1
|
Barrios-Rafael VV, Ahumada-Manuel CL, Orgaz-Ramírez S, Nava-Galeana J, Guzmán J, Moreno S, Bustamante VH, Núñez C. The c-di-GMP effector FleQ controls alginate production by repressing transcription of algD in Azotobacter vinelandii. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001556. [PMID: 40272995 PMCID: PMC12022260 DOI: 10.1099/mic.0.001556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Production of the exopolysaccharide alginate by Azotobacter vinelandii, member of the Pseudomonadaceae family, is positively controlled by the second messenger c-di-GMP. This effect was solely attributed to the role of c-di-GMP in activating the alginate polymerase complex. In this study, the role of c-di-GMP in algD transcription, which encodes the key enzyme for alginate synthesis, was investigated. algD transcription correlated with artificially high or low levels of c-di-GMP. Moreover, FleQ, one of the best-characterized c-di-GMP effectors, was found to exert a negative effect on alginate production and algD transcription, as both increased in a ΔfleQ mutant relative to the wild-type strain or the ΔfleQ/fleQ+ complemented strain. Electrophoretic mobility shift assays (EMSAs) confirmed that FleQ directly binds to the regulatory region of algD, which was consistent with the presence of two FleQ binding sites in the vicinity of the algD RpoS-dependent promoter. In A. vinelandii, c-di-GMP is essential for the expression of alginate C-5 epimerases (AlgE1-6), which are necessary for structuring the envelope of differentiated cells, known as cysts. However, FleQ was not involved in this regulation. Collectively, our results support a model in which algD transcription is under the positive control of c-di-GMP, while FleQ may only partially mediate this effect. In contrast, our study revealed a FleQ-independent regulatory mechanism for the control of A. vinelandii encystment.
Collapse
Affiliation(s)
- Víctor V. Barrios-Rafael
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Carlos L. Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Scherezada Orgaz-Ramírez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Chowdhury-Paul S, Martínez-Ortíz IC, Pando-Robles V, Moreno S, Espín G, Merino E, Núñez C. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach. PLoS One 2023; 18:e0286440. [PMID: 37967103 PMCID: PMC10651043 DOI: 10.1371/journal.pone.0286440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.
Collapse
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Iliana C. Martínez-Ortíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
3
|
Khan MN, Ahmed I, Ud Din I, Noureldeen A, Darwish H, Khan M. Proteomic insight into soybean response to flooding stress reveals changes in energy metabolism and cell wall modifications. PLoS One 2022; 17:e0264453. [PMID: 35511817 PMCID: PMC9070951 DOI: 10.1371/journal.pone.0264453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/19/2022] Open
Abstract
Soybean is a legume crop enriched with proteins and oil. It is frequently exposed to anthropogenic and natural flooding that limits its growth and yield. Current study applied gel-free proteomic techniques to unravel soybean response mechanism to flooding stress. Two-days-old soybeans were flooded for 4 days continuously and root samples were collected at days 2 to 6 for proteomic and enzymatic analyses. Age-matched untreated soybeans were collected as control. After protein extraction, purification and tryptic digestion, the peptides were analyzed on nano-liquid chromatography-mass spectrometry. A total of 539 and 472 proteins with matched peptides 2 or more were identified in control and flooded seedlings, respectively. Among these 364 proteins were commonly identified in both control and flooded soybeans. Fourty-two protein's abundances were changed 4-fold after 2-days of flooding stress as compared to starting point. The cluster analysis showed that highly increased proteins included cupin family proteins, enolase, pectin methylesterase inhibitor, glyoxalase II, alcohol dehydrogenase and aldolase. The enzyme assay of enolase and pectin methylesterase inhibitor confirmed protein abundance changes. These findings suggest that soybean adopts the less energy consuming strategies and brings biochemical and structural changes in the cell wall to effectively respond to flooding stress and for the survival.
Collapse
Affiliation(s)
- Mudassar Nawaz Khan
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
- Department of Biotechnology & Genetic Engineering, Hazara University Mansehra, Mansehra, Pakistan
| | - Iftikhar Ahmed
- Bio Resources Conservation Institute, National Agricultural Research Center Islamabad, Islamabad, Pakistan
| | - Israr Ud Din
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Majid Khan
- Institute of Biotechnology & Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| |
Collapse
|
4
|
Núñez C, López-Pliego L, Ahumada-Manuel CL, Castañeda M. Genetic Regulation of Alginate Production in Azotobacter vinelandii a Bacterium of Biotechnological Interest: A Mini-Review. Front Microbiol 2022; 13:845473. [PMID: 35401471 PMCID: PMC8988225 DOI: 10.3389/fmicb.2022.845473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Alginates are a family of polymers composed of guluronate and mannuronate monomers joined by β (1–4) links. The different types of alginates have variations in their monomer content and molecular weight, which determine the rheological properties and their applications. In industry, alginates are commonly used as additives capable of viscosifying, stabilizing, emulsifying, and gelling aqueous solutions. Recently, additional specialized biomedical uses have been reported for this polymer. Currently, the production of alginates is based on the harvesting of seaweeds; however, the composition and structure of the extracts are highly variable. The production of alginates for specialized applications requires a precise composition of monomers and molecular weight, which could be achieved using bacterial production systems such as those based on Azotobacter vinelandii, a free-living, non-pathogenic bacterium. In this mini-review, we analyze the latest advances in the regulation of alginate synthesis in this model.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Carlos Leonel Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel Castañeda,
| |
Collapse
|
5
|
Zhang Z, Yu YX, Wang YG, Liu X, Wang LF, Zhang H, Liao MJ, Li B. Complete genome analysis of a virulent Vibrio scophthalmi strain VSc190401 isolated from diseased marine fish half-smooth tongue sole, Cynoglossus semilaevis. BMC Microbiol 2020; 20:341. [PMID: 33176689 PMCID: PMC7661262 DOI: 10.1186/s12866-020-02028-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Vibrio scophthalmi is an opportunistic bacterial pathogen, which is widely distributed in the marine environment. Earlier studies have suggested that it is a normal microorganism in the turbot gut. However, recent studies have confirmed that this bacterial strain can cause diseases in many different marine animals. Therefore, it is necessary to investigate its whole genome for better understanding its physiological and pathogenic mechanisms. Results In the present study, we obtained a pathogenic strain of V. scophthalmi from diseased half-smooth tongue sole (Cynoglossus semilaevis) and sequenced its whole genome. Its genome contained two circular chromosomes and two plasmids with a total size of 3,541,838 bp, which harbored 3185 coding genes. Among these genes, 2648, 2298, and 1915 genes could be found through annotation information in COG, Blast2GO, and KEGG databases, respectively. Moreover, 10 genomic islands were predicted to exist in the chromosome I through IslandViewer online system. Comparison analysis in VFDB and PHI databases showed that this strain had 334 potential virulence-related genes and 518 pathogen-host interaction-related genes. Although it contained genes related to four secretion systems of T1SS, T2SS, T4SS, and T6SS, there was only one complete T2SS secretion system. Based on CARD database blast results, 180 drug resistance genes belonging to 27 antibiotic resistance categories were found in the whole genome of such strain. However, there were many differences between the phenotype and genotype of drug resistance. Conclusions Based on the whole genome analysis, the pathogenic V. scophthalmi strain contained many types of genes related to pathogenicity and drug resistance. Moreover, it showed inconsistency between phenotype and genotype on drug resistance. These results suggested that the physiological mechanism seemed to be complex. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02028-7.
Collapse
Affiliation(s)
- Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Yong-Xiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Yin-Geng Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Xiao Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Li-Fang Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Hao Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Mei-Jie Liao
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
6
|
Campos DT, Zuñiga C, Passi A, Del Toro J, Tibocha-Bonilla JD, Zepeda A, Betenbaugh MJ, Zengler K. Modeling of nitrogen fixation and polymer production in the heterotrophic diazotroph Azotobacter vinelandii DJ. Metab Eng Commun 2020; 11:e00132. [PMID: 32551229 PMCID: PMC7292883 DOI: 10.1016/j.mec.2020.e00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023] Open
Abstract
Nitrogen fixation is an important metabolic process carried out by microorganisms, which converts molecular nitrogen into inorganic nitrogenous compounds such as ammonia (NH3). These nitrogenous compounds are crucial for biogeochemical cycles and for the synthesis of essential biomolecules, i.e. nucleic acids, amino acids and proteins. Azotobacter vinelandii is a bacterial non-photosynthetic model organism to study aerobic nitrogen fixation (diazotrophy) and hydrogen production. Moreover, the diazotroph can produce biopolymers like alginate and polyhydroxybutyrate (PHB) that have important industrial applications. However, many metabolic processes such as partitioning of carbon and nitrogen metabolism in A. vinelandii remain unknown to date. Genome-scale metabolic models (M-models) represent reliable tools to unravel and optimize metabolic functions at genome-scale. M-models are mathematical representations that contain information about genes, reactions, metabolites and their associations. M-models can simulate optimal reaction fluxes under a wide variety of conditions using experimentally determined constraints. Here we report on the development of a M-model of the wild type bacterium A. vinelandii DJ (iDT1278) which consists of 2,003 metabolites, 2,469 reactions, and 1,278 genes. We validated the model using high-throughput phenotypic and physiological data, testing 180 carbon sources and 95 nitrogen sources. iDT1278 was able to achieve an accuracy of 89% and 91% for growth with carbon sources and nitrogen source, respectively. This comprehensive M-model will help to comprehend metabolic processes associated with nitrogen fixation, ammonium assimilation, and production of organic nitrogen in an environmentally important microorganism. Genome-scale metabolic model of Azotobacter vinelandii DJ achives over 90% accuracy. iDT1278 is the most comprehensive model to simulate diazotrophy. Determining the most suitable culture conditions to produce polymers A. vinelandii. Constraint-based modeling unravels links among nitrogen fixation and production of organic nitrogen.
Collapse
Affiliation(s)
- Diego Tec Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.,Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - John Del Toro
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Juan D Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093-0412, USA
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.,Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA
| |
Collapse
|
7
|
Mærk M, Jakobsen ØM, Sletta H, Klinkenberg G, Tøndervik A, Ellingsen TE, Valla S, Ertesvåg H. Identification of Regulatory Genes and Metabolic Processes Important for Alginate Biosynthesis in Azotobacter vinelandii by Screening of a Transposon Insertion Mutant Library. Front Bioeng Biotechnol 2020; 7:475. [PMID: 32010681 PMCID: PMC6979010 DOI: 10.3389/fbioe.2019.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Azotobacter vinelandii produces the biopolymer alginate, which has a wide range of industrial and pharmaceutical applications. A random transposon insertion mutant library was constructed from A. vinelandii ATCC12518Tc in order to identify genes and pathways affecting alginate biosynthesis, and about 4,000 mutant strains were screened for altered alginate production. One mutant, containing a mucA disruption, displayed an elevated alginate production level, and several mutants with decreased or abolished alginate production were identified. The regulatory proteins AlgW and AmrZ seem to be required for alginate production in A. vinelandii, similarly to Pseudomonas aeruginosa. An algB mutation did however not affect alginate yield in A. vinelandii although its P. aeruginosa homolog is needed for full alginate production. Inactivation of the fructose phosphoenolpyruvate phosphotransferase system protein FruA resulted in a mutant that did not produce alginate when cultivated in media containing various carbon sources, indicating that this system could have a role in regulation of alginate biosynthesis. Furthermore, impaired or abolished alginate production was observed for strains with disruptions of genes involved in peptidoglycan biosynthesis/recycling and biosynthesis of purines, isoprenoids, TCA cycle intermediates, and various vitamins, suggesting that sufficient access to some of these compounds is important for alginate production. This hypothesis was verified by showing that addition of thiamine, succinate or a mixture of lysine, methionine and diaminopimelate increases alginate yield in the non-mutagenized strain. These results might be used in development of optimized alginate production media or in genetic engineering of A. vinelandii strains for alginate bioproduction.
Collapse
Affiliation(s)
- Mali Mærk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | - Svein Valla
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Bedoya-Pérez LP, Muriel-Millán LF, Moreno S, Quiroz-Rocha E, Rivera-Gómez N, Espín G. The pyrophosphohydrolase RppH is involved in the control of RsmA/CsrA expression in Azotobacter vinelandii and Escherichia coli. Microbiol Res 2018; 214:91-100. [DOI: 10.1016/j.micres.2018.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/28/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
|
9
|
Urtuvia V, Maturana N, Acevedo F, Peña C, Díaz-Barrera A. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol 2017; 33:198. [DOI: 10.1007/s11274-017-2363-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/01/2017] [Indexed: 10/18/2022]
|
10
|
Quiroz-Rocha E, Bonilla-Badía F, García-Aguilar V, López-Pliego L, Serrano-Román J, Cocotl-Yañez M, Guzmán J, Ahumada-Manuel CL, Muriel-Millán LF, Castañeda M, Espín G, Nuñez C. Two-component system CbrA/CbrB controls alginate production in Azotobacter vinelandii. MICROBIOLOGY-SGM 2017; 163:1105-1115. [PMID: 28699871 DOI: 10.1099/mic.0.000457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azotobacter vinelandii, belonging to the Pseudomonadaceae family, is a free-living bacterium that has been considered to be a good source for the production of bacterial polymers such as alginate. In A. vinelandii the synthesis of this polymer is regulated by the Gac/Rsm post-transcriptional regulatory system, in which the RsmA protein binds to the mRNA of the biosynthetic algD gene, inhibiting translation. In several Pseudomonas spp. the two-component system CbrA/CbrB has been described to control a variety of metabolic and behavioural traits needed for adaptation to changing environmental conditions. In this work, we show that the A. vinelandii CbrA/CbrB two-component system negatively affects alginate synthesis, a function that has not been described in Pseudomonas aeruginosa or any other Pseudomonas species. CbrA/CbrB was found to control the expression of some alginate biosynthetic genes, mainly algD translation. In agreement with this result, the CbrA/CbrB system was necessary for optimal rsmA expression levels. CbrA/CbrB was also required for maximum accumulation of the sigma factor RpoS. This last effect could explain the positive effect of CbrA/CbrB on rsmA expression, as we also showed that one of the promoters driving rsmA transcription was RpoS-dependent. However, although inactivation of rpoS increased alginate production by almost 100 %, a cbrA mutation increased the synthesis of this polymer by up to 500 %, implying the existence of additional CbrA/CbrB regulatory pathways for the control of alginate production. The control exerted by CbrA/CbrB on the expression of the RsmA protein indicates the central role of this system in regulating carbon metabolism in A. vinelandii.
Collapse
Affiliation(s)
- Elva Quiroz-Rocha
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Fernando Bonilla-Badía
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México.,Present address: Departamento de Medicina, Centro Interdisciplinario de Ciencias de la Salud-Unidad Milpa Alta, Instituto Politécnico Nacional, CICITEC, Ex-Hacienda del Mayorazgo, Km. 39.5 Carretera Xochimilco - Oaxtepec, Ciudad de México, CP 12000, México
| | - Valentina García-Aguilar
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1622, CP 72000, México
| | - Liliana López-Pliego
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1622, CP 72000, México
| | - Jade Serrano-Román
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México.,Present address: Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, México
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Carlos L Ahumada-Manuel
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Miguel Castañeda
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 1622, CP 72000, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| | - Cinthia Nuñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col Chamilpa, Cuernavaca, Morelos, CP 62210, México
| |
Collapse
|
11
|
Yu RL, Liu A, Liu Y, Yu Z, Peng T, Wu X, Shen L, Liu Y, Li J, Liu X, Qiu G, Chen M, Zeng W. Evolution ofSulfobacillus thermosulfidooxidanssecreting alginate during bioleaching of chalcopyrite concentrate. J Appl Microbiol 2017; 122:1586-1594. [DOI: 10.1111/jam.13467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- R.-L. Yu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - A. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - Y. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - Z. Yu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - T. Peng
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
| | - X. Wu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - L. Shen
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - Y. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - J. Li
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - X. Liu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - G. Qiu
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
| | - M. Chen
- CSIRO Process Science and Engineering; Clayton Vic. Australia
| | - W. Zeng
- School of Minerals Processing and Bioengineering; Central South University; Changsha China
- Key Laboratory of Biometallurgy; Ministry of Education; Changsha China
- CSIRO Process Science and Engineering; Clayton Vic. Australia
| |
Collapse
|
12
|
Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G. Unphosphorylated EIIA Ntr induces ClpAP-mediated degradation of RpoS in Azotobacter vinelandii. Mol Microbiol 2017; 104:197-211. [PMID: 28097724 DOI: 10.1111/mmi.13621] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 02/02/2023]
Abstract
The nitrogen-related phosphotransferase system (PTSNtr ) is composed of the EINtr , NPr and EIIANtr proteins that form a phosphorylation cascade from phosphoenolpyruvate. PTSNtr is a global regulatory system present in most Gram-negative bacteria that controls some pivotal processes such as potassium and phosphate homeostasis, virulence, nitrogen fixation and ABC transport activation. In the soil bacterium Azotobacter vinelandii, unphosphorylated EIIANtr negatively regulates the expression of genes related to the synthesis of the bioplastic polyester poly-β-hydroxybutyrate (PHB) and cyst-specific lipids alkylresorcinols (ARs). The mechanism by which EIIANtr controls gene expression in A. vinelandii is not known. Here, we show that, in presence of unphosphorylated EIIANtr , the stability of the stationary phase sigma factor RpoS, which is necessary for transcriptional activation of PHB and ARs synthesis related genes, is reduced, and that the inactivation of genes coding for ClpAP protease complex in strains that carry unphosphorylated EIIANtr , restored the levels and in vivo stability of RpoS, as well as the synthesis of PHB and ARs. Taken together, our results reveal a novel mechanism, by which EIIANtr globally controls gene expression in A. vinelandii, where the unphosphorylated EIIANtr induces the degradation of RpoS by the proteolytic complex ClpAP.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Ramsés Gallegos-Monterrosa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
13
|
Alginate Biosynthesis inAzotobacter vinelandii: Overview of Molecular Mechanisms in Connection with the Oxygen Availability. INT J POLYM SCI 2016. [DOI: 10.1155/2016/2062360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Gram-negative bacteriumAzotobacter vinelandiican synthetize the biopolymer alginate that has material properties appropriate for plenty of applications in industry as well as in medicine. In order to settle the foundation for improving alginate production without compromising its quality, a better understanding of the polymer biosynthesis and the mechanism of regulation during fermentation processes is necessary. This knowledge is crucial for the development of novel production strategies. Here, we highlight the key aspects of alginate biosynthesis that can lead to producing an alginate with specific material properties with particular focus on the role of oxygen availability linked with the molecular mechanisms involved in the alginate production.
Collapse
|
14
|
Yoneyama F, Yamamoto M, Hashimoto W, Murata K. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions. Bioengineered 2015; 6:209-17. [PMID: 25880041 DOI: 10.1080/21655979.2015.1040209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.
Collapse
Affiliation(s)
- Fuminori Yoneyama
- a Division of Food Science and Biotechnology ; Graduate School of Agriclture Kyoto University ; Uji , Kyoto , Japan
| | | | | | | |
Collapse
|
15
|
Alginate synthesis in Azotobacter vinelandii is increased by reducing the intracellular production of ubiquinone. Appl Microbiol Biotechnol 2012; 97:2503-12. [PMID: 22878844 DOI: 10.1007/s00253-012-4329-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/19/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Azotobacter vinelandii, a soil nitrogen fixing bacterium, produces alginate a polysaccharide with industrial and medical relevant applications. In this work, we characterized a miniTn5 mutant, named GG101, that showed a 14-fold increase in the specific production of alginate when grown diazotrophically on solid minimal medium comparing to the parental E strain (also named AEIV). Quantitative real-time reverse transcription PCR analysis indicated that this increased alginate production was due to higher expression levels of several biosynthetic alg genes such as algD. Sequencing of the locus interrupted in GG101 indicated that the miniTn5 was inserted in the positive strand, and 10 bp upstream the start codon of the gene ubiA, encoding the enzyme for the second step in the biosynthesis of ubiquinone (Q8). Both the transcription of ubiA and the content of Q8 are decreased in the mutant GG101 when compared to the wild-type strain E. Genetic complementation of mutant GG101 with a wild-type copy of the ubiCA genes restored the content of Q8 and reduced the production of alginate to levels similar to those of the parental E strain. Furthermore, respirometric analysis showed a reproducible decrease of about 8 % in the respiratory capacity of mutant GG101, at exponential phase of growth in liquid minimal medium. Collectively, our data show that a decreased content in Q8 results in higher levels of alginate in A. vinelandii.
Collapse
|
16
|
Manzo J, Cocotl-Yañez M, Tzontecomani T, Martínez VM, Bustillos R, Velásquez C, Goiz Y, Solís Y, López L, Fuentes LE, Nuñez C, Segura D, Espín G, Castañeda M. Post-Transcriptional Regulation of the Alginate Biosynthetic Gene algD by the Gac/Rsm System in Azotobacter vinelandii. J Mol Microbiol Biotechnol 2012; 21:147-59. [DOI: 10.1159/000334244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
An extracytoplasmic function sigma factor controls beta-lactamase gene expression in Bacillus anthracis and other Bacillus cereus group species. J Bacteriol 2009; 191:6683-93. [PMID: 19717606 DOI: 10.1128/jb.00691-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The susceptibility of most Bacillus anthracis strains to beta-lactam antibiotics is intriguing considering that the closely related species Bacillus cereus and Bacillus thuringiensis typically produce beta-lactamases and the B. anthracis genome harbors two beta-lactamase genes, bla1 and bla2. We show that beta-lactamase activity associated with B. anthracis is affected by two genes, sigP (BA2502) and rsiP (BA2503), predicted to encode an extracytoplasmic function sigma factor and an anti-sigma factor, respectively. Deletion of the sigP-rsiP locus abolished beta-lactamase activity in a naturally occurring penicillin-resistant strain and had no effect on beta-lactamase activity in a prototypical penicillin-susceptible strain. Complementation with sigP and rsiP from the penicillin-resistant strain, but not with sigP and rsiP from the penicillin-susceptible strain, conferred constitutive beta-lactamase activity in both mutants. These results are attributed to a nucleotide deletion near the 5' end of rsiP in the penicillin-resistant strain that is predicted to result in a nonfunctional protein. B. cereus and B. thuringiensis sigP and rsiP homologues are required for inducible penicillin resistance in these species. Expression of the B. cereus or B. thuringiensis sigP and rsiP genes in a B. anthracis sigP-rsiP-null mutant confers inducible production of beta-lactamase activity, suggesting that while B. anthracis contains the genes necessary for sensing beta-lactam antibiotics, the B. anthracis sigP and rsiP gene products are not sufficient for bla induction.
Collapse
|
18
|
Núñez C, Bogachev AV, Guzmán G, Tello I, Guzmán J, Espín G. The Na+-translocating NADH : ubiquinone oxidoreductase of Azotobacter vinelandii negatively regulates alginate synthesis. Microbiology (Reading) 2009; 155:249-256. [DOI: 10.1099/mic.0.022533-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Azotobacter vinelandii is a nitrogen-fixing soil bacterium that produces the exopolysaccharide alginate. In this report we describe the isolation and characterization of A. vinelandii strain GG4, which carries an nqrE : : Tn5 mutation resulting in alginate overproduction. The nqrE gene encodes a subunit of the Na+-translocating NADH : ubiquinone oxidoreductase (Na+-NQR). As expected, Na+-NQR activity was abolished in mutant GG4. When this strain was complemented with the nqrEF genes this activity was restored and alginate production was reduced to wild-type levels. Na+-NQR may be the main sodium pump of A. vinelandii under the conditions tested (∼2 mM Na+) since no Na+/H+-antiporter activity was detected. Collectively our results indicate that in A. vinelandii the lack of Na+-NQR activity caused the absence of a transmembrane Na+ gradient and an increase in alginate production.
Collapse
Affiliation(s)
- Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Alexander V. Bogachev
- Department of Molecular Energetics of Microorganisms, A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Gabriel Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Isaac Tello
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Josefina Guzmán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
19
|
León R, Espín G. flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. MICROBIOLOGY-SGM 2008; 154:1719-1728. [PMID: 18524926 PMCID: PMC2885672 DOI: 10.1099/mic.0.2008/017665-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azotobacter vinelandii is a nitrogen-fixing soil bacterium that undergoes differentiation to form cysts resistant to desiccation. Upon encystment, this bacterium becomes non-motile. As in enteric bacteria, motility in A. vinelandii occurs through the use of peritrichous flagella. Pseudomonas aeruginosa, a phylogenetically close relative of A. vinelandii, possesses a single polar flagellum. The FlhDC proteins are the master regulators of flagella and motility in enterobacteria, whereas FleQ is the master regulator in P. aeruginosa, and it is under AlgU (sigmaE) negative control. At present, nothing is known about the organization and expression of flagella genes in A. vinelandii. Here, we identified the flagella gene cluster of this bacterium. Homologues of the master regulatory genes flhDC and fleQ are present in A. vinelandii. Inactivation of flhDC, but not fleQ, impaired flagella biogenesis and motility. We present evidence indicating that a negative effect of the AlgU sigma factor on flhDC expression causes loss of motility in A. vinelandii, and that CydR (a homologue of Fnr) is under AlgU control and has a negative effect on flhDC expression. Taken together, these results suggest the existence of a cascade consisting of AlgU and CydR that negatively controls expression of flhDC; the results also suggest that the block in flagella synthesis under encystment conditions centres on flhDC repression by the AlgU–CydR cascade.
Collapse
Affiliation(s)
- Renato León
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| |
Collapse
|
20
|
Muhammadi, Ahmed N. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 2007; 8:191-202. [PMID: 18645604 PMCID: PMC2435354 DOI: 10.2174/138920207780833810] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/22/2022] Open
Abstract
Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca(2+)-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca(2+)-dependent epimerization. A hierarchy of alginate genes expression under sigma(22)(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of sigma(22). These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nuzhat Ahmed
- Centre for Molecular Genetics, University of Karachi, Karachi-75270,
Pakistan
| |
Collapse
|
21
|
Galindo E, Peña C, Núñez C, Segura D, Espín G. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 2007; 6:7. [PMID: 17306024 PMCID: PMC1805506 DOI: 10.1186/1475-2859-6-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 02/16/2007] [Indexed: 12/01/2022] Open
Abstract
Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii.
Collapse
Affiliation(s)
- Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional, Autónoma de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Carlos Peña
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional, Autónoma de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma, de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Daniel Segura
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma, de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma, de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
| |
Collapse
|
22
|
Schenk A, Berger M, Keith LM, Bender CL, Muskhelishvili G, Ullrich MS. The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster. J Bacteriol 2006; 188:8013-21. [PMID: 17012388 PMCID: PMC1698189 DOI: 10.1128/jb.01160-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 08/31/2006] [Indexed: 01/22/2023] Open
Abstract
The phytopathogenic bacterium Pseudomonas syringae pv. glycinea infects soybean plants and causes bacterial blight. In addition to P. syringae, the human pathogen Pseudomonas aeruginosa and the soil bacterium Azotobacter vinelandii produce the exopolysaccharide alginate, a copolymer of d-mannuronic and l-guluronic acids. Alginate production in P. syringae has been associated with increased fitness and virulence in planta. Alginate biosynthesis is tightly controlled by proteins encoded by the algT-muc regulatory gene cluster in P. aeruginosa and A. vinelandii. These genes encode the alternative sigma factor AlgT (sigma(22)), its anti-sigma factors MucA and MucB, MucC, a protein with a controversial function that is absent in P. syringae, and MucD, a periplasmic serine protease and homolog of HtrA in Escherichia coli. We compared an alginate-deficient algT mutant of P. syringae pv. glycinea with an alginate-producing derivative in which algT is intact. The alginate-producing derivative grew significantly slower in vitro growth but showed increased epiphytic fitness and better symptom development in planta. Evaluation of expression levels for algT, mucA, mucB, mucD, and algD, which encodes an alginate biosynthesis gene, showed that mucD transcription is not dependent on AlgT in P. syringae in vitro. Promoter mapping using primer extension experiments confirmed this finding. Results of reverse transcription-PCR demonstrated that algT, mucA, and mucB are cotranscribed as an operon in P. syringae. Northern blot analysis revealed that mucD was expressed as a 1.75-kb monocistronic mRNA in P. syringae.
Collapse
Affiliation(s)
- Alexander Schenk
- School of Engineering and Sciences, Campus Ring 1, International University Bremen, D-28759 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Gimmestad M, Steigedal M, Ertesvåg H, Moreno S, Christensen BE, Espín G, Valla S. Identification and characterization of an Azotobacter vinelandii type I secretion system responsible for export of the AlgE-type mannuronan C-5-epimerases. J Bacteriol 2006; 188:5551-60. [PMID: 16855245 PMCID: PMC1540039 DOI: 10.1128/jb.00236-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alginate is a linear copolymer of beta-d-mannuronic acid and its C-5-epimer, alpha-l-guluronic acid. During biosynthesis, the polymer is first made as mannuronan, and various fractions of the monomers are then epimerized to guluronic acid by mannuronan C-5-epimerases. The Azotobacter vinelandii genome encodes a family of seven extracellular such epimerases (AlgE1 to AlgE7) which display motifs characteristic for proteins secreted via a type I pathway. Putative ATPase-binding cassette regions from the genome draft sequence of the A. vinelandii OP strain and experimentally verified type I transporters from other species were compared. This analysis led to the identification of one putative A. vinelandii type I system (eexDEF). The corresponding genes were individually disrupted in A. vinelandii strain E, and Western blot analysis using polyclonal antibodies against all AlgE epimerases showed that these proteins were present in wild-type culture supernatants but absent from the eex mutant supernatants. Consistent with this, the wild-type strain and the eex mutants produced alginate with about 20% guluronic acid and almost pure mannuronan (< or =2% guluronic acid), respectively. The A. vinelandii wild type is able to enter a particular desiccation-tolerant resting stage designated cyst. At this stage, the cells are surrounded by a rigid coat in which alginate is a major constituent. Such a coat was formed by wild-type cells in a particular growth medium but was missing in the eex mutants. These mutants were also found to be unable to survive desiccation. The reason for this is probably that continuous stretches of guluronic acid residues are needed for alginate gel formation to take place.
Collapse
Affiliation(s)
- Martin Gimmestad
- Department of Biotechnology, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
24
|
Gaona G, Núñez C, Goldberg JB, Linford AS, Nájera R, Castañeda M, Guzmán J, EspÃn G, Soberón-Chávez G. Characterization of the Azotobacter vinelandii algCgene involved in alginate and lipopolysaccharide production. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09756.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Abstract
Bacterial sigma (sigma) factors are an essential component of RNA polymerase and determine promoter selectivity. The substitution of one sigma factor for another can redirect some or all of the RNA polymerase in a cell to activate the transcription of genes that would otherwise be silent. As a class, alternative sigma factors play key roles in coordinating gene transcription during various stress responses and during morphological development. The extracytoplasmic function (ECF) sigma factors are small regulatory proteins that are quite divergent in sequence relative to most other sigma factors. Many bacteria, particularly those with more complex genomes, contain multiple ECF sigma factors and these regulators often outnumber all other types of sigma factor combined. Examples include Bacillus subtilis (7 ECF sigma factors), Mycobacterium tuberculosis (10), Caulobacter crescentus (13), Pseudomonas aeruginosa (approximately 19), and Streptomyces coelicolor (approximately 50). The roles and mechanisms of regulation for these various ECF sigma factors are largely unknown, but significant progress has been made in selected systems. As a general trend, most ECF sigma factors are cotranscribed with one or more negative regulators. Often, these include a transmembrane protein functioning as an anti-sigma factor that binds, and inhibits, the cognate sigma factor. Upon receiving a stimulus from the environment, the sigma factor is released and can bind to RNA polymerase to stimulate transcription. In many ways, these anti-sigma:sigma pairs are analogous to the more familiar two-component regulatory systems consisting of a transmembrane histidine protein kinase and a DNA-binding response regulator. Both are mechanisms of coordinating a cytoplasmic transcriptional response to signals perceived by protein domains external to the cell membrane. Here, I review current knowledge of some of the better characterized ECF sigma factors, discuss the variety of experimental approaches that have proven productive in defining the roles of ECF sigma factors, and present some unifying themes that are beginning to emerge as more systems are studied.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, NY 14853-8101, USA
| |
Collapse
|
26
|
Sobeck DC, Higgins MJ. Examination of three theories for mechanisms of cation-induced bioflocculation. WATER RESEARCH 2002; 36:527-538. [PMID: 11827315 DOI: 10.1016/s0043-1354(01)00254-8] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Research from different studies has been used to support three different theories pertaining to the role of cations in bioflocculation. These theories are the alginate theory. Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory, and divalent cation bridging (DCB) theory. The objectives of this research were to examine the role of cations in bioflocculation to determine which theory, if any, best describes cation induced bioflocculation. Experiments were performed using laboratory scale activated sludge systems with bactopeptone as a feed. The feed was supplemented with either calcium, magnesium, or sodium at increasing concentrations. Floc properties were analyzed in each reactor during steady state periods. The addition of calcium or magnesium to the feed individually resulted in improvements in SVI, CST, SRF, cake solids and floc strength and each of these divalent cations produced similar results. The addition of sodium to the feed resulted in a deterioration in floc properties relative to a control reactor. Analysis of these results suggest that the DCB theory best explains the role of cations. The discrepancies between different studies were examined and are thought to be a result of different experimental procedures in different studies and in particular the use of short-term batch tests versus continuous flow reactor studies. In addition, the implications of DCB theory suggests that activated sludge systems should attempt to lower the ratio of monovalent to divalent cations to improve floc properties and treatment performance.
Collapse
|
27
|
Castañeda M, Sánchez J, Moreno S, Núñez C, Espín G. The global regulators GacA and sigma(S) form part of a cascade that controls alginate production in Azotobacter vinelandii. J Bacteriol 2001; 183:6787-93. [PMID: 11698366 PMCID: PMC95518 DOI: 10.1128/jb.183.23.6787-6793.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Azotobacter vinelandii algD gene, which encodes GDP-mannose dehydrogenase (the rate-limiting enzyme of alginate synthesis), starts from three sites: p1, p2, and p3. The sensor kinase GacS, a member of the two-component regulatory system, is required for transcription of algD from its three sites during the stationary phase. Here we show that algD is expressed constitutively throughout the growth cycle from the p2 and p3 sites and that transcription from p1 started at the transition between the exponential growth phase and stationary phase. We constructed A. vinelandii strains that carried mutations in gacA encoding the cognate response regulator of GacS and in rpoS coding for the stationary-phase sigma(S) factor. The gacA mutation impaired alginate production and transcription of algD from its three promoters. Transcription of rpoS was also abolished by the gacA mutation. The rpoS mutation impaired transcription of algD from the p1 promoter and increased it from the p2 sigma(E) promoter. The results of this study provide evidence for the predominant role of GacA in a regulatory cascade controlling alginate production and gene expression during the stationary phase in A. vinelandii.
Collapse
Affiliation(s)
- M Castañeda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62250, Mexico
| | | | | | | | | |
Collapse
|
28
|
Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci 2001; 26:740-6. [PMID: 11738598 DOI: 10.1016/s0968-0004(01)01981-8] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cupin superfamily of proteins is among the most functionally diverse of any described to date. It was named on the basis of the conserved beta-barrel fold ('cupa' is the Latin term for a small barrel), and comprises both enzymatic and non-enzymatic members, which have either one or two cupin domains. Within the conserved tertiary structure, the variety of biochemical function is provided by minor variation of the residues in the active site and the identity of the bound metal ion. This review discusses the advantages of this particular scaffold and provides an evolutionary analysis of 18 different subclasses within the cupin superfamily.
Collapse
Affiliation(s)
- J M Dunwell
- School of Plant Sciences, The University of Reading, Whiteknights, RG6 6AS, Reading, UK.
| | | | | | | | | |
Collapse
|
29
|
Sauer K, Camper AK. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J Bacteriol 2001; 183:6579-89. [PMID: 11673428 PMCID: PMC95489 DOI: 10.1128/jb.183.22.6579-6589.2001] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface. A switch between planktonic and sessile growth is believed to result in a phenotypic change in bacteria. In this study, a global analysis of physiological changes of the plant saprophyte Pseudomonas putida following 6 h of attachment to a silicone surface was carried out by analysis of protein profiles and by mRNA expression patterns. Two-dimensional (2-D) gel electrophoresis revealed 15 proteins that were up-regulated following bacterial adhesion and 30 proteins that were down-regulated. N-terminal sequence analyses of 11 of the down-regulated proteins identified a protein with homology to the ABC transporter, PotF; an outer membrane lipoprotein, NlpD; and five proteins that were homologous to proteins involved in amino acid metabolism. cDNA subtractive hybridization revealed 40 genes that were differentially expressed following initial attachment of P. putida. Twenty-eight of these genes had known homologs. As with the 2-D gel analysis, NlpD and genes involved in amino acid metabolism were identified by subtractive hybridization and found to be down-regulated following surface-associated growth. The gene for PotB was up-regulated, suggesting differential expression of ABC transporters following attachment to this surface. Other genes that showed differential regulation were structural components of flagella and type IV pili, as well as genes involved in polysaccharide biosynthesis. Immunoblot analysis of PilA and FliC confirmed the presence of flagella in planktonic cultures but not in 12- or 24-h biofilms. In contrast, PilA was observed in 12-h biofilms but not in planktonic culture. Recent evidence suggests that quorum sensing by bacterial homoserine lactones (HSLs) may play a regulatory role in biofilm development. To determine if similar protein profiles occurred during quorum sensing and during early biofilm formation, HSLs extracted from P. putida and pure C(12)-HSL were added to 6-h planktonic cultures of P. putida, and cell extracts were analyzed by 2-D gel profiles. Differential expression of 16 proteins was observed following addition of HSLs. One protein, PotF, was found to be down-regulated by both surface-associated growth and by HSL addition. The other 15 proteins did not correspond to proteins differentially expressed by surface-associated growth. The results presented here demonstrate that P. putida undergoes a global change in gene expression following initial attachment to a surface. Quorum sensing may play a role in the initial attachment process, but other sensory processes must also be involved in these phenotypic changes.
Collapse
Affiliation(s)
- K Sauer
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
30
|
|