integrity. We propose that this motif is crucial for orchestrated motions associated with the formation of the effector binding pocket. Our studies reveal that residues W134 and H106 play an important role in ligand binding and are the key selectivity determinants. Furthermore, comparative analysis of MopR with XylR and DmpR sensor domains enabled the design of a MopR binding pocket that is competent in binding DmpR-specific ligands. Collectively, these findings pave way towards development of specific/broad based biosensors, which can act as useful tools for detection of this class of pollutants.
Collapse
Affiliation(s)
- Shamayeeta Ray
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Menachem J. Gunzburg
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew Wilce
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Santosh Panjikar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Wadhwani
Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Büsing I, Kant M, Dörries M, Wöhlbrand L, Rabus R. The predicted σ(54)-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in "Aromatoleum aromaticum" EbN1. BMC Microbiol 2015; 15:251. [PMID: 26526497 PMCID: PMC4630880 DOI: 10.1186/s12866-015-0571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
Background The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 anaerobically utilizes a multitude of aromatic compounds via specific peripheral degradation routes. Compound-specific formation of these catabolic modules is assumed to be mediated by specific transcriptional activators. In case of the recently elucidated p-ethylphenol/p-hydroxyacetophenone pathway, the highly substrate-specific regulation was implicated to involve the predicted σ54-dependent, NtrC-type regulator EbA324. The latter was suggested to control the expression of the two neighboring gene clusters encoding the catabolic enzymes as well as a corresponding putative solvent efflux system. In the present study, a molecular genetic approach was used to study the predicted function of EbA324. Results An unmarked in frame ΔebA324 (here renamed as ΔetpR; p-ethylphenol regulator) deletion mutation was generated. The ΔetpR mutant was unable to grow anaerobically with either p-ethylphenol or p-hydroxyacetophenone. Growth similar to the wild type was restored in the ΔetpR mutant background by in trans expression of plasmid-born etpR. Furthermore, expression of the "p-ethylphenol" gene clusters as well as corresponding protein formation was shown to depend on the presence of both, EtpR and either p-ethylphenol or p-hydroxyacetophenone. In the wild type, the etpR gene appears to be constitutively expressed and its expression level not to be modulated upon effector presence. Comparison with the regulatory domains of known phenol- and alkylbenzene-responsive NtrC-type regulators of Pseudomonas spp. and Thauera aromatica allowed identifying >60 amino acid residues in the regulatory domain (in particular positions 149 to 192 of EtpR) that may contribute to the effector specificity viz. presumptively restricted effector spectrum of EtpR. Conclusions This study provides experimental evidence for the genome predicted σ54-dependent regulator EtpR (formerly EbA324) of "A. aromaticum" EbN1 to be responsive to p-ethylphenol, as well as its degradation intermediate p-hydroxyacetophenone, and to control the expression of genes involved in the anaerobic degradation of these two aromatic growth substrates. Overall, the presented results advance our understanding on the regulation of anaerobic aromatic compound catabolism, foremost based on the sensory discrimination of structurally similar substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0571-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Imke Büsing
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Mirjam Kant
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
6
|
Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Transcription factor-based biosensors enlightened by the analyte. Front Microbiol 2015; 6:648. [PMID: 26191047 PMCID: PMC4486848 DOI: 10.3389/fmicb.2015.00648] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task.
Collapse
Affiliation(s)
| | | | | | - Gabriel Moncalián
- Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria – Consejo Superior de Investigaciones CientíficasSantander, Spain
| |
Collapse
|
7
|
Jha RK, Chakraborti S, Kern TL, Fox DT, Strauss CEM. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor. Proteins 2015; 83:1327-40. [DOI: 10.1002/prot.24828] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/09/2015] [Accepted: 05/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | - Subhendu Chakraborti
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | - Theresa L. Kern
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | - David T. Fox
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | | |
Collapse
|
8
|
Gredell JA, Frei CS, Cirino PC. Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J 2011; 7:477-99. [PMID: 22031507 DOI: 10.1002/biot.201100266] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/20/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
Abstract
Nature takes advantage of the malleability of protein and RNA sequence and structure to employ these macromolecules as molecular reporters whose conformation and functional roles depend on the presence of a specific ligand (an "effector" molecule). By following nature's example, ligand-responsive proteins and RNA molecules are now routinely engineered and incorporated into customized molecular reporting systems (biosensors). Microbial small-molecule biosensors and endogenous molecular reporters based on these sensing components find a variety of applications that include high-throughput screening of biosynthesis libraries, environmental monitoring, and novel gene regulation in synthetic biology. Here, we review recent advances in engineering small-molecule recognition by proteins and RNA and in coupling in vivo ligand binding to reporter-gene expression or to allosteric activation of a protein conferring a detectable phenotype. Emphasis is placed on microbial screening systems that serve as molecular reporters and facilitate engineering the ligand-binding component to recognize new molecules.
Collapse
Affiliation(s)
- Joseph A Gredell
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | |
Collapse
|
9
|
Garmendia J, de las Heras A, Galvão TC, de Lorenzo V. Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 2011; 1:236-46. [PMID: 21261843 PMCID: PMC3815885 DOI: 10.1111/j.1751-7915.2008.00027.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although different biological approaches for detection of anti-personnel mines and other unexploded ordnance (UXO) have been entertained, none of them has been rigorously documented thus far in the scientific literature. The industrial 2,4,6 trinitrotoluene (TNT) habitually employed in the manufacturing of mines is at all times tainted with a small but significant proportion of the more volatile 2,4 dinitrotoluene (2,4 DNT) and other nitroaromatic compounds. By using mutation-prone PCR and DNA sequence shuffling we have evolved in vitro and selected in vivo variants of the effector recognition domain of the toluene-responsive XylR regulator of the soil bacterium Pseudomonas putida that responds to mono-, bi- and trinitro substituted toluenes. Re-introduction of such variants in P. putida settled the transcriptional activity of the cognate promoters (Po and Pu) as a function of the presence of nitrotoluenes in the medium. When strains bearing transcriptional fusions to reporters with an optical output (luxAB, GFP) were spread on soil spotted with nitrotoluenes, the signal triggered by promoter activation allowed localization of the target compounds on the soil surface. Our data provide a proof of concept that non-natural transcription factors evolved to respond to nitroaromatics can be engineered in soil bacteria and inoculated on a target site to pinpoint the presence of explosives. This approach thus opens new ways to tackle this gigantic humanitarian problem.
Collapse
Affiliation(s)
- Junkal Garmendia
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
10
|
Beggah S, Vogne C, Zenaro E, Van Der Meer JR. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting. Microb Biotechnol 2011; 1:68-78. [PMID: 21261823 PMCID: PMC3864433 DOI: 10.1111/j.1751-7915.2007.00008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Collapse
Affiliation(s)
- Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
11
|
Vogne C, Bisht H, Arias S, Fraile S, Lal R, van der Meer JR. Characterisation of the putative effector interaction site of the regulatory HbpR protein from Pseudomonas azelaica by site-directed mutagenesis. PLoS One 2011; 6:e16539. [PMID: 21379585 PMCID: PMC3040749 DOI: 10.1371/journal.pone.0016539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C) promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.
Collapse
Affiliation(s)
- Christelle Vogne
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Hansi Bisht
- Department of Zoology, University of Delhi, Delhi, India
| | - Sagrario Arias
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sofia Fraile
- National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
12
|
de las Heras A, de Lorenzo V. Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 2011; 79:1248-59. [DOI: 10.1111/j.1365-2958.2010.07518.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
|
14
|
The methanogen-specific transcription factor MsvR regulates the fpaA-rlp-rub oxidative stress operon adjacent to msvR in Methanothermobacter thermautotrophicus. J Bacteriol 2010; 192:5914-22. [PMID: 20851905 DOI: 10.1128/jb.00816-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanogens represent some of the most oxygen-sensitive organisms in laboratory culture. Recent studies indicate that they have developed mechanisms to deal with brief oxygen exposure. MsvR is a transcriptional regulator that has a domain architecture unique to a select group of methanogens. Here, runoff in vitro transcription assays were used to demonstrate that MsvR regulates transcription of the divergently transcribed fpaA-rlp-rub operon in Methanothermobacter thermautotrophicus in addition to transcription from its own promoter. The protein products of the fpaA-rlp-rub operon have previously been implicated in oxidative stress responses in M. thermautotrophicus. Additionally, electrophoretic mobility shift assays (EMSAs) and DNase I footprinting were used to confirm a binding site inferred by bioinformatic analysis. Sequence mutations within these binding sites did not significantly alter EMSA shifting patterns on longer templates but did on shorter 50-bp fragments encompassing only the region containing the binding sites. Footprinting confirmed that the regions protected for the longer mutant templates are at different positions within the intergenic region compared to those seen in the intact intergenic region. Oxidized and reduced preparations of MsvR demonstrated different EMSA binding patterns and regions of protection on the intergenic sequence, suggesting that MsvR may play a role in detecting the redox state of the cell.
Collapse
|
15
|
Jõesaar M, Heinaru E, Viggor S, Vedler E, Heinaru A. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol Ecol 2010; 72:464-75. [PMID: 20370825 DOI: 10.1111/j.1574-6941.2010.00858.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
p-Cresol methylhydroxylase (PCMH), a key enzyme responsible for the catabolism of p-cresol via the protocatechuate ortho pathway, was used as a tool to characterize catabolic differences between phenol- and p-cresol-degrading Pseudomonas fluore-scens strains PC18 and PC24. Although both strains catabolize p-cresol using PCMH, different whole-cell kinetic parameters for this compound were revealed. Affinity for the substrate and the specific growth rate were higher in PC18, whereas maximum p-cresol tolerance was higher in PC24. In addition, PCMH of strain PC18 was induced during growth on phenol. In both strains, the pchACXF operon, which encodes p-hydroxybenzaldehyde dehydrogenase and PCMH, was sequenced. Transcriptional regulation of these operons by PchR, a putative sigma(54)-dependent regulator, was shown. Although the promoters of these operons resembled sigma(54)-controlled promoters, they differed from the consensus sequence by having T instead of C at position -12. Complementation assays confirmed that the amino acid sequence differences of the PchR regulators between the two strains studied led to different effector-binding capabilities of these proteins: (1) phenol was a more efficient effector for PchR of PC18 than p-cresol, (2) phenol did not activate the regulator of PC24, and (3) both regulators responded similarly to p-cresol.
Collapse
Affiliation(s)
- Merike Jõesaar
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
16
|
Omokoko B, Jäntges UK, Zimmermann M, Reiss M, Hartmeier W. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator. BMC Microbiol 2008; 8:197. [PMID: 19014555 PMCID: PMC2590616 DOI: 10.1186/1471-2180-8-197] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 11/13/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. RESULTS A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. CONCLUSION Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic) prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate regulatory mechanisms that are likely to be distinct from modes described for gram-negative bacteria.
Collapse
Affiliation(s)
- Bastian Omokoko
- Department of Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Podar M, Wall MA, Makarova KS, Koonin EV. The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system. Biol Direct 2008; 3:2. [PMID: 18221539 PMCID: PMC2253512 DOI: 10.1186/1745-6150-3-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 01/25/2008] [Indexed: 11/26/2022] Open
Abstract
Intracellular vesicle traffic that enables delivery of proteins between the endoplasmic reticulum, Golgi and various endosomal subcompartments is one of the hallmarks of the eukaryotic cell. Its evolutionary history is not well understood but the process itself and the core vesicle traffic machinery are believed to be ancient. We show here that the 4-vinyl reductase (V4R) protein domain present in bacteria and archaea is homologous to the Bet3 subunit of the TRAPP1 vesicle-tethering complex that is conserved in all eukaryotes. This suggests, for the first time, a prokaryotic origin for one of the key eukaryotic trafficking proteins. This article was reviewed by Gaspar Jekely and Mark A. Ragan
Collapse
Affiliation(s)
- Mircea Podar
- Biosciences Division and the Bioenergy Science Center, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.
| | | | | | | |
Collapse
|
18
|
Galvão TC, Mencía M, de Lorenzo V. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 2007; 65:907-19. [PMID: 17645451 DOI: 10.1111/j.1365-2958.2007.05832.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evolutionary expansion of metabolic networks entails the emergence of regulatory factors that become sensitive to new chemical species. A dedicated genetic system was developed for the soil bacterium Pseudomonas putida aimed at deciphering the steps involved in the gain of responsiveness of the toluene-activated prokaryotic regulator XylR to the xenobiotic chemical 2,4 dinitrotoluene (DNT). A mutant library of the A domain of XylR was screened in vivo for those variants activated by DNT through coupling the cognate promoter Pu to the P. putida yeast URA3 homologue, pyrF. All DNT-responsive clones maintained their sensitivity to ordinary effectors of XylR and broadened the range of inducers to unrelated aromatics. Yet, none of the altered amino acids lay in the recognizable effector binding pocket of the polypeptide. Instead, mutations appeared in protein surfaces believed to engage in the conformational shifts that follow effector binding and modulate signal transmission between XylR domains. It thus seems that transcriptional factors are likely to regress into functionally multipotent forms (i.e. stem protein types) as a first step towards the divergence of a new specificity.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
19
|
Cserháti T, Forgács E. Effect of pH and Salts on the Binding of Ring‐Substituted Phenol Derivatives to the Corn Protein Zein, Studied by Thin‐Layer Chromatography. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120023248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tibor Cserháti
- a Institute of Chemistry, Chemical Research Centre , Hungarian Academy of Sciences , P.O. Box 17, 1525 , Budapest , Hungary
| | - Esther Forgács
- a Institute of Chemistry, Chemical Research Centre , Hungarian Academy of Sciences , P.O. Box 17, 1525 , Budapest , Hungary
| |
Collapse
|
20
|
Herrera MC, Ramos JL. Catabolism of phenylalanine by Pseudomonas putida: the NtrC-family PhhR regulator binds to two sites upstream from the phhA gene and stimulates transcription with sigma70. J Mol Biol 2006; 366:1374-86. [PMID: 17217960 DOI: 10.1016/j.jmb.2006.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/22/2006] [Accepted: 12/01/2006] [Indexed: 11/24/2022]
Abstract
Pseudomonas putida uses L-phenylalanine as the sole nitrogen source for growth by converting L-phenylalanine to L-tyrosine, which acts as a donor of the amino group. This metabolic step requires the products of the phhA and phhB genes, which form an operon. Expression of the phhA promoter is mediated by the phhR gene product in the presence of L-phenylalanine or L-tyrosine. The PhhR protein belongs to the NtrC family of enhancers. In contrast with most members of this family of regulators, transcription from the promoter of the phhAB operon (P(phhA)) is mediated by RNA polymerase with sigma(70) rather than with sigma(54). The PhhR regulator binds two similar but non-identical upstream PhhR motifs (5'-TGTAAAATTATCGTTACG-3' and 5'-ACAAAAACTGTGTTTCCG-3') that are located 39 and 97 nucleotides upstream of the proposed -35 hexamer for RNA polymerase, respectively. These motifs are called PhhR proximal and PhhR distal binding motifs because of their position with respect to the RNA polymerase binding site. Affinity of PhhR for its target sequences was determined by isothermal titration calorimetry and was found to be around 30 nM for the proximal site and 2 microM for the distal site, and the binding stoichiometry is of a dimer per binding site. Both target sequences are sine qua non requirements for transcription, since inactivation of either of them resulted in no transcription from the phhA promoter. An IHF binding site overlaps the proximal PhhR proximal motif, which is recognized by IHF with a K(D) of around 1.2 microM. IHF may consequently compete with PhhR for binding and indeed inhibits PhhR-dependent phhAB operon expression.
Collapse
Affiliation(s)
- M Carmen Herrera
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, 18008-Granada, Spain
| | | |
Collapse
|
21
|
Mohn WW, Garmendia J, Galvao TC, de Lorenzo V. Surveying biotransformations with a la carte genetic traps: translating dehydrochlorination of lindane (gamma-hexachlorocyclohexane) into lacZ-based phenotypes. Environ Microbiol 2006; 8:546-55. [PMID: 16478460 DOI: 10.1111/j.1462-2920.2006.00983.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of the product of a desired reaction to activate a bacterial transcriptional regulator was exploited to develop genetic traps that render the catalytic activity born by a DNA clone into a selectable/scorable phenotype. We established this strategy with a system to expose the activity of dehydrochlorinases acting upon gamma-hexachlorocyclohexane (gamma-HCH or lindane). To this end, the effector-binding protein, XylR, was evolved by gene shuffling plus mutagenic polymerase chain reaction to be optimally responsive to the major product of gamma-HCH dehydrochlorination, 1,2,4-trichlorobenzene (TCB). We then derived Escherichia coli strains that constitutively expressed the modified XylR variant (named XylR5) and had lacZ under control of the Pu promoter, which is activated by XylR. A robotic beta-galactosidase assay indicated that when the resulting strain was transformed with a linA+ clone (expressing a gamma-HCH dehydrochlorinase from Sphingomonas paucimobilis UT26), it had levels of beta-galactosidase that were dependent on the gamma-HCH concentration. This à la carte host thus translated the conversion of gamma-HCH to TCB into upregulation of lacZ. An alternate host additionally expressing LacY grew efficiently on lactose only when LacZ was upregulated in a fashion dependent on TCB or other effectors of XylR5. These results demonstrated the power of deriving a host for the genetic scrutiny, rather than enzymatic screening, of clones expressing a given catabolic enzyme.
Collapse
Affiliation(s)
- William W Mohn
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd., Vancouver, BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
22
|
Galvão TC, de Lorenzo V. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 2006; 17:34-42. [PMID: 16359854 DOI: 10.1016/j.copbio.2005.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 11/27/2022]
Abstract
For many regulators of bacterial biodegradation pathways, small molecule/effector binding is the signal for triggering transcriptional activation. Thus, regulation results from a cross-talk between chemicals sensed by transcriptional factors and operon expression status. These features can be utilised in the construction of biosensors for a wide range of target compounds as, in principle, any regulatory protein whose activity is modulated by binding to a small molecule can have its effector/inducer profile artificially altered. The cognate specificities of a number of regulatory proteins have been modified as an astute approach to developing, among others, bacterial biosensors for environmentally relevant compounds.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid 28049, Spain.
| | | |
Collapse
|
23
|
van Sint Fiet S, van Beilen JB, Witholt B. Selection of biocatalysts for chemical synthesis. Proc Natl Acad Sci U S A 2006; 103:1693-8. [PMID: 16446453 PMCID: PMC1413619 DOI: 10.1073/pnas.0504733102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether microbial chemosensors can be used to find new or better biocatalysts, we constructed Escherichia coli hosts that recognize the product of a biocatalytic conversion through the transcriptional activator NahR and respond by expression of a lacZ or tetA reporter gene. Equipped with a benzaldehyde dehydrogenase (XylC from Pseudomonas putida), the lacZ-based host responded to the oxidation of benzaldehyde and 2-hydroxybenzaldehyde to the corresponding benzoic acids by forming blue colonies, whereas XylC- cells did not. Similarly, the tetA-based host was able to grow under selective conditions only when equipped with XylC, enabling selection of biocatalytically active cells in inactive populations at frequencies as low as 10(-6).
Collapse
Affiliation(s)
- Stephan van Sint Fiet
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Jan B. van Beilen
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Bernard Witholt
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Abstract
Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to "evolve" in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | |
Collapse
|
25
|
Kim MN, Park HH, Lim WK, Shin HJ. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Methods 2005; 60:235-45. [PMID: 15590098 DOI: 10.1016/j.mimet.2004.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 08/31/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
The XylR regulatory protein is a transcription factor involved in the BTEX (benzene, toluene, ethylbenzene, and xylene) degradation pathway in Pseudomonas species. When XylR-dependent stimulation of transcription from a plasmid containing XylR and its cognate promoters Pr and Pu was monitored as firefly luciferase activities in Escherichia coli, a notably high level of basal activity was observed in the absence of inducers. To improve the response specificity of XylR in this system, two related but different promoters were tested for their activities; the XylS activator promoter Ps and the DmpR activator promoter Po. Po with the deletion of its own upstream activating sequences (UASs; Po') showed a very low level of basal activity compared to Pu and Ps. The maximum level with the addition of inducers was increased 3151-fold by o-xylene with Po', while it was 31.5 and 74.1 fold by m-xylene with Pu and Ps, respectively. Gel mobility shift assay showed that the purified XylR without inducers can bind to Pr/Pu but not to Pr/Po', implying that XylR multimerization with Pr/Pu could be formed for initiation of transcription in this system. The data suggest that Po' can be an excellent alternative in constructing a signal-intensified, whole-cell biosensor in response to the xenobiotics.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
26
|
Abstract
The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.
Collapse
Affiliation(s)
- Amy Cheng Vollmer
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | | |
Collapse
|
27
|
Abstract
Engineering bacteria for measuring chemicals of environmental or toxicological concern (bioreporter bacteria) has grown slowly into a mature research area. Despite many potential advantages, current bioreporters do not perform well enough to comply with environmental detection standards. Basically, the reasons for this are the lack of engineering principles in the detection chain in the bioreporters. Here, we dissect critical steps in the detection chain and illustrate how bioreporter design could be improved by mutagenizing specificity and selectivity of the sensing and regulatory proteins, by newer expression strategies and application of different signalling networks. Furthermore, we describe how redesigning bioreporter assays with respect to pollutant transport into the cells and application of other detection devices can decrease detection limits and increase the speed of detection.
Collapse
Affiliation(s)
- Jan Roelof van der Meer
- Department of Fundamental Microbiology, Bâtiment de Biologie, University of Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
28
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
29
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
30
|
Cserháti T, Forgács E, Deyl Z, Miksik I, Echardt A. Binding of low molecular mass compounds to proteins studied by liquid chromatographic techniques. Biomed Chromatogr 2003; 17:353-60. [PMID: 13680844 DOI: 10.1002/bmc.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The newest achievements in the application of miscellaneous liquid chromatographic techniques such as size-exclusion, ion-exchange and reversed-phase high-performance liquid chromatography, and thin-layer chromatography for the elucidation of the various aspects of the binding of ligands to proteins are compiled and briefly discussed. Examples of employment in pharmaceutical and clinical chemistry, drug design, enzyme kinetic studies and environmental protection are presented.
Collapse
Affiliation(s)
- Tibor Cserháti
- Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, PO Box 17, 1525 Budapest, Hungary
| | | | | | | | | |
Collapse
|
31
|
Stafford GP, Scanlan J, McDonald IR, Murrell JC. rpoN, mmoR and mmoG, genes involved in regulating the expression of soluble methane monooxygenase in Methylosinus trichosporium OB3b. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1771-1784. [PMID: 12855729 DOI: 10.1099/mic.0.26060-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The methanotrophic bacterium Methylosinus trichosporium OB3b converts methane to methanol using two distinct forms of methane monooxygenase (MMO) enzyme: a cytoplasmic soluble form (sMMO) and a membrane-bound form (pMMO). The transcription of these two operons is known to proceed in a reciprocal fashion with sMMO expressed at low copper-to-biomass ratios and pMMO at high copper-to-biomass ratios. Transcription of the smmo operon is initiated from a sigma(N) promoter 5' of mmoX. In this study the genes encoding sigma(N) (rpoN) and a typical sigma(N)-dependent transcriptional activator (mmoR) were cloned and sequenced. mmoR, a regulatory gene, and mmoG, a gene encoding a GroEL homologue, lie 5' of the structural genes for the sMMO enzyme. Subsequent mutation of rpoN and mmoR by marker-exchange mutagenesis resulted in strains Gm1 and JS1, which were unable to express functional sMMO or initiate transcription of mmoX. An rpoN mutant was also unable to fix nitrogen or use nitrate as sole nitrogen source, indicating that sigma(N) plays a role in both nitrogen and carbon metabolism in Ms. trichosporium OB3b. The data also indicate that mmoG is transcribed in a sigma(N)- and MmoR-independent manner. Marker-exchange mutagenesis of mmoG revealed that MmoG is necessary for smmo gene transcription and activity and may be an MmoR-specific chaperone required for functional assembly of transcriptionally competent MmoR in vivo. The data presented allow the proposal of a more complete model for copper-mediated regulation of smmo gene expression.
Collapse
Affiliation(s)
- Graham P Stafford
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Julie Scanlan
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ian R McDonald
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - J Colin Murrell
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
32
|
Abstract
There is a continuing need for monitoring the health of the environment due to the presence of pollutants. Here, we review the development and attributes of biosensors by which bacteria have been genetically modified to express the luminescence genes, i.e. to glow, in a quantified manner, in response to pollutants. We have concentrated on the detection of organic hydrocarbon pollutants and discussed the molecular mechanisms by which some of these chemicals act as effector molecules on the respective regulatory systems. The future of environmental biosensors is predictably bright. As more knowledge is gathered on the sensing regulatory component, the possibility of developing targeted or pollutant-specific biosensors is promising. Moreover, the repertoire of biosensors for culprit organic pollutants is expected to be enlarged through advances in genomics technology and identification of new sensory or receptor molecules. The need for pollutant detection at concentrations in the parts per trillion range or biosensors configured in a nanoscale is anticipated.
Collapse
Affiliation(s)
- Angela Keane
- Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
33
|
Sze CC, Bernardo LMD, Shingler V. Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: a common phenotype by different mechanisms. J Bacteriol 2002; 184:760-70. [PMID: 11790746 PMCID: PMC139538 DOI: 10.1128/jb.184.3.760-770.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related sigma(54)-dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding sigma(54) RNA polymerase, the integration host factor, and the regulator. These common properties allow cross-regulation of Pu and Po by DmpR and XylR in response to appropriate aromatic effectors. In vivo, transcription of both the DmpR/Po and XylR/Pu regulatory circuits is subject to dominant global regulation, which results in repression of transcription during growth in rich media. Here, we comparatively assess the contribution of (p)ppGpp, the FtsH protease, and a component of an alternative phosphoenolpyruvate-sugar phosphotransferase system, which have been independently implicated in mediating this level of regulation. Further, by exploiting the cross-regulatory abilities of these two circuits, we identify the target component(s) that are intercepted in each case. The results show that (i) contrary to previous speculation, FtsH is not universally required for transcription of sigma(54)-dependent systems; (ii) the two factors found to impact the XylR/Pu regulatory circuit do not intercept the DmpR/Po circuit; and (iii) (p)ppGpp impacts the DmpR/Po system to a greater extent than the XylR/Pu system in both the native Pseudomonas putida and a heterologous Escherichia coli host. The data demonstrate that, despite the similarities of the specific regulatory circuits, the host global regulatory network latches onto and dominates over these specific circuits by exploiting their different properties. The mechanistic implications of how each of the host factors exerts its action are discussed.
Collapse
Affiliation(s)
- Chun Chau Sze
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|
34
|
Devos D, Garmendia J, de Lorenzo V, Valencia A. Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environ Microbiol 2002; 4:29-41. [PMID: 11966823 DOI: 10.1046/j.1462-2920.2002.00265.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prokaryotic enhancer-binding protein XylR is the central regulator of the toluene degradation pathway in Pseudomonas species. Copious genetic and biochemical data indicate that the N-terminal domain of the protein (domain A) interacts directly with m-xylene, which renders the protein competent as a transcriptional activator. Single-site and shuffling mutants of XylR or homologues have been reported to change or expand their effector profiles. Here, we follow a fold recognition approach to generate three-dimensional models of the domain A of XylR and DmpR with the purpose of deciphering the molecular activity of this protein family. The model is based on the crystallographic data of the rat catechol O-methyltransferase, a typical alpha/beta fold, consisting of eight alpha-helices and seven beta-strands. The fold identification is supported by physico-chemical properties of conserved amino acids, distribution of residues characteristic of the sequence families and confrontation with experimental data. The model not only provides a rationale for understanding published experimental data, but also suggests the molecular mechanism of the activation step and is a potentially useful conceptual tool for designing regulators with predefined inducer specificities.
Collapse
Affiliation(s)
- D Devos
- Protein Design Group, National Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | | | | | | |
Collapse
|
35
|
Garmendia J, Devos D, Valencia A, de Lorenzo V. A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 2001; 42:47-59. [PMID: 11679066 DOI: 10.1046/j.1365-2958.2001.02633.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the activation mechanism of the enhancer-binding protein XylR encoded by the TOL plasmid of Pseudomonas putida mt-2, a combinatorial library was generated composed of shuffled N-terminal A domains of the homologous regulators DmpR, XylR and TbuT, reassembled within the XylR structure. When the library was screened in vivo for responsiveness to non-effectors bulkier than one aromatic ring (such as biphenyl) or bearing an entirely different distribution of electronegative groups (e.g. nitrotoluenes), protein variants were found that displayed an expanded inducer range including the new effectors. Although the phenotypes endowed with the corresponding changes were largely similar, the modifications involved different sites within the A domain. The positions of the mutations within a structural model of the A domain suggest that expansion of the inducer profile can be brought about not only by changes in the effector pocket of the protein but also by unlocking steps of the signal transmission mechanism that follows effector binding. These results provide a rationale for evolving in vitro regulators à la carte that are responsive to predetermined, natural or xenobiotic chemical species.
Collapse
Affiliation(s)
- J Garmendia
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
36
|
Arenghi FL, Barbieri P, Bertoni G, de Lorenzo V. New insights into the activation of o-xylene biodegradation in Pseudomonas stutzeri OX1 by pathway substrates. EMBO Rep 2001; 2:409-14. [PMID: 11375933 PMCID: PMC1083886 DOI: 10.1093/embo-reports/kve092] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The regulation of the tou operon of Pseudomonas stutzeri OX1, for degradation of toluene and o-xylene via phenolic intermediates, has been faithfully reconstructed in vitro with purified proteins. The set-up included the prokaryotic enhancer-binding protein TouR, the sigma54-dependent PToMO promoter and the sigma54-containing RNA polymerase. With this system we prove that direct binding of 2-methylphenol (o-cresol) to TouR is the only regulatory step for activation of PToMO in response to aromatic effectors, thereby ruling out the involvement of other factors or a need for protein processing. In addition, we found that while TouR failed entirely to activate PToMO in the absence of inducers, the protein had per se a very significant ATPase activity, which was only moderately increased by o-cresol addition. The results presented here support the view that TouR-like proteins are particularly suitable as evolutionary assets to endow recently evolved pathways for the degradation of environmental pollutants with an optimal degree of transcriptional regulation.
Collapse
Affiliation(s)
- F L Arenghi
- Dipartimento di Genetica e Biologia dei Microrganismi, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | |
Collapse
|
37
|
Anantharaman V, Koonin EV, Aravind L. Regulatory potential, phyletic distribution and evolution of ancient, intracellular small-molecule-binding domains. J Mol Biol 2001; 307:1271-92. [PMID: 11292341 DOI: 10.1006/jmbi.2001.4508] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central cellular functions such as metabolism, solute transport and signal transduction are regulated, in part, via binding of small molecules by specialized domains. Using sensitive methods for sequence profile analysis and protein structure comparison, we exhaustively surveyed the protein sets from completely sequenced genomes for all occurrences of 21 intracellular small-molecule-binding domains (SMBDs) that are represented in at least two of the three major divisions of life (bacteria, archaea and eukaryotes). These included previously characterized domains such as PAS, GAF, ACT and ferredoxins, as well as three newly predicted SMBDs, namely the 4-vinyl reductase (4VR) domain, the NIFX domain and the 3-histidines (3H) domain. Although there are only a limited number of different superfamilies of these ancient SMBDs, they are present in numerous distinct proteins combined with various enzymatic, transport and signal-transducing domains. Most of the SMBDs show considerable evolutionary mobility and are involved in the generation of many lineage-specific domain architectures. Frequent re-invention of analogous architectures involving functionally related, but not homologous, domains was detected, such as, fusion of different SMBDs to several types of DNA-binding domains to form diverse transcription regulators in prokaryotes and eukaryotes. This is suggestive of similar selective forces affecting the diverse SMBDs and resulting in the formation of multidomain proteins that fit a limited number of functional stereotypes. Using the "guilt by association approach", the identification of SMBDs allowed prediction of functions and mode of regulation for a variety of previously uncharacterized proteins.
Collapse
Affiliation(s)
- V Anantharaman
- National Center for Biotechnology Information National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | | | | |
Collapse
|
38
|
O’Neill E, Wikström P, Shingler V. An active role for a structured B-linker in effector control of the sigma54-dependent regulator DmpR. EMBO J 2001; 20:819-27. [PMID: 11179226 PMCID: PMC145425 DOI: 10.1093/emboj/20.4.819] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The activities of many prokaryotic sigma54-dependent transcriptional activators are controlled by the N-terminal A-domain of the protein, which is linked to the central transcriptional activation domain via a short B-linker. It used to be thought that these B-linkers simply serve as flexible tethers. Here we show that the B-linker of the aromatic-responsive regulator DmpR and many other regulators of the family contain signature heptad repeats with regularly spaced hydrophobic amino acids. Mutant analysis of this region of DmpR demonstrates that B-linker function is dependent on the heptad repeats and is critical for activation of the protein by aromatic effectors. The phenotypes of DmpR mutants refute the existing model that the level of ATPase activity directly controls the level of transcription it promotes. The mutant analysis also shows that the B-linker is involved in repression of ATPase activity and that allosteric changes upon effector binding are transduced to alleviate both B-linker repression of ATP hydrolysis and A-domain repression of transcriptional activation. The mechanistic implications of these findings for DmpR and other family members are discussed.
Collapse
Affiliation(s)
| | | | - Victoria Shingler
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
Corresponding author e-mail:
| |
Collapse
|
39
|
Sarand I, Skärfstad E, Forsman M, Romantschuk M, Shingler V. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils. Appl Environ Microbiol 2001; 67:162-71. [PMID: 11133441 PMCID: PMC92538 DOI: 10.1128/aem.67.1.162-171.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2000] [Accepted: 10/17/2000] [Indexed: 11/20/2022] Open
Abstract
Pathway substrates and some structural analogues directly activate the regulatory protein DmpR to promote transcription of the dmp operon genes encoding the (methyl)phenol degradative pathway of Pseudomonas sp. strain CF600. While a wide range of phenols can activate DmpR, the location and nature of substituents on the basic phenolic ring can limit the level of activation and thus utilization of some compounds as assessed by growth on plates. Here we address the role of the aromatic effector response of DmpR in determining degradative properties in two soil matrices that provide different nutritional conditions. Using the wild-type system and an isogenic counterpart containing a DmpR mutant with enhanced ability to respond to para-substituted phenols, we demonstrate (i) that the enhanced in vitro biodegradative capacity of the regulator mutant strain is manifested in the two different soil types and (ii) that exposure of the wild-type strain to 4-methylphenol-contaminated soil led to rapid selection of a subpopulation exhibiting enhanced capacities to degrade the compound. Genetic and functional analyses of 10 of these derivatives demonstrated that all harbored a single mutation in the sensory domain of DmpR that mediated the phenotype in each case. These findings establish a dominating role for the aromatic effector response of DmpR in determining degradation properties. Moreover, the results indicate that the ability to rapidly adapt regulator properties to different profiles of polluting compounds may underlie the evolutionary success of DmpR-like regulators in controlling aromatic catabolic pathways.
Collapse
Affiliation(s)
- I Sarand
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
40
|
Abstract
Unraveling the complex transcriptional regulation of bacterial catabolism of aromatic pollutants is a prerequisite for engineering efficient biological systems for many biotechnological applications. A first level of regulation relies on specific regulator-promoter pairs. There have been new insights into the molecular mechanisms that regulatory proteins use to sense a given signal and to activate transcription initiation from the cognate promoters. A second level of regulation allows adjustment of the expression of the particular catabolic operons in response to the global environmental conditions of the cells, and recent findings provide some clues about the mechanisms underlying such complex regulatory checkpoints.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006, Madrid, Spain.
| | | |
Collapse
|