1
|
Bazurto JV, Dearth SP, Tague ED, Campagna SR, Downs DM. Untargeted metabolomics confirms and extends the understanding of the impact of aminoimidazole carboxamide ribotide (AICAR) in the metabolic network of Salmonella enterica. MICROBIAL CELL 2017; 5:74-87. [PMID: 29417056 PMCID: PMC5798407 DOI: 10.15698/mic2018.02.613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Salmonella enterica, aminoimidazole carboxamide ribotide (AICAR) is a purine biosynthetic intermediate and a substrate of the AICAR transformylase/IMP cyclohydrolase (PurH) enzyme. When purH is eliminated in an otherwise wild-type strain, AICAR accumulates and indirectly inhibits synthesis of the essential coenzyme thiamine pyrophosphate (TPP). In this study, untargeted metabolomics approaches were used to i) corroborate previously defined metabolite changes, ii) define the global consequences of AICAR accumulation and iii) investigate the metabolic effects of mutations that restore thiamine prototrophy to a purH mutant. The data showed that AICAR accumulation led to an increase in the global regulator cyclic AMP (cAMP) and that disrupting central carbon metabolism could decrease AICAR and/or cAMP to restore thiamine synthesis. A mutant (icc) blocked in cAMP degradation that accumulated cAMP but had wild-type levels of AICAR was used to identify changes in the purH metabolome that were a direct result of elevated cAMP. Data herein describe the use of metabolomics to identify the metabolic state of mutant strains and probe the underlying mechanisms used by AICAR to inhibit thiamine synthesis. The results obtained provide a cautionary tale of using metabolite concentrations as the only data to define the physiological state of a bacterial cell.
Collapse
Affiliation(s)
| | - Stephen P Dearth
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Eric D Tague
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
2
|
Suh SJ, Shuman J, Carroll LP, Silo-Suh L. BEEP: An assay to detect bio-energetic and envelope permeability alterations in Pseudomonas aeruginosa. J Microbiol Methods 2016; 125:81-6. [PMID: 27089860 DOI: 10.1016/j.mimet.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
We developed an effective and rapid assay to detect both bio-energetic and envelope permeability (BEEP) alterations of Pseudomonas aeruginosa. The assay is based on quantification of extracellular ATP in bacterial cultures using luciferase as a reporter. To demonstrate the validity of our assay we conducted a biased screen of a transposon insertion library in P. aeruginosa strain PAO1 in order to expedite the isolation of mutants with defects in bioenergetic pathways. We successfully isolated insertion mutants that were reduced for extracellular ATP accumulation and identified the corresponding mutations that caused the phenotype. Most of the genes identified from this analysis were associated with energy metabolism and several appeared to be potentially novel bioenergetic targets. In addition, we show that treatment of P. aeruginosa strain PAO1 with antibiotics that disrupt the bacterial cell envelope leads to greater extracellular ATP accumulation. In summary, increases in extracellular ATP accumulation above wild type levels indicated a perturbation of membrane permeability while decreases in extracellular ATP accumulation indicated defects in bioenergetics.
Collapse
Affiliation(s)
- Sang-Jin Suh
- Department of Biological Sciences, Auburn University, AL 36849, United States.
| | - Jon Shuman
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| | - Laura Silo-Suh
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, United States.
| |
Collapse
|
3
|
Mukaihara T, Hatanaka T, Nakano M, Oda K. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity. mBio 2016; 7:e00359-16. [PMID: 27073091 PMCID: PMC4959522 DOI: 10.1128/mbio.00359-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. IMPORTANCE Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation.
Collapse
Affiliation(s)
- Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| | - Tadashi Hatanaka
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| | - Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| |
Collapse
|
4
|
Clark IC, Youngblut M, Jacobsen G, Wetmore KM, Deutschbauer A, Lucas L, Coates JD. Genetic dissection of chlorate respiration in Pseudomonas stutzeri PDA reveals syntrophic (per)chlorate reduction. Environ Microbiol 2015; 18:3342-3354. [PMID: 26411776 DOI: 10.1111/1462-2920.13068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Genes important for growth of Pseudomonas stutzeri PDA on chlorate were identified using a randomly DNA bar-coded transposon mutant library. During chlorate reduction, mutations in genes encoding the chlorate reductase clrABC, predicted molybdopterin cofactor chaperon clrD, molybdopterin biosynthesis and two genes of unknown function (clrE, clrF) had fitness defects in pooled mutant assays (Bar-seq). Markerless in-frame deletions confirmed that clrA, clrB and clrC were essential for chlorate reduction, while clrD, clrE and clrF had less severe growth defects. Interestingly, the key detoxification gene cld was essential for chlorate reduction in isogenic pure culture experiments, but showed only minor fitness defects in Bar-seq experiments. We hypothesized this was enabled through chlorite dismutation by the community, as most strains in the Bar-seq library contained an intact cld. In support of this, Δcld grew with wild-type PDA or ΔclrA, and purified Cld also restored growth to the Δcld mutant. Expanding on this, wild-type PDA and a Δcld mutant of the perchlorate reducer Azospira suillum PS grew on perchlorate in co-culture, but not individually. These results demonstrate that co-occurrence of cld and a chloroxyanion reductase within a single organism is not necessary and raises the possibility of syntrophic (per)chlorate respiration in the environment.
Collapse
Affiliation(s)
- Iain C Clark
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matt Youngblut
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Gillian Jacobsen
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Kelly M Wetmore
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren Lucas
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - John D Coates
- Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Broderick JB, Duffus B, Duschene KS, Shepard EM. Radical S-adenosylmethionine enzymes. Chem Rev 2014; 114:4229-317. [PMID: 24476342 PMCID: PMC4002137 DOI: 10.1021/cr4004709] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Joan B. Broderick
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Benjamin
R. Duffus
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Kaitlin S. Duschene
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Eric M. Shepard
- Department of Chemistry and
Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
6
|
Oztetik E, Cakir A. New food for an old mouth: new enzyme for an ancient archaea. Enzyme Microb Technol 2013; 55:58-64. [PMID: 24411446 DOI: 10.1016/j.enzmictec.2013.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/05/2013] [Accepted: 12/07/2013] [Indexed: 01/12/2023]
Abstract
As a multifunctional group of enzymes, glutathione S-transferases (GSTs) are capable of inactivation, degradation or excretion of wide range of compounds catalytically or non-catalytically. However, to date, no study has been addresses the presence of GSTs in archaea based on their enzymatic functions. In this study, beside glutathione (GSH) amount measurement, the determination of GST activity in halophilic archaeon called Haloarcula hispanica ATCC 33960 were aimed. According to the results, specific activity was determined as 19.68 nmol min⁻¹ mg⁻¹ protein and GSH content were found to be as 194 μg g⁻¹ K(m) and V(max) values for CDNB and GSH calculated from Lineweaver-Burk plot were 0.46 mM and 27.93 nmol min⁻¹ mg⁻¹, 0.13 mM and 22.03 nmol min⁻¹ mg⁻¹, respectively. Hanes-Woolf and Eadie-Hofstee plots for CDNB and GSH were also found to be in co-relation with the results obtained from Lineweaver-Burk plot. To the best of our knowledge, GST enzymes have not been identified in archaea yet, at least based on their catalytic activities. Therefore, it is the first report on this area.
Collapse
Affiliation(s)
- Elif Oztetik
- Anadolu University, Science Faculty, Department of Biology, Eskisehir, Turkey.
| | - Ayse Cakir
- Anadolu University, Science Faculty, Department of Biology, Eskisehir, Turkey
| |
Collapse
|
7
|
Koenigsknecht MJ, Downs DM. Thiamine biosynthesis can be used to dissect metabolic integration. Trends Microbiol 2010; 18:240-7. [PMID: 20382023 PMCID: PMC2906612 DOI: 10.1016/j.tim.2010.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 02/19/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
The emergence of systems biology has re-emphasized the advantages of understanding biological processes with a global perspective. One biological process amenable to global approaches is microbial metabolism. This review describes a model system that contributes to the goals of systems biology by experimentally defining metabolic integration found in a bacterial cell and thus providing data needed for implementation and interpretation of systems approaches. We have taken a largely unbiased in vivo approach centered on thiamine biosynthesis to identify new metabolic components and connections, and to explore uncharacterized paradigms of the integration between them. This article summarizes recent results from this approach that include the identification of the function of unknown genes, connections between cofactors biosynthesis and thiamine biosynthesis, and how metabolites from one biosynthetic pathway can be used in thiamine biosynthesis.
Collapse
Affiliation(s)
| | - Diana M. Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
8
|
Isolation and characterization of Xenorhabdus nematophila transposon insertion mutants defective in lipase activity against Tween. J Bacteriol 2009; 191:5325-31. [PMID: 19542289 DOI: 10.1128/jb.00173-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified Xenorhabdus nematophila transposon mutants with defects in lipase activity. One of the mutations, in yigL, a conserved gene of unknown function, resulted in attenuated virulence against Manduca sexta insects. We discuss possible connections between lipase production, YigL, and specific metabolic pathways.
Collapse
|
9
|
Thorgersen MP, Downs DM. Oxidative stress and disruption of labile iron generate specific auxotrophic requirements in Salmonella enterica. MICROBIOLOGY-SGM 2009; 155:295-304. [PMID: 19118370 DOI: 10.1099/mic.0.020727-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The response of a cell to integrated stresses was investigated using environmental and/or genetic perturbations that disrupted labile iron homeostasis and increased oxidative stress. The effects of the perturbations were monitored as nutritional requirements, and were traced to specific enzymic targets. A yggX gshA cyaY mutant strain required exogenous thiamine and methionine for growth. The thiamine requirement, which had previously been linked to the Fe-S cluster proteins ThiH and ThiC, was responsive to oxidative stress and was not directly affected by manipulation of the iron pool. The methionine requirement was associated with the activity of sulfite reductase, an enzyme that appeared responsive to disruption of labile iron homeostasis. The results are incorporated in a model to suggest how the activity of iron-containing enzymes not directly sensitive to oxygen can be decreased by oxidation of the labile iron pool.
Collapse
Affiliation(s)
- Michael P Thorgersen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Involvement of the Cra global regulatory protein in the expression of the iscRSUA operon, revealed during studies of tricarballylate catabolism in Salmonella enterica. J Bacteriol 2009; 191:2069-76. [PMID: 19136587 DOI: 10.1128/jb.01577-08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica, tricarballylate (Tcb) catabolism requires function of TcuB, a membrane-bound protein that contains [4Fe-4S] clusters and heme. TcuB transfers electrons from reduced flavin adenine dinucleotide in the Tcb dehydrogenase (TcuA) to electron acceptors in the membrane. We recently showed that functions needed to assemble [Fe-S] clusters (i.e., the iscRSUA-hscBA-fdx operon) compensate for the lack of ApbC during growth of an apbC strain on Tcb. ApbC had been linked to [Fe-S] cluster metabolism, and we showed that an apbC strain had decreased TcuB activity. Here we report findings that expand our understanding of the regulation of expression of the iscRSUA genes in Salmonella enterica. We investigated why low levels of glucose or other saccharides restored growth of an apbC strain on Tcb. Here we report the following findings. (i) A < or =1 mM concentration of glucose, fructose, ribose, or glycerol restores growth of an apbC strain on Tcb. (ii) The saccharide effect results in increased levels of TcuB activity. (iii) The saccharide effect depends on the global regulatory protein Cra. (iv) Putative Cra binding sites are present in the regulatory region of the iscRSUA operon. (v) Cra protein binds to all three sites in the iscRSUA promoter region in a concentration-dependent fashion. To our knowledge, this is the first report of the involvement of Cra in [Fe-S] cluster assembly.
Collapse
|
11
|
Boyd JM, Sondelski JL, Downs DM. Bacterial ApbC protein has two biochemical activities that are required for in vivo function. J Biol Chem 2009; 284:110-118. [PMID: 19001370 PMCID: PMC2610507 DOI: 10.1074/jbc.m807003200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/16/2008] [Indexed: 11/06/2022] Open
Abstract
The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195-8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of "deviant" Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function.
Collapse
Affiliation(s)
- Jeffrey M Boyd
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie L Sondelski
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
12
|
Analysis of yggX and gshA mutants provides insights into the labile iron pool in Salmonella enterica. J Bacteriol 2008; 190:7608-13. [PMID: 18835989 DOI: 10.1128/jb.00639-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strains of Salmonella enterica lacking YggX and the cellular reductant glutathione exhibit defects similar to those resulting from iron deficiency and oxidative stress. Mutant strains are sensitive to hydrogen peroxide and superoxide, deregulate the expression of the Fur-regulated gene entB, and fail to grow on succinate medium. Suppression of some yggX gshA mutant phenotypes by the cell-permeable iron chelator deferoxamine allowed the conclusion that increased levels of cellular Fenton chemistry played a role in the growth defects. The data presented are consistent with a scenario in which glutathione acts as a physiological chelator of the labile iron pool and in which YggX acts upstream of the labile iron pool by preventing superoxide toxicity.
Collapse
|
13
|
Abstract
Glutathione (GSH) and its derivative phytochelatin are important binding factors in transition-metal homeostasis in many eukaryotes. Here, we demonstrate that GSH is also involved in chromate, Zn(II), Cd(II), and Cu(II) homeostasis and resistance in Escherichia coli. While the loss of the ability to synthesize GSH influenced metal tolerance in wild-type cells only slightly, GSH was important for residual metal resistance in cells without metal efflux systems. In mutant cells without the P-type ATPase ZntA, the additional deletion of the GSH biosynthesis system led to a strong decrease in resistance to Cd(II) and Zn(II). Likewise, in mutant cells without the P-type ATPase CopA, the removal of GSH led to a strong decrease of Cu(II) resistance. The precursor of GSH, gamma-glutamylcysteine (gammaEC), was not able to compensate for a lack of GSH. On the contrary, gammaEC-containing cells were less copper and cadmium tolerant than cells that contained neither gammaEC nor GSH. Thus, GSH may play an important role in trace-element metabolism not only in higher organisms but also in bacteria.
Collapse
|
14
|
Abstract
Metabolism encompasses the biochemical basis of life and as such spans all biological disciplines. Many decades of basic research, primarily in microbes, have resulted in extensive characterization of metabolic components and regulatory paradigms. With this basic knowledge in hand and the technologies currently available, it has become feasible to move toward an understanding of microbial metabolism as a system rather than as a collection of component parts. Insight into the system will be generated by continued efforts to rigorously define metabolic components combined with renewed efforts to discover components and connections using in vivo-driven approaches. On the tail of a detailed understanding of components and connections that comprise metabolism will come the ability to generate a comprehensive mathematical model that describes the system. While microbes provide the logical organism for this work, the value of such a model would span biological disciplines. Described herein are approaches that can provide insight into metabolism and caveats of their use. The goal of this review is to emphasize that in silico, in vitro, and in vivo approaches must be used in combination to achieve a full understanding of microbial metabolism.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
15
|
Vencato M, Tian F, Alfano JR, Buell CR, Cartinhour S, DeClerck GA, Guttman DS, Stavrinides J, Joardar V, Lindeberg M, Bronstein PA, Mansfield JW, Myers CR, Collmer A, Schneider DJ. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1193-206. [PMID: 17073302 DOI: 10.1094/mpmi-19-1193] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.
Collapse
Affiliation(s)
- Monica Vencato
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dougherty MJ, Downs DM. A connection between iron-sulfur cluster metabolism and the biosynthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica. MICROBIOLOGY-SGM 2006; 152:2345-2353. [PMID: 16849799 DOI: 10.1099/mic.0.28926-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Several cellular pathways have been identified which affect the efficiency of thiamine biosynthesis in Salmonella enterica. Mutants defective in iron-sulfur (Fe-S) cluster metabolism are less efficient at synthesis of the pyrimidine moiety of thiamine. These mutants are compromised for the conversion of aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), not the synthesis of AIR. The gene product ThiC contains potential ligands for an Fe-S cluster that are required for function in vivo. The conversion of AIR to HMP-P is sensitive to oxidative stress, and variants of ThiC have been identified that have increased sensitivity to oxidative growth conditions. The data are consistent with ThiC or an as-yet-unidentified protein involved in HMP-P synthesis containing an Fe-S cluster required for its physiological function.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| |
Collapse
|
17
|
Vivas E, Skovran E, Downs DM. Salmonella enterica strains lacking the frataxin homolog CyaY show defects in Fe-S cluster metabolism in vivo. J Bacteriol 2006; 188:1175-9. [PMID: 16428423 PMCID: PMC1347345 DOI: 10.1128/jb.188.3.1175-1179.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 11/11/2005] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica, the isc operon contains genes necessary for the synthesis of Fe-S clusters and strains lacking this operon have severe defects in a variety of cellular processes. Other cellular loci that impact Fe-S cluster synthesis to a lesser extent have been described. The cyaY locus encodes a frataxin homolog, and it is shown here that lesions in this locus affect Fe-S cluster metabolism. When present in combination with other lesions, mutations in cyaY can result in a strain with more severe defects than those lacking the isc locus.
Collapse
Affiliation(s)
- E Vivas
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706-1502, USA
| | | | | |
Collapse
|
18
|
Pittman MS, Robinson HC, Poole RK. A Bacterial Glutathione Transporter (Escherichia coli CydDC) Exports Reductant to the Periplasm. J Biol Chem 2005; 280:32254-61. [PMID: 16040611 DOI: 10.1074/jbc.m503075200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione (GSH), a major biological antioxidant, maintains redox balance in prokaryotes and eukaryotic cells and forms exportable conjugates with compounds of pharmacological and agronomic importance. However, no GSH transporter has been characterized in a prokaryote. We show here that a heterodimeric ATP-binding cassette-type transporter, CydDC, mediates GSH transport across the Escherichia coli cytoplasmic membrane. In everted membrane vesicles, GSH is imported via an ATP-driven, protonophore-insensitive, orthovanadate-sensitive mechanism, equating with export to the periplasm in intact cells. GSH transport and cytochrome bd quinol oxidase assembly are abolished in the cydD1 mutant. Glutathione disulfide (GSSG) was not transported in either Cyd(+) or Cyd(-) strains. Exogenous GSH restores defective swarming motility and benzylpenicillin sensitivity in a cydD mutant and also benzylpenicillin sensitivity in a gshA mutant defective in GSH synthesis. Overexpression of the cydDC operon in dsbD mutants defective in disulfide bond formation restores dithiothreitol tolerance and periplasmic cytochrome b assembly, revealing redundant pathways for reductant export to the periplasm. These results identify the first prokaryotic GSH transporter and indicate a key role for GSH in periplasmic redox homeostasis.
Collapse
Affiliation(s)
- Marc S Pittman
- Department of Molecular Biology and Biotechnology, Firth Court, The University of Sheffield, UK
| | | | | |
Collapse
|
19
|
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
20
|
Skovran E, Lauhon CT, Downs DM. Lack of YggX results in chronic oxidative stress and uncovers subtle defects in Fe-S cluster metabolism in Salmonella enterica. J Bacteriol 2004; 186:7626-34. [PMID: 15516576 PMCID: PMC524902 DOI: 10.1128/jb.186.22.7626-7634.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As components involved in Fe-S cluster metabolism are described, the challenge becomes defining the integrated process that occurs in vivo based on the individual functions characterized in vitro. Strains lacking yggX have been used here to mimic chronic oxidative stress and uncover subtle defects in Fe-S cluster metabolism. We describe the in vivo similarities and differences between isc mutants, which have a known function in cluster assembly, and mutants disrupted in four additional loci, gshA, apbC, apbE, and rseC. The latter mutants share similarities with isc mutants: (i) a sensitivity to oxidative stress, (ii) a thiamine auxotrophy in the absence of the YggX protein, and (iii) decreased activities of Fe-S proteins, including aconitase, succinate dehydrogenase, and MiaB. However, they differ from isc mutants by displaying a phenotypic dependence on metals and a distinct defect in the SoxRS response to superoxides. Results presented herein support the proposed role of YggX in iron trafficking and protection against oxidative stress, describe additional phenotypes of isc mutants, and suggest a working model in which the ApbC, ApbE, and RseC proteins and glutathione participate in Fe-S cluster repair.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53726-4087, USA
| | | | | |
Collapse
|
21
|
Martinez-Gomez NC, Robers M, Downs DM. Mutational Analysis of ThiH, a Member of the Radical S-Adenosylmethionine (AdoMet) Protein Superfamily. J Biol Chem 2004; 279:40505-10. [PMID: 15271986 DOI: 10.1074/jbc.m403985200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.
Collapse
Affiliation(s)
- Norma C Martinez-Gomez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726-4087, USA
| | | | | |
Collapse
|
22
|
Dougherty MJ, Downs DM. A mutant allele of rpoD results in increased conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine in Salmonella enterica. J Bacteriol 2004; 186:4034-7. [PMID: 15175319 PMCID: PMC419934 DOI: 10.1128/jb.186.12.4034-4037.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An allele of rpoD (rpoD1181) that results in increased synthesis of the pyrimidine moiety of thiamine in Salmonella enterica was identified. The S508Y substitution caused by rpoD1181 is analogous to the S506F derivative of the Escherichia coli protein. The properties of this E. coli mutant protein have been well characterized in vitro. Identification of a metabolic phenotype caused by the rpoD1181 allele of S. enterica allows past in vitro results to be incorporated in continuing efforts to understand cellular processes that are integrated with the thiamine biosynthetic pathway.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
23
|
Leonardi R, Roach PL. Thiamine biosynthesis in Escherichia coli: in vitro reconstitution of the thiazole synthase activity. J Biol Chem 2004; 279:17054-62. [PMID: 14757766 DOI: 10.1074/jbc.m312714200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of thiamine in Escherichia coli requires the formation of an intermediate thiazole from tyrosine, 1-deoxy-d-xylulose-5-phosphate (Dxp), and cysteine using at least six structural proteins, ThiFSGH, IscS, and ThiI. We describe for the first time the reconstitution of thiazole synthase activity using cell-free extracts and proteins derived from adenosine-treated E. coli 83-1 cells. The addition of adenosine or adenine to growing cultures of Aerobacter aerogenes, Salmonella typhimurium, and E. coli has been shown previously to relieve the repression by thiamine of its own biosynthesis and increase the expression levels of the thiamine biosynthetic enzymes. By exploiting this effect, we show that the in vitro thiazole synthase activity of cleared lysates or desalted proteins from E. coli 83-1 cells is dependent upon the addition of purified ThiGH-His complex, tyrosine (but not cysteine or 1-deoxy-d-xylulose-5-phosphate), and an as yet unidentified intermediate present in the protein fraction from these cells. The activity is strongly stimulated by the addition of S-adenosylmethionine and NADPH.
Collapse
Affiliation(s)
- Roberta Leonardi
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | |
Collapse
|
24
|
Ramos I, Downs DM. Anthranilate synthase can generate sufficient phosphoribosyl amine for thiamine synthesis in Salmonella enterica. J Bacteriol 2003; 185:5125-32. [PMID: 12923085 PMCID: PMC180985 DOI: 10.1128/jb.185.17.5125-5132.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, the biosynthetic pathway for the hydroxymethyl pyrimidine moiety of thiamine shares metabolic intermediates with purine biosynthesis. The two pathways branch after the compound aminoimidazole ribotide. Past work has shown that the first common metabolite, phosphoribosyl amine (PRA), can be generated in the absence of the first enzyme in purine biosynthesis, PurF. PurF-independent PRA synthesis is dependent on both strain background and growth conditions. Standard genetic approaches have not identified a gene product singly responsible for PurF-independent PRA formation. This result has led to the hypothesis that multiple enzymes contribute to PRA synthesis, possibly as the result of side products from their dedicated reaction. A mutation that was able to restore PRA synthesis in a purF gnd mutant strain was identified and found to map in the gene coding for the TrpD subunit of the anthranilate synthase (AS)-phosphoribosyl transferase (PRT) complex. Genetic analyses indicated that wild-type AS-PRT was able to generate PRA in vivo and that the P362L mutant of TrpD facilitated this synthesis. In vitro activity assays showed that the mutant AS was able to generate PRA from ammonia and phosphoribosyl pyrophosphate. This work identifies a new reaction catalyzed by AS-PRT and considers it in the context of cellular thiamine synthesis and metabolic flexibility.
Collapse
Affiliation(s)
- I Ramos
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
25
|
Gralnick JA, Downs DM. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 2003; 278:20708-15. [PMID: 12670952 DOI: 10.1074/jbc.m301577200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory identified YggX as a protein whose accumulation increased the resistance of Salmonella enterica to superoxide stress, reversed defects attributed to oxidized [Fe-S] clusters, and decreased the spontaneous mutation frequency of the cells. Here we present work aimed at determining why the accumulation of YggX correlates with reduced mutation frequency. Genetic and biochemical data showed that accumulation of YggX reduced the damage to DNA by hydroxyl radicals. The ability of purified YggX to protect DNA from Fenton chemistry mediated damage in vitro and to decrease the concentration of Fe(II) ions in solution available for chelation provided a framework for the interpretation of data obtained from in vivo experiments. The interpretation of in vitro assay results, within the context of the in vivo phenotypes, was validated by a mutant variant of YggX (C7S) that was unable to function in vivo or in vitro. We propose a model, based on data presented here and reported earlier, that suggests YggX is a player in Fe(II) trafficking in bacteria.
Collapse
Affiliation(s)
- Jeffrey A Gralnick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
26
|
Leonardi R, Fairhurst SA, Kriek M, Lowe DJ, Roach PL. Thiamine biosynthesis in Escherichia coli: isolation and initial characterisation of the ThiGH complex. FEBS Lett 2003; 539:95-9. [PMID: 12650933 DOI: 10.1016/s0014-5793(03)00204-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli, two of the proteins required for the biosynthesis of the thiazole moiety of thiamine (vitamin B(1)) are ThiG and ThiH, encoded as part of the thiCEFSGH operon. In this study, a C-terminally hexahistidine-tagged ThiH (ThiH-His) was expressed in E. coli as a soluble protein from thiGH-His-tag and thiFSGH-His-tag-bearing plasmids. When isolated under anaerobic conditions, ThiG and ThiH-His co-purify as a large multimeric non-covalent complex. Electron paramagnetic resonance and UV-visible spectroscopy together with iron and sulfide analyses revealed the presence of an iron-sulfur cluster within this complex.
Collapse
Affiliation(s)
- Roberta Leonardi
- Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
27
|
Wunsch P, Herb M, Wieland H, Schiek UM, Zumft WG. Requirements for Cu(A) and Cu-S center assembly of nitrous oxide reductase deduced from complete periplasmic enzyme maturation in the nondenitrifier Pseudomonas putida. J Bacteriol 2003; 185:887-96. [PMID: 12533464 PMCID: PMC142834 DOI: 10.1128/jb.185.3.887-896.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial nitrous oxide (N(2)O) reductase is the terminal oxidoreductase of a respiratory process that generates dinitrogen from N(2)O. To attain its functional state, the enzyme is subjected to a maturation process which involves the protein-driven synthesis of a unique copper-sulfur cluster and metallation of the binuclear Cu(A) site in the periplasm. There are seven putative maturation factors, encoded by nosA, nosD, nosF, nosY, nosL, nosX, and sco. We wanted to determine the indispensable proteins by expressing nos genes from Pseudomonas stutzeri in the nondenitrifying organism Pseudomonas putida. An in silico study of denitrifying bacteria revealed that nosL, nosX (or a homologous gene, apbE), and sco, but not nosA, coexist consistently with the N(2)O reductase structural gene and other maturation genes. Nevertheless, we found that expression of only three maturation factors (periplasmic protein NosD, cytoplasmic NosF ATPase, and the six-helix integral membrane protein NosY) together with nosRZ in trans was sufficient to produce catalytically active holo-N(2)O reductase in the nondenitrifying background. We suggest that these obligatory factors are required for Cu-S center assembly. Using a mutational approach with P. stutzeri, we also studied NosA, the Cu-containing outer membrane protein previously thought to have Cu insertase function, and ScoP, a putative membrane-anchored chaperone for Cu(A) metallation. Both of these were found to be dispensable elements for N(2)O reductase biosynthesis. Our experimental and in silico data were integrated in a model of N(2)O reductase maturation.
Collapse
Affiliation(s)
- Patrick Wunsch
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
28
|
Skovran E, Downs DM. Lack of the ApbC or ApbE protein results in a defect in Fe-S cluster metabolism in Salmonella enterica serovar Typhimurium. J Bacteriol 2003; 185:98-106. [PMID: 12486045 PMCID: PMC141979 DOI: 10.1128/jb.185.1.98-106.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isc genes function in the assembly of Fe-S clusters and are conserved in many prokaryotic and eukaryotic organisms. In most bacteria studied, the isc operon can be deleted without loss of cell viability, indicating that additional systems for Fe-S cluster assembly must exist. Several laboratories have described nutritional and biochemical defects resulting from mutations in the isc operon. Here we demonstrate that null mutations in two genes of unknown function, apbC and apbE, result in similar cellular deficiencies. Exogenous ferric chloride suppressed these deficiencies in the apbC and apbE mutants, distinguishing them from previously described isc mutants. The deficiencies caused by the apbC and isc mutations were additive, which is consistent with Isc and ApbC's having redundant functions or with Isc and ApbC's functioning in different areas of Fe-S cluster metabolism (e.g., Fe-S cluster assembly and Fe-S cluster repair). Both the ApbC and ApbE proteins are similar in sequence to proteins that function in metal cofactor assembly. Like the enzymes with sequence similarity to ApbC, purified ApbC protein was able to hydrolyze ATP. The data herein are consistent with the hypothesis that the ApbC and ApbE proteins function in Fe-S cluster metabolism in vivo.
Collapse
Affiliation(s)
- Elizabeth Skovran
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
29
|
Allen S, Zilles JL, Downs DM. Metabolic flux in both the purine mononucleotide and histidine biosynthetic pathways can influence synthesis of the hydroxymethyl pyrimidine moiety of thiamine in Salmonella enterica. J Bacteriol 2002; 184:6130-7. [PMID: 12399482 PMCID: PMC151968 DOI: 10.1128/jb.184.22.6130-6137.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Together, the biosyntheses of histidine, purines, and thiamine pyrophosphate (TPP) contain examples of convergent, divergent, and regulatory pathway integration. Mutations in two purine biosynthetic genes (purI and purH) affect TPP biosynthesis due to flux through the purine and histidine pathways. The molecular genetic characterization of purI mutants and their respective pseudorevertants resulted in the conclusion that <1% of the wild-type activity of the PurI enzyme was sufficient for thiamine but not for purine synthesis. The respective pseudorevertants were found to be informational suppressors. In addition, it was shown that accumulation of the purine intermediate aminoimidazole carboxamide ribotide inhibits thiamine synthesis, specifically affecting the conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine.
Collapse
Affiliation(s)
- Shara Allen
- Department of Bacteriology, University of Wisconsin-Madison, Madison 53706, USA
| | | | | |
Collapse
|
30
|
Zwiesler-Vollick J, Plovanich-Jones AE, Nomura K, Bandyopadhyay S, Joardar V, Kunkel BN, He SY. Identification of novel hrp-regulated genes through functional genomic analysis of the Pseudomonas syringae pv. tomato DC3000 genome. Mol Microbiol 2002; 45:1207-18. [PMID: 12207690 DOI: 10.1046/j.1365-2958.2002.02964.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects the model plants Arabidopsis thaliana and tomato, causing disease symptoms characterized by necrotic lesions surrounded by chlorosis. One mechanism used by Pst DC3000 to infect host plants is the type III protein secretion system, which is thought to deliver multiple effector proteins to the plant cell. The exact number of type III effectors in Pst DC3000 or any other plant pathogenic bacterium is not known. All known type III effector genes of P. syringae are regulated by HrpS, an NtrC family protein, and the HrpL alternative sigma factor, which presumably binds to a conserved cis element (called the "hrp box") in the promoters of type III secretion-associated genes. In this study, we designed a search motif based on the promoter sequences conserved in 12 published hrp operons and putative effector genes in Pst DC3000. Seventy-three predicted genes were retrieved from the January 2001 release of the Pst DC3000 genome sequence, which had 95% genome coverage. The expression of the 73 genes was analysed by microarray and Northern blotting, revealing 24 genes/operons (including eight novel genes), the expression of which was consistently higher in hrp-inducing minimal medium than in nutrient-rich Luria-Bertani broth. Expression of all eight genes was dependent on the hrpS gene. Most were also dependent on the hrpL gene, but at least one was dependent on the hrpS gene, but not on the hrpL gene. An AvrRpt2-based type III translocation assay provides evidence that some of the hrpS-regulated novel genes encode putative effector proteins.
Collapse
Affiliation(s)
- Julie Zwiesler-Vollick
- Department of Energy Plant Research Laboratory, 206 Plant Biology Building, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Gralnick J, Downs D. Protection from superoxide damage associated with an increased level of the YggX protein in Salmonella enterica. Proc Natl Acad Sci U S A 2001; 98:8030-5. [PMID: 11416172 PMCID: PMC35462 DOI: 10.1073/pnas.151243198] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Accepted: 05/15/2001] [Indexed: 11/18/2022] Open
Abstract
The deleterious effect of superoxide radicals on cell growth and survival is predominantly caused by rapid oxidation of labile [Fe-S] clusters in proteins. Oxidation of these clusters releases Fe(II) ions, which participate in Fenton chemistry that damages DNA. Here it is shown that elevated levels of the YggX protein increase the resistance of Salmonella enterica to superoxide stress, reverse enzymatic defects attributed to oxidized [Fe-S] clusters, and decrease the spontaneous mutation frequency. The data are consistent with a model in which YggX protects protein [Fe-S] clusters from oxidation.
Collapse
Affiliation(s)
- J Gralnick
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
32
|
Zilles JL, Kappock TJ, Stubbe J, Downs DM. Altered pathway routing in a class of Salmonella enterica serovar Typhimurium mutants defective in aminoimidazole ribonucleotide synthetase. J Bacteriol 2001; 183:2234-40. [PMID: 11244062 PMCID: PMC95129 DOI: 10.1128/jb.183.7.2234-2240.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.
Collapse
Affiliation(s)
- J L Zilles
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
33
|
Zilles JL, Croal LR, Downs DM. Action of the thiamine antagonist bacimethrin on thiamine biosynthesis. J Bacteriol 2000; 182:5606-10. [PMID: 10986269 PMCID: PMC111009 DOI: 10.1128/jb.182.19.5606-5610.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacimethrin is an analog of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine and inhibits the growth of Salmonella enterica serovar Typhimurium on a defined medium. Two classes of mutants that had increased bacimethrin resistance were isolated and characterized. Results showed that overexpression of the thi operon or specific lesions in thiD resulted in a bacimethrin-resistant phenotype. Phenotypic analyses of the thiD mutants suggested that they had a specific defect in one of the two kinase activities associated with this gene product and, further, that ThiD and not PdxK was primarily responsible for salvage of HMP from the medium.
Collapse
Affiliation(s)
- J L Zilles
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|